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The low-frequency scattering of Kelvin waves 
by stepped topography 

By E. R. JOHNSON 
Department of Mathematics, University College London, Gower Street, 

London WClE 6BT, UK 

(Received 1 March 1989) 

A straightforward method that yields explicit transmission amplitudes is presented 
for Kelvin wave scattering by topography whose isobaths are parallel sufficiently far 
from the vertical, but not necessarily planar, wall supporting the incident wave. 
These results are obtained by first restricting attention to the low-frequency limit in 
which the flow splits naturally into three regions : an outer-x region containing the 
incident and transmitted Kelvin waves, an outer-y region containing outwardly 
propagating long topographic waves and an inner quasi-steady geostrophic region 
whose structure follows from earlier time-dependent analyses. The present analysis 
is further simplified by approximating general smooth features by stepped profiles 
with no restriction on the size, number or order of steps. Various qualitative results 
on the transmission amplitudes and flow fields are deduced from the explicit 
solutions and results are given on orthogonality, completeness and direction of 
propagation of the scattered long waves. 

1. Introduction 
In  discussing tides in the English Channel, Lord Kelvin (Thomson 1879) introduced 

free-surface waves that propagate along bounding walls of a rotating fluid and decay 
exponentially away from the supporting wall. Subsequent analyses of these Kelvin 
waves by Taylor (1921), Miles (1972, 1973) and others have considered the effects of 
varying rotation rate, depth and boundary shape to provide models for seiches and 
tides in the North Sea and phase changes of tides passing over escarpments like that 
near Cape Mendocino. Such escarpments support subinertial topographic waves 
capable of carrying energy away from the coast. Miles (1973) explicitly excludes 
these effects from his analysis. It is the purpose of this and a companion paper 
(Johnson 1990b, referred to as I1 herein) to present results for Kelvin wave scattering 
by escarpments and more complex features extending far from the bounding wall 
and at frequencies sufficiently low that energy is removed from the scattering region 
by topographic waves. Progress is made possible by restricting attention to the low- 
frequency limit. Recent work on the related problem of the scattering of continental 
shelf waves (Johnson 1989u, b, c, d ,  1 9 9 0 ~ )  shows that many problems take 
particularly simple forms in this limit. Although the results are presented there under 
the rigid-lid assumption, it is noted that the analysis extends directly to free-surface 
flows and hence to the scattering of Kelvin waves. Some results for the special case 
of a single step have been presented by Johnson (1985), Gill et al. (1986) and Johnson 
& Davey (1990) who consider the temporal evolution of coastal currents above 
escarpments. Further results have been given by Killworth (19894 who presents 
bounds for the amplitude of the transmitted Kelvin wave in the low-frequency limit 
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and numerical simulations for a particular ridge a t  various frequencies, remarking on 
the size and difficulty of the complex system of equations to be solved. The present 
analysis leads to a rapidly converging expression for the transmitted wave amplitude 
for arbitrary topography and to flow fields closely resembling those of the numerical 
simulations. 

It is shown in $ 2  that in the low-frequency limit the flow separates naturally into 
three regions : an outer region varying slowly along the wall on the scale of the Kelvin 
wave, a second outer region varying slowly away from the wall on the scale of long 
topographic waves, and an inner, geostrophic region. The analysis of the present 
paper is further simplified by approximating arbitrary topography by stepped 
features, consisting of regions of constant height separated by vertical steps. This 
approximation is not restrictive. It enables very complicated profiles to be considered 
and gives equally accurate results far more economically when compared to explicit 
treatments of smooth ridges (see 11). The discrete representation also appears more 
relevant to those used in ocean circulation models. In  $ 3  results from previous time- 
dependent analyses of flow a t  upward and downward wall-step junctions are quoted 
to give the geostrophic region a set of linear constraints on the interface heights 
above the steps. These are combined with a radiation condition in $ 4  to give a 
reduced, real, linear system for the amplitude of the transmitted wave. The 
difficulties associated with the large complex system needed a t  arbitrary frequencies 
are avoided, as are the difficulties associated with smooth topography. Section 5 
presents some results, general rules and flow patterns and $6 discusses briefly the 
extension to smooth topography, more general scattering regions, and stratified flow. 

2. Equations of motion 
The linear shallow-water equations can be written 

U,+f2?AU=-gvp ,  (2.1) 

(2.2) V * (Hu) = - p t ,  

where u is the horizontal velocity, p the free surface displacement, H the local depth, 
f the Coriolis parameter, g gravitational acceleration and z" a unit vertical vector. 
Equation (2.1) can be rewritten as 

(att+f')u = -dVPt-fz" A V P ) ,  

cat, +f 2, Pt - v * [ S W V P ,  - f f  A VP11 = 0. 

(2.3) 

(2.4) 

Pnt -fP, = 0, (2 .5)  

and so (2.2) gives the field equation 

On a solid boundary the normal component of u vanishes and so (2.3) gives 

for outward normal n and arclength s. 
Consider first the semi-infinite domain - 00 < x* < 00, y* 2 0 having an 

impermeable wall a t  y* = 0 and topography depending on x* alone, becoming flat for 
sufficiently large Jx*l, i.e. with 

for constants H,, H ,  (figure 1). More general domains and bottom topography are 
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FIGURE 1 .  The simplest geometry considered. Topography depending on x* alone abuts an 
impermeable wall at y* = 0 bounding a semi-infinite ocean in y* 2 0, - co < x* < co. More general 
geometries are considered in $6. 

discussed in $6. Let a subinertial Kelvin wave of frequency of (o < 1) and unit 
amplitude be incident on the topography from x* = - co, so 

p +  e-Y cos [o(x-  f t ) ]  (x+- a), (2.7) 

where (x, y )  = (x*, y*)/a are scaled on the incident Rossby radius a = (gH,)i/f. Write 
p = Re {y(x, y )  eiWft). Then y gives the scattered wave field provided 

(2.8) 

ioy,-yx = 0 ( y  = 0 ) ,  (2.9) 

