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1 Introduction

This IMA conference in honour of Richard Allsop seems a timely occasion at
which to both review the current state of continuum models but also to both
look back to see how we got here and look to the future and some of the problems
and challenges still to be addressed.

The continued growth in traffic demand makes the effective management of
the road system increasingly important. This requires a good understanding
both of the overall behaviour of traffic on a network and also, especially on
motorways, the behaviour of traffic on a single link. While properties of the
whole network can often be adequately modelled by knowing only the influxes
and effluxes management of a single stretch of motorway requires models that
can describe the behaviour and distribution of traffic along the whole stretch.

Good models of traffic flow along motorways are needed to support effective
traffic management. From a theoretical aspect a good model gives insights into
the origins of traffic behaviour, but for effective day to day management the
model must also identify measurable properties of the traffic state that allow
accurate predictions of the future state to be made. To be practically useful
a model must also be computationally amenable to allow timely detection or
prediction of developing problems.

Modelling of traffic flow covers a range from detailed microscopic models
based in individual driver behaviour through less detailed microscopic models
where drivers are treated more uniformly through various cell transmission mod-
els to continuum models dealing with aggregate conditions.

My original intention was to give a wide ranging survey of traffic models.
However two thing made this impossible, lack of time of my part and the great
range of current activity both theoretical, computational and empirical. One
only has to look at the range of papers presented to the 16th ISTTT(Mahmasani
2005) to get some idea of the range of activities. One side effect of this recent
flurry of activity is that there are a number of articles that offer good surveys of
many aspects of the historical developments. (Nagel and Nelson 2005), (Zhang
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2001). Zhang (2001) in particular gives a very comprehensive survey of the state
of continuum models. Rather than attempt a wider ranging paper that failed
to do justice to a lot of interesting work I decide to focus on a few topics.

One particular strand has the merit of occurring over the whole period of
traffic models, the story of the kinematic wave model. I will focus on the the evo-
lution of the theoretical understanding of the model rather than its application
although the two go hand in hand. While the model could be explicitly solved in
a few simple but useful cases, practical computation was difficult. A decade ago
new insights by Gordon Newell((Newell 1993a),(Newell 1993b),(Newell 1993c))
opened up the possibility of more extensive analytic application and more de-
tailed computation. The kinematic wave model continues to attract interest and
development(Jin and Zhang 2003),(Daganzo 2004a),(Nelson 2000),(Lebacque
and Khoshyaran 2005). More recently the insights of Daganzo in particular
offer further exciting possibilities new analytic applications and of easier com-
putation.

I will touch briefly on the issue of higher order models. Do we need them?
And if so what should they look like?

Finally I discuss some of the considerable theoretical and practical challenges
that should be addressed. in particular he problem of finding good theoretical
justifications for current and emerging models.

2 Homogeneous Models: Why and When?

While researching this paper I began to think about the nature of models and
in particular continuous or continuum traffic models and their validity. A model
should serve at least one of two purposes:

• It should give us insights into properties and behaviour of the system being
modelled thus improving our understanding of the system ;

• It should allow the prediction of the future state a given system.

In what follows I am primarily concerned with the models meeting the first
criterion. A model meeting the first criterion should at least in theory meet the
second given enough ingenuity and computational effort. When seeking either
to understand or to manage some aspect of a traffic system we must try to select
model suitable for purpose. The model must be sufficiently tractable so that
we can work efficiently with it but at the same time it must give a reasonable
description of the phenomena we