7 -+ e-y-iwx (x+-m), (2.10) 

iw[V. (hVy)- (1-w2)y]+z"-  (Vh A Vy) = 0 ( y  > 0) ,  

for h(x )  = H/H,. The incoming Kelvin wave is scattered by the ridge to give a 
transmitted Kelvin wave, evanescent Poincare' waves in the neighbourhood of the 
wall-ridge junction, and set of topographic waves, some evanescent and some 
propagating outwards along the ridge and decaying away from the ridge. Thus as 

(2.11) 

where h, = H,/H, and the complex amplitude A of the transmitted Kelvin wave is 
to be determined. Obtaining the amplitude and phase of the transmitted wave as a 
function of ridge height, width and profile at arbitrary frequencies can require a large 
numerical effort (Killworth 1989 a)  but straightforward solutions can be found in the 
low-frequency limit. The analysis is further simplified by considering ridges that are 
piecewise flat, i.e. with 

X + W  
7 + A  exp { - h;i(y+ iox)}, 

(x < 21) 

h, = h, 1% < 4, 

h ( x )  = hj (x, < x < %,+I) (2.12) 

(2.13) 

having steps of height hj- hj-l a t  the n points xl,. . . , x,. With this topography, field 
equation (2.8) becomes 

1' 
h j V 2 ~ - ( 1 - 0 2 ) ~  = 0 (x, < x < ~j+~,j = 0, ..., n) ,  
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with the jump conditions 

[r] = 0, iw[hq,]+[h]r, = 0 (x = x,, j = 1, .. . ,n), (2.14) 

introducing for compactness the convention xo = - 00, x,+~ = co, There are three 
distinct regions in the limit w + 0. Denote as the inner region the region with x, y fixed 
as w + O ,  as the outer-x region the region with X = wx, y fixed, and as the outer-y 
region the region with x, Y = oy fixed. The fourth possibility of X ,  Y fixed gives the 
quiescent ocean 7 E 0. 

The outer-z region is trivial. Here (2.13), (2.19) become 

ryy-r = 0 (X < O), h&$/ , - r  = 0 ( X  > 01, 

iqy-rx = 0 (y = 0, x * O ) ,  

with solution given by the Kelvin waves of (2.10), (2.11), i.e. 

(2.15) 

(2.16) 

(2.17) 

and the ridge appearing as a singularity along X = 0. 

3. The inner region 

and no flow crosses any step in y > 0, i.e. since ry vanishes on x = xt by (2.14), 
In the present low-frequency limit, (2.3) shows that the inner region is geostrophic 

r = q j  (x=x, ,  j = 1 )  ..., n) ,  (3.1) 

q = u ,  ( x , < x < x j + l , y = o ,  j= 1 ,.'., n) (3.2) 

a, = 1 ,  a,, = A .  (3.3) 

for (unknown) constants 7,. Similarly 9,  vanishes on y = 0 by (2.9) so 

for (unknown) amplitudes a,. Since the limit X+O of (2.17) matches (3.2), 

Consider the wall-step junction at x,. Sufficiently close to the junction, equations 
(2.13), (2.14), (2.15) reduce to the rigid-lid flow over a single step, solved for arbitrary 
frequencies in ,Johnson (1985). For an upward step h, < all waves propagate 
outwards, information travels away from the wall and the junction is non-singular 
with surface elevation continuous across xj. Thus 

= 7, = uj for h, < hj-l .  13.4) 

Energy is conserved a t  the junction. For a downward step waves generated in the 
start-up of the periodic forcing (2.10) carry information towards the wall. The 
continuous arrival of energy forces a singularity there with the entire incident mass 
flux passing through the singularity. Since 7 is a stream function for the motion in 
this region, conservation of mass gives 

h,-l(aj-l-r,) = hj(uj-q,) for hj > h,-l, 

i.e. 7, = (h,a,-h,-la,_l)/(h,-h,_l) for hj > h,_l. (3.5) 

For a single step (7, = 0, see $ 5 ) ,  (3.5) reduces to the result in Gill et al. (1986) verified 
by the numerical integrations of Johnson & Davey (1990). The free surface is 
discontinuous across the singularity (u, $: aj-J and energy is not conserved, with 
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more energy carried inwards by the incident Kelvin and topographic waves than 
transported away by the sole transmitted Kelvin wave. This is a consequence of the 
absence of short waves above vertical steps. Above steep, but not vertical, downward 
steps short waves are present with phase propagating towards the wall but carrying 
energy slowly outwards from the wall. For vertical steps the energy that would 
otherwise be carried outwards by short waves remains trapped at  the wall. In the 
low-frequency limit, approximating continuous topography by a stepped obstacle 
corresponds to the weakly dissipative flows of Johnson (1989a, b)  where even 
vanishingly small viscosity destroys short wave energy in a boundary layer of 
thickness w against the wall. Short waves carrying energy outwards are present 
above downward slopes for completely inviscid flow over continuous topography and 
energy is conserved even in the low-frequency limit (Johnson 1990a). The long-wave 
field is, however, unaltered from the weakly dissipative determination and so 
although not determining the short-wave field for inviscid flow, the present 
approximation gives the inviscid long-wave field. The dissipative layer and short- 
wave fields are discussed in detail in 11. 

Denote by I ( j )  the cumulative number of downward steps for x < x,, up to and 
including the step at  x,, with I (0 )  = 0. Then there are I(n) = m (say) downward steps 
and n-m upward steps altogether. At an upward step no new unknowns enter the 
problem, and aj being determined by u , - ~ .  At a downward step one new unknown 
enters. Take this to be a,, the free surface height along the wall after the step. The 
free surface retains this constant height until the next downward step. Denote these 
(unknown) heights by b,, . . . , b, (with b, = a,). Then the interface heights along the 
wall are given by 

'I = a, = b,(,) (xj < x < xj+l, j = 0 , .  . .,n) (3.6) 

and the interface height along the step x = xj by 

Introducing the n x 1 and (m+ 1) x 1 vectors q = (v1, . . . , 7,JT and b = (b,, b,, . . . , b,)T 
allows (3.7) to be written 

q = B b  (3.8) 

where B is lower tridiagonal n x (m+ l) ,  and the M rows corresponding to the m 
downward steps are linearly independent. The determination of b is discussed in $4. 

Once b and so the uj and vj are known, the value of 7 for all x,y follows 
straightforwardly. For x, < x < z,+~, (2.13) becomes 

hjV2r-tj = 0, (3.9) 

subject to 'I = 7, (x = XjL 'I = ' I j + l  (x = Xj+l), (3.10) 

'I = aj ( y  = 0) Vq bounded (1x1, y+oo). (3.11) 

The solution of (3.9), (3.10), (3.11) can be written 

P(x,  1) sin Zydl (xj < x < xj+J, (3.12) 

2 FLM PIG 
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where K, = (Z2 + h;l):. The surface elevation becomes independent of y exponentially 
fast with distance from the wall, 

(111 exp (2--51) (5 21) 

{q, sinh [h;i(~,+~ -x)] + qj+l sinh [h$(x-x,)]}/sinhA, 
(3.14) 

x (x, < x < z,+~, j = 1, . . . , n - 1)  
v + F ( q ; z )  = 

where A,  = h ; i ( ~ ~ + ~ - x ~ ) .  The value of F at a given x depends solely on the 
components of q, i.e. on the interface heights above the steps. Expression (3.14) 
provides the inner boundary condition for the outer-y solution of the following 
section. 

4. The outer-y region 
Here (2.13), (2.14) become 

h,vsz-r  = 0 (xj < x < x,+~, j = 0, ..., n),  (4.1) 

(4.2) 

with T - f O  (I+a), (4.3) 

[q] = 0, i[hvz] + [h] l;lu = 0 (x = x,, j = 1, . . . , n) 

to match the quiescent outer ocean. System (4.1)-(4.3) describes long topographic 
waves propagating along the feature. The waves are non-dispersive with energy and 
phase travelling in the same direction. From (4.2) the system has wave-like solutions 
of the form 

7 = e'"F,(x) (4.4) 

provided h,F;-F, = 0 (x, < x < x,+~, j = 0 , .  . . , n),  (4.5) 

[F,]=O (x=x,, j = l ,  ..., n),  

[hF;]+Z[h]F,=O (x=x,, j= 1, . . . ,n  ) 

F,+o ( lxl+a) .  (4.8) 

The solution of (4.5), (4.6) and (4.8) is determined by the values of F at the steps x,. 
Comparison with (3.14) gives the general solution 

F , ( 4  = F V ; x ) ,  (4.9) 

where F V ;  x,) = f, and the vectorf= (f,, . . . ,f,)' gives the surface elevations above 
the step. Substituting (4.9) in the jump condition (4.7) gives the recurrence relation 

(4.10) 

Af = lDA (4.11) 

Z(hj - h,-l)f, = - cosech A,f,-, + (hj-l coth A ,  + hj coth A,+,)f ,  - hi cosech dj+lfj+l, 

and thus the algebraic eigenvalue problem 
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where A is real, symmetric, tridiagonal and (since coth A, > cosech A,) diagonally 
dominant and D is real and diagonal with elements 

o,, = h,--h,-l, (4.12) 

positive for the m downward steps and negative for the n - m  upward steps. 
Since A is diagonally dominant a straightforward application of Gershgorin's 

theorem (Golub & Van Loan 1983) shows that each eigenvalue of A has positive real 
part. Since A is real, symmetric all eigenvalues of A are real. Thus all eigenvalues of 
A are real and positive. Hence A is positive definite. 

Since A is symmetric positive definite and D is symmetric the eigenvalues of the 
generalized eigenvalue problem (4.1 1) are real. Moreover applying Gershgorin's 
theorem to the diagonally dominant but not symmetric D-'A shows that there are 
as many eigenvalues with positive real parts as there are positive D,, and as many 
with negative real parts as there are negative D,. Thus the eigenvalues of (4.11) can 

(4.13) be written 

From (4.4) positive eigenvalues correspond to waves propagating towards the wall 
and thus, as in $3, there exist m inwardly propagating waves corresponding to the 
m downward steps and n - m  outwardly propagating waves corresponding to the 
n-m upward steps. 

Since A is symmetric positive definite it furnishes the inner product and norm 

A ,  2 A, 3 . .. 2 Am > 0 > A,+, 3 . . . 2 A,. 

(4.14) 

Since D is symmetric it follows that to each A, there corresponds one real eigenvector 
5, (say) and that the eigenvectors corresponding. to distinct eigenvalues are 
orthogonal (and any corresponding to repeated eigenvalues can be so constructed), 
Thus any vectorfcan be written as 

n 

I-1 

f= c a,{, with aj = (fX,>/llt,l12. (4.15) 

Note that ff Of8 does not yield a positive definite inner product for topography 
containing both upward and downward steps since by (4.11) and (4.13) 

> O  if j = l ,  ..., m 

< O  if j = m + l ,  ..., n, 
(4.16) 

i.e. there would exist vectors with negative norms and non-zero vectors with zero 
norm. For computational purposes it is convenient however to note from (4.11) the 
alternative expression for the a, in (4.15), 

(4.17) 

where the denominator is non-zero since llC,ll > 0 and by (4.13). The inner product 
(4.14) is the low-frequency, free-surface, discrete form of the inner product introduced 
in Johnson (1989d). The continuous form is given in 11. They differ from the usual 
inner product and norm (Huthnance 1975; Killworth 1989a), which correspond to  
the quadratic formff Of2, in remaining positive definite for topography with slopes 
of both signs. 

The general solution of (4.1)-(4.3) satisfying the radiation condition that no energy 
travels inwards from Y = UJ can thus be written 

n 
(4.18) 

j -m+l 
2-2 



30 E .  R.  Johnson 

where the n - m  coefficients Prn+,, ...,Pn and the m amplitudes b,, ..., bm are 
determined by matching (4.18) at Y = 0 with (3.14), and can be taken as real since 
the &,A j  are. The surface elevation is thus given in the outer-y region by 

n 

+m+l 
P ( X >  y ,  t )  = c p , m , ;  4 cos (A j  y+ Wft), (4.19) 

with each mode propagating outwards with dimensional speed 

dy* = (gH,)$/(  - A j ) .  
dt 

(4.20) 

Since the cross-ridge profiles of (4.18) at Y = 0 and (3.14) are of the same form it  
is sufficient to match at the steps alone. This gives n equations 

n 

c P,5, = tt =Bb, 
j-m+l 

(4.21) 

relating the n+ 1 unknowns b,, b,, b,, . . . , bm,/3m+l, . . . , P,. The unknown can be 
eliminated by multiplying both sides of (4.21) by the m x n matrix ED where ET is 
the n x m matrix of eigenvectors corresponding to incoming waves, i.e. 

= ( 5 1 , 5 2 9  . . . ?  t m ) *  

Then by orthogonality EDBb = 0. 

(4.22) 

(4.23) 

Equation (4.23) determines b as the sole vector in the null space of the rank m matrix 
m x  (m+ 1) matrix EDB. The ratio bm/b ,  is real and gives the amplitude of the 
transmitted Kelvin wave for an incident wave of unit amplitude. There is no change 
in phase in the outer-x region of the wave in crossing the ridge nor any phase change 
in the other regions, irrespective of the shape or height of the ridge. 

The n x (m+ 1) matrix DB is particularly simple with zero entries except for 

(4.24) 

Once b has been determined from (4.23), the coefficients P, of the outward 
propagating waves are given explicitly from (4.17) by 

P, = 5T DBbl c; D5j3 (4.25) 

and the vector q follows from (3.8). The solution is complete. 

5. Examples 
If the ridge is a downward escarpment, consisting of only downward steps, then all 

the incident volume flux is constrained to pass through each wall-step singularity 
and finally emerge at the far side of the escarpment. Conservation of mass then gives 

and so the amplitude of the transmitted wave is reduced by a factor H,/H, < 1. If 
the ridge is an upward escarpment, consisting of only upward steps, then the 
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wall-step junctions are non-singular and free-surface elevation is continuous along 

(j = 1, ..., n) ,  

the wall, i.e. 
73 = 1 

aj = 1 

and the amplitudes of the incident and transmitted waves are equal. These are 
precisely the results given in Gill et al. (1986), and extend directly to continuous 
escarpments to give the same transmission amplitudes but, for downward 
escarpments, with a dissipative boundary layer or short waves carrying energy 
outwards and continuous variation of q along the wall (see 11). 

If the topography consists of upward and downward escarpments separated from 
each other by more than three or so Rossby radii their interactions are negligible and 
(5.1) and (5.2) can be applied consecutively. In  particular, a ridge with a wide flat top 
separating ocean of constant depth (i.e. h, = h,), transmits a Kelvin wave with 
amplitude diminished by the factor H,/H,  < 1 where H ,  is the depth over the ridge. 
A wide flat valley in the same ocean transmits a Kelvin wave with amplitude 
diminished by the factor H,/H, < 1 where H ,  is again the depth over the feature. 
Wide features with reciprocal extrema of fractional depth have the same amplitude 
of transmitted wave. 

A second type of simple explicit solution is given by a ridge consisting of two steps 
(n = 2) of opposite sign (m = 1). Choose the origin such that q 2  = f W and let 
H ,  = H ,  so the depth after the ridge equals the depth before. Then the amplitude 
of the transmitted wave depends solely on the ridge half-width W and the fractional 
depth over the ridge, h, = H,/H,. The eigenvalue problem (4.11) gives the real equal 
and opposite (since the topography is symmetric) wavenumbers 

(5.3) 
where W, = 2W/hi.  For a ridge (h, < 1)  the outward propagating wave ( A ,  < 0) is 
given by the negative sign in (5.3). The corresponding eigenvector can be written 

A1.2 = k (1  + 2hi ~ 0 t h  W, + h,);/(  1 - h,) ,  

= (1, y)T where 

y = h;: sinh W,[ 1 + hi coth W, - (1 + 2hi coth W, + h&. (5.4) 

The junction a t  x1 is non-singular so ql = 1, the incident amplitude, and the junction 
at x2 is singular with conservation of mass giving the amplitude of the transmitted 

(5 .5)  
Kelvin waves as 

A = h l + ( 1 - h l ) ~ 2 = h l + ( 1 - h l ) ~ .  

For a valley (h, > 1) the outward propagating wave is given by the positive sign in 
(5.3). The corresponding eigenvector can be written ( y ,  l)T. The junction a t  x2 is non- 
singular so qz = A ,  the transmitted amplitude, and the junction a t  x1 is singular with 
conservation of mass giving 

A = h;l+(l-h;l)q, = h; l+ ( l -h ; ' ) yA  

so A = [hl+(1-hl)y]-l. (5.6) 

For currents whose width above the feature is small compared to the width of the 
feature (hi < W ) ,  (5.4) gives y = 0 and (5.5) and (5.6) reduce to the asymptotic forms 
for wide ridges given above. For narrow features (W 4 hi) ,  y = 1 and transmission is 
perfect. Figure 2(a )  gives the amplitude A as a function of ridge half-width for 
various feature depths. The amplitudes rapidly attain their asymptotic value with 
increasing W ,  being within 10% by W = 0.5 for all but the deepest of valleys. The 
behaviour of ridges and their corresponding reciprocal valleys is closest for small 
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I I 
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FIQURE 2. (a )  The amplitude A of the transmitted Kelvin wave for an incident wave of unit 
amplitude for a rectangular ridge as a function of the ridge half-width W. The depths above the 
feature, scaled on the far-field depth are (i) h, = 4, (ii) 4, (iii) !, (iv) 4, (v) 2, (vi) 4. For narrow features 
transmission is perkect. For wide features transmission for ridges of minimum depth h, is the same 
as that for valleys of maximum depth i/hl. ( b )  The transmitted amplitude as a function of h, for 
half-widths (i) W = 0.1, (ii) 0.3, (iii) 1 ,  (iv) 3. By W = 3, A varies linearly with h, for ridges 
(h, < 1) and inversely as h, for valleys (h,  > 1) .  

features, diverging as the heights of the features, and so the disparities in Rossby 
radii above the features, increase. Figure 2 ( b )  gives A as a function of h, for 
increasing widths. For ridges ( H ,  < H,) the transmitted amplitude is indistinguish- 
able from the asymptotic (W << 1 )  linear variation by W = 1. The deviation from 
wide-feature asymptotics is significantly larger for valleys ( H ,  > H,) owing to their 
larger above-feature Rossby radius. 

The bounds on the transmission amplitude in Killworth (1989a) can be written 
u < A  < CT; where 

(5.7) 0- = [h,  + (2 -4) rl/P - h, + hl rl. 
Figure 3(a )  shows the variation in the bounds and the exact value as a function of 
W for various h,. The bounds are most accurate for low narrow features, becoming 
less accurate for larger features. The hypothesis of Killworth (1989a, b)  that the 
upper bound is always attained is not borne out. It is shown in I1 that this follows 
from the neglect of the order-one energy carried outwards by short waves in inviscid 
flow (Johnson 1990a and visible in the numerical simulations of Killworth 1989~)  or 
destroyed at the wall in weakly dissipative flow (Johnson 1 9 8 9 ~ )  and above stepped 
features. Only when the topography is an upward escarpment, so no short waves are 
present and the transmitted amplitude is unity, is the bound achieved. For a valley 
the bounds give r-' < A < d. Figure 3 (b )  shows the bounds and the exact solution. 
For h, > 2 the lower bound vanishes and the upper bound becomes undefined at some 
finite W. This again follows from the neglect of short waves and occurs for any feature 
containing a sufficiently wide, deep valley. Examples for continuous topography are 
given in I1 together with an accurate one-mode estimate for the transmitted 
amplitude. The estimate coincides with the exact values (5.5) and (5.6) in the present 
case as no other modes are present. 

Figures 4 and 5 give the flow patterns in the inner and outer regions for a wide high 
ridge (W = 2 ,  h, = H , / H ,  = 1/2) and a wide, deep valley (W = 2, h, = 2 ) .  In both 
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FIQURE 3. The amplitude of the transmitted Kelvin wave (solid line) with the upper (short dash) 
and lower (long dash) bounds from Killworth (19894 for a rectangular feature as a function of the 
half-width W. (a )  A ridge with (i) h, = and (ii) 8.  ( b )  A valley with (i) h, = $ and (ii) $. 
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BIQURE 4. Contours of free-surface elevation p for a ridge of half-width W = 2 and minimum depth 
h, = 4. In  this and the succeeding patterns of p the three vertical dashed lines give the start, middle 
and end of the topography. (a )  On the inner scale the contours are streamlines. The arrows and 
amplitudes correspond to the time of maximum positive amplitude of the incident Kelvin wave. 
( b )  On the outer-y scale, with Y = oy. The contours interval is the same as in (a )  with negative 
values shown broken. The pattern is shown at the same instant as (a )  joining continuously a t  
Y = 0 to the solution as y+ co and turning the outward flux in x < - W to return above the ridge 
in x > W. 

cases the transmitted amplitude is 0.25 as expected. In the inner region, parts (a)  of 
the figures, since 7 is real, 

(5.8) 

and so, from (2.3), 7 gives the streamlines of flow. During one period the signed 
magnitude of the velocity at any point varies sinusoidally but its direction is fixed. 
The arrows give the direction of flow for that half of the period for which the Kelvin 
elevation is positive and are reversed for the other half. For the ridge the incident 
flux is turned to flow outwards beside the ridge returning as a current of the same 
amplitude above the ridge. Since the depth over the ridge is $Ho the flux associated 

P(X, Y, t )  = 7(", Y )  (20s mft, 
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FIGURE 5. As fop figure 4 but for a valley of depth h, = 2. The radiated wave field is weaker 
and the current over the feature less confined although the transmitted amplitude is unaltered. 

with current is decreased to 0.5. The return flow is turned to continue as a Kelvin 
wave along the wall, passing through a singularity a t  ( 2 , O )  where the volume flux is 
conserved but the wave amplitude decreases owing to the increase in depth. For the 
valley the volume flux is conserved in passing through the singularity a t  ( - 2 , O )  but 
the amplitude decreases to 0.5 as the depth increases. The larger Rossby radius above 
the valley means that the outward flow is less confined and reflects the slower 
approach above the deep valleys to the asymptotic form for wide features (W p 1) .  
The flow on the far side of the valley has the same amplitude as the outward flow and 
thus returns only half its flux. Parts (b )  of the figures show contours of the free- 
surface elevation in the outer region as given by (4.19). Since only one wave is present 
the patterns propagate outwards without change of form joining continuously a t  
Y = 0 to the limit y + a of the inner solutions. In  both cases the wave is concentrated 
over the upward step, having amplitude above the ridge determined by the incident 
wave and thus larger than that above the valley, determined by the transmitted 
wave. Figures 6 and 7 give the same flow patterns for narrower features, of half- 
width W = 0.3. Although the individual Kelvin wave components can be clearly 
identified away from the features, above them the flow is strongly confined by the 
steps, remaining parallel until close to the wall. The outer flow patterns show that 
the waves, concentrated over the upward step, no longer have negligible amplitude 
by the downward step. The return current above the ridge thus extends slightly into 
x > W and some fluid (with p < 0.2) turns to join the transmitted wave without 
passing through the singularity at ( W ,  0). This bypassing of the singularity shows 
more clearly in the outer flow over the valley since the current is even less confined 
owing to the larger Rossby radius associated with the valley. For the same reason the 
transmitted wave is even larger for the valley than for the ridge although both 
transmit more than their wider counterparts. 

Explicit solutions can be obtained for features containing up to four steps 
(requiring the roots of a quartic) but lack the simplicity of the general formulation. 
For more complex features, and approximation to smooth features, consider the 
stepped topography obtained by dividing the interval where h(x) differs from its far- 
field values into n - 1 strips of constant depth given by the value of h at the midpoint 
of the strip. This choice preserves the cross-sectional area of piecewise linear features. 
In the examples to follow the strips are chosen to be of equal width. This choice leads 
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FIGURE 6. As for figure 4 but for a narrower ridge, of half-width W = 0.3. The outer wave field and 
the inner flow away from the ridge are barely altered. Above the ridge the flow is strongly confined 
by the steps, remaining parallel until close to the wall. The return flow above the ridge extends just 
outside the ridge and fluid with p < 0.2 joins the transmitted wave without passing through the 
singularity at ( W ,  0). 
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FIQURE I. As for figure 5 but for a narrower valley, of half-width W = 0.3. The outward flow above 
the valley is now wider than the valley itself and about half the incident fluid turns to join the 
outward current without passing through the singularity at  (W,  0). 

to a rapidly convergent sequence though it is not optimum. It is shown in I1 that 
more rapid convergence follows by dividing the profile into intervals within which 
h'(x) is strictly one-signed and then choosing the positions of the steps to be a t  the 
Chebyshev points within each interval. Consider the smooth features of width Wand 
depth a t  centre h,, given by 

(5.9) 

where e controls the shape of the profile. Figure 8 gives the transmission amplitude 
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FIGURE 8. (a) The amplitude of the transmitted Kelvin wave for a high parabolic ridge with 
minimum depth h, = 0.2 as a function of the half-width W .  (b) The amplitude for a ridge of half- 
width W = 0.5 as a function of the minimum depth h,. The numbers n of steps used to approximate 
the ridge are (i) n = 2, (ii) 4, (iii) 10. 
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FIGURE 9. (a )  The transmission amplitude A for ridges with minimum depth h, = 0.2 as a function 
of the half-width W .  ( b )  The amplitude for a half-width W = 0.5 as a function of the minimum depth 
h,. The volume of the topography changes from curve to curve: (i) E = &, a narrow concave- 
upwards profile; (ii) E = 1, a triangle ridge; (iii) E = 10, a broad concave-downwards profile. 

as a function of Wand of h, for a parabolic ridge ( E  = 2) for various numbers of steps. 
Except for the widest and highest of ridges, the results are graphically in- 
distinguishable for n > 4. Accurately resolving the effects of rapid topographic 
oscillations requires approximately four steps per feature. Figure 9 gives the 
transmission amplitude as a function of Wand of h, for various e. For a given height 
the transmitted amplitude approaches its wide-ridge (W 9 1) limit most rapidly for 
obstacles of largest volume. For a given height and width the blocking effect 
increases with volume. 

Figure 10 gives the flow patterns above a parabolic ridge (W = 1, h, = $, n = 12). 
The ridge has been approximated by 11 constant-width strips and so by (3.4) the 
surface elevation in the inner region is identically equal to unity over the first five 
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FIQURE 10. The flow patterns for a parabolic ridge of minimum depth h, = 4 and half-width W = 1. 
(a)  and ( b )  The streamlines of the inner solution with the stagnant region of surface elevation 
unity over the upslope of the ridge shown shaded. (a) is a detail of (b) magnified by a factor 5 to 
display the structure of the boundary-layer against the wall above the downslope of the ridge. (c )  
The corresponding outer flow showing the wave field concentrated above the upslope. The ridge has 
been approximated by twelve steps (n = 12). 

(i.e. - 1 < x 6 - 1/11) and the flow is stagnant there. The flow returns above the 
downslope of the ridge, remaining parallel until close to the wall. Figure 10 (a )  shows 
the flow turning in a layer pinned against the wall at the six downward steps of the 
approximating stepped ridge and emerging through a source at  ( 1 , O ) .  The form of 
these wall-step singularities has been discussed in Johnson ( 1985). For continuous 
topography the stagnant region covers the entire upslope region, barring a layer of 
thickness 3 or wf about x = 0 (depending on the shape of the ridge crest), and the 
entraining boundary layer above the downslope has thickness of order w (Johnson 
1989a, b ) .  In the outer-y region the wave field is concentrated above the upslope. 
Although the wave field is generally dominated by longer wavelengths, much high- 
wavenumber structure is evident, particularly near the crest of the ridge. The 
pattern reproduces many of the features of the numerical simulation of Killworth 
(1989a) presented in his figure 3(a) .  The wide turning oncoming flow, the stagnant 
inner region above the upslope, the very narrow return flow after the crest and the 
reduced-width continuing flow of figure 10(b) are all visible as is the outgoing long 
wave, compressed in figure lO(c). The main differences are the termination of long 
wave in the numerical solution due to the inclusion of viscosity to prevent reflection 
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FIGURE 11. As for figure LO but for a parabolic valley of maximum depth h, = 2. The stagnant 
shaded region of the inner solution has surface elevation A ,  the transmitted amplitude, joining 
smoothly to the transmitted wave in 5 2 1. 

of energy a t  the rigid outer boundary of the computational domain and the presence 
of short waves above the downslope. It is shown in Johnson (1989a, 1990~)  that 
these waves are absent in weakly dissipative flows and, in inviscid flows, although 
contributing to the outward energy flux carry no mass and so do not alter from the 
weakly dissipative determination the transmitted mass flux or consequently the 
amplitude of the transmitted Kelvin wave. 

Figure 11 gives the flow above a parabolic valley (W = 1 ,  h, = 2 ,  n = 12). In  the 
inner region the incident flux enters a sink a t  ( -  W , O )  to be carried along by a 
detraining boundary layer pinned against the wall by the six downward steps. The 
region above the upslope between the six upward steps is stagnant with constant 
surface elevation p = A ,  the amplitude of the transmitted wave. As for rectangular 
topography, the amplitude of the outgoing waves in the outer-y region is given by the 
transmitted wave and so is weaker than the corresponding field for the ridge. Much 
high-wavenumber structure is again visible. The pattern propagates outwards at the 
speed of the lowest mode with periodic changes of form caused by the more slowly 
propagating higher modes. A more concise representation of the outer flow is thus 
given by considering the amplitudes and speeds of the component waves. Figure 
12 (a )  gives the cross-ridge structure of the lowest three outwardly propagating 
modes (those with negative eigenvalues A, of smallest magnitude) for the ridge of 
figure 10 with, however, the number of steps increased to 30 to indicate how closely 
the stepped eigenfunctions approach continuous differentiability. Figure 12 ( 6 )  gives 
the lowest three modes for the valley of figure 1 I. The decay of the modes away from 
the favourable slope above the valley is slower owing to the larger Rossby radius 
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FIGURE 12. (a) The lowest three outwardly propagating modes (those three with negative 
eigenvalues of smallest magnitude) above the ridge of figure 10 (n = 30). ( b )  The lowest three 
outward modes for the valley of figure 1 1 .  In  both cases the modes have no, one and two zero 
crossings and zeros of consecutive modes interlace. 

Mode number 1 2 3 4 5 6 

Ridge wave-number 4.773 27.92 70.38 114.2 138.0 349.6 
Ridge wave amplitude 1.072 0.067 0.137 0.001 -0.052 0.189 
Valley wave-number 3.315 27.73 66.31 104.8 202.6 659.6 

TABLE 1.  The wavenumbers and amplitudes for the six outwardly propagating waves of the outer-y 
field above the ridge of figure 10 and the six for the wave field above the valley of figure 1 1 .  The 
wave fields are dominated by the fundamental, which is 44% longer above the valley, but the 
slowly propagating very short waves carry some of the radiated energy. 

Valley wave amplitude 0.622 -0.044 0.057 -0.023 0.030 0.077 

there. The modes have no, one and two zero crossings and zeros of consecutive modes 
interlace. Longuet-Higgins (1968) discusses these waves for continuous monotonic 
depth changes and Killworth (19894  considers some aspects for ridge-like 
topography. Further properties including completeness, orthogonality, zero crossings 
and interlacing are derived in 11. Table 1 gives the amplitudes of the modes used to 
construct figures 10 and 11, showing the dominance of the lower modes and the 
insignificance of the higher modes. The highest wavenumber present is large and 
increases as the number of approximating steps increases. This does not affect the 
solution as its amplitude is small but points to the presence of finer structure in the 
limit of continuous topography. This structure is discussed in greater detail in 11. 

The patterns over more complicated features consisting of alternate ridges and 
valley are a combination of the two basic forms discussed above. Figure 13 gives the 
profile, stepped approximation and surface elevation along the wall for two valleys 
separated by a ridge. As in the previous examples, surface elevation decreases 
monotonically above downslopes and remains constant above upslopes. 
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FIQURE 13. (a) The profile of the smooth obstacle with height O . ~ C O S ( ~ ~ C Z )  and its stepped 
approximation with n = 30. (b) The corresponding surface elevation at the wall. The surface 
elevation decreases monotonically above downslopes, conserving mass flux, and remains constant 
above upslopes. 
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FIQURE 14. The transmitted amplitude A for topography consisting of two rectangular ridges each 
of minimum depth h, = i, the first of width 6W and the second of width (1 -6) W, separated by a 
distance W. The amplitude is given ati a function of 6 for W = 0.1. As 6 increases from 0 the leading 
ridge thickens as the trailing ridge thins. The obstacle for any 6 is the reflection about x = 0 of the 
obstacle for 1 - 6. 

For simplicity the examples to date have been chosen to be symmetric about 
x = 0. To assess the effect of asymmetry consider the obstacle with height 

h, if -W<x<(S-l)W or SW<x<W 
(5.10) 

consisting of two ridges of width SW and (1 - 6) W separated by a distance W .  As 6 
increases from zero the obstacle changes continuously from a wide ridge following a 
thin ridge, through two equal ridges when 6 = to a thin ridge following a wide ridge 
at 6 = 1. Figure 14 gives the transmitted amplitude as a function of 6 for W = 0.1 and 
h, = 0.25. The variation is less than 5 YO. For wider obstacles and for changes in single 
ridges from steep leading edge and shallow trailing side to the opposite, changes are 
even smaller. It appears that to a great extent the transmitted amplitude is 
determined by the size of the steps and not their relative ordering. Figure 14 is 
symmetric about 6 = 8. This follows directly from the result in I1 that the 

‘I 1 otherwise, 
h(x)  = 
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transmitted amplitude A' in the adjoint problem (obtained by reversing the direction 
of rotation) is related to the amplitude A by 

H ,  A' = H ,  A .  (5.11) 

Thus if the far-field depths are equal the transmitted amplitude is unaffected by 
reflecting the topography about x = 0. If H ,  =l= H ,  then it is the transmitted volume 
flux that is unaffected by reflecting. In particular, this result allows either of (5.1) or 
(5.2) to be derived from the other. 

6. Discussion 
The problem of Kelvin wave scattering by ridge-like features abutting sidewalls 

has been simplified by restricting attention to the low-frequency limit and 
approximating more general features by stepped profiles. In this limit the problem 
divides naturally into three regions, the outer-x and outer-y regions containing the 
outwardly propagating long topographic waves and the quasi-steady inner region. 
The analyses of wall-step junctions in Johnson (1985), Gill et al. (1986) and Johnson 
& Davey (1990) show that surface height is continuous a t  upward steps and 
discontinuous at downward steps. Combining conservation of mass a t  wall-step 
junctions with the requirement that scattered energy propagates outwards gives a 
real linear system for the amplitude of the transmitted wave. The size of this system 
is proportional to the number of possible incoming topographic waves. Once this 
system is solved the form of the flow follows directly. 

The inner region flows extend the steady solutions derived for single steps in Gill 
et al. (1986) to give streamlines for steady coastal currents turned outwards by non- 
monotonic features and predict the amount of current continuing. Moreover, the 
inner regions are geostrophic, satisfying the nonlinear equation for the conservation 
of potential vorticity everywhere except at the wall-step singularities and so should 
closely model observed flows set up by steady coastal currents. 

It has been shown for the inner region that motion above downslopes is confined 
to a boundary layer against the sidewall and flow is stagnant above upslopes. This 
analysis extends directly to weakly dissipative flow over continuous topography, 
giving sidewall boundary layers of the form discussed in the context of low-frequency 
shelf-wave scattering in Johnson (1989a). Let dissipation be such that unforced 
vorticity decays over a time of order 7. If f r  9 w-' short waves are present in all 
regions; if w-' 4 f r  4 w-l  short-wave energy is destroyed a t  the wall but the 
geostrophic and long-wave regions are inviscid ; if wfr N 1 long waves are affected by 
viscosity; and iff7 - 1 the whole flow is affected. The extension of these results and 
the present analysis to Kelvin wave scattering over continuous ridges and the form 
of the short-wave field for completely inviscid flow are given in 11. 

For clarity the present results have been presented for topography meeting a 
straight sidewall perpendicularly. As shown in Johnson (1989 b ) ,  the present method 
applies to arbitrary scattering regions provided the topography becomes rectilinear 
(i.e. isobaths become parallel) eventually with distance from the wall (figure 15). If 
all far-field isobaths (or step paths for stepped topography) reach the sidewall (figure 
15a) then the conditions of the wall-step junctions and surface heights above the 
steps are unaltered and both the outer flow and transmission amplitude are 
unchanged from those for a straight perpendicular wall. If the inner, scattering 
region is more complex (figure 15b) then the connection of isobaths must be 
considered (Johnson 1989b). As a particular example consider a ridge of half-width 
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FIQURE 15. Isobaths that become parallel eventually with distance from the wall. (a) All incident 
isobaths reach the sidewall and so the outer flow and transmission amplitude are unchanged from 
those for rectilinear topography with a perpendicular wall. (b )  Some incident isobaths fail to reach 
the wall and so connection formulae (Johnson 1989b) are needed to determine the outer flow. 

-2 0 2 

FIQURE 16. Streamlines for flow in the inner region past a rectangular ridge or valley of arbitrary 
height or depth (h, =k 1) of half-width W = 1 terminating a t  a distance D = ?j from the bounding 
wall y = 0. Flow in the far field and above the feature is stagnant and the incident Kelvin wave 
passes through the gap with unaltered amplitude and phase. 

X 

W terminating abruptly at a distance D from the wall (figure 16). Then by geostrophy 
7 is constant along the isobath in the inner region, and so the outer limit of the inner 
solution has equal values of 7 on the isobaths. In the outer region the values of 7 on 
the isobaths are in the ratio 1 to  y =k 1 by (5.4). Compatability thus requires that 7 
vanishes on the isobath and hence the outer region is stagnant. A ridge of arbitrary 
height not reaching the wall behaves as a solid barrier. Along the wall in the inner 
region 9 is constant and the transmitted wave has unit amplitude. Figure 16 includes 
streamlines of the inner flow which satisfy 

V27-7 = 0 (y 2 0) outside ridge, (6.1) 

7 E 0 above ridge, (6.2) 

7 = 1 (y=O) .  (6.3) 

This topography gives an example of a ridge where the upper bound of Killworth 
( 1 9 8 9 ~ )  is exceeded. For a given far-field profile the transmitted amplitude is 
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increased if a cross-ridge gully, not necessarily of the full fluid depth as above, is 
present. Similarly transmission across a valley is increased if a cross-valley bridge is 
present. The increase in transmission occurs independently of the position of the 
gully or bridge and not only when they occur against the bounding wall as in this 
example. The dynamics of the outer and geostrophic regions are coupled and bounds 
derived considering the outer region alone do not apply to features of the form of 
figure 15 (b) .  The inner solution conserves potential vorticity and so represents steady 
flow at arbitrary amplitude, pointing to strong flows through narrow gaps in ridges 
and over thin bridges across valleys. 

The analysis has been presented for a homogeneous fluid with a free surface and 
so models the lower layer of a two-layer fluid with an inert, infinitely deep upper 
layer. As the equations for multi-layered flow separate above stepped topography 
the present results extend simply and directly to give explicitly the wave fields and 
transmission amplitudes for scattering of internal Kelvin waves incident on a ridge. 
Killworth (1989 b)  presents numerical computations and bounds for two-layer flows 
with a rigid lid but notes the difficulty of extending the bounds to flows with more 
degrees of freedom. 

Appendix. Numerical methods 
The computations for a general solution break down into a series of standard steps. 

The first is to obtain the eigenvalues of (4.11). This follows most straightforwardly 
by rewriting (4.11) as Of = l-’Af, 
and using a standard QR decomposition routine, preserving the reality of h;l since 
D is diagonal and A tridiagonal positive definite. Routine F02FHF of the NAG 
library makes explicit use of the banded form of A and D and proved very efficient 
in practice. The second step is to obtain the eigenvectors corresponding to outgoing 
waves (i.e. AT1 < 0). These were obtained individually using NAG routine FOBSDF. 
Thirdly the matrix E is formed and postmultiplied by DB. The most straightforward 
solution of (4.17) follows by setting b, = 1 ,  corresponding to an incident wave of unit 
amplitude, and solving the resulting m x m system for b,, . . . , b,, using a standard 
solver such as the NAG routine F04ATF. If only the transmitted amplitude b, is 
required the computation is complete. The free-surface heights 7, can be obtained 
from (3.8) and the amplitudes of the outwardly propagating long waves follow 
sequentially by obtaining the corresponding eigenvector using FOSSDF and forming 
the ratio of inner products (4.19). 

(A 1) 

The flow pattern in the inner-y region follows by writing (3.13) as 

7 = a,exp (-h$y) + F ( g ;  x) erfy+- &(x, I )  sinlydl, : Som 
where erfy is the error function and &(z, I )  = P(z,  l )  - F ( g  ; x) exp ( - iP ) / l  is bounded 
for all b ,  vanishing exponentially as 1 + 00 for x =+ x,(j = 1 , .  . . , n). Thus (A 2) is in a 
form for rapid inversion by fast Fourier transforms. 
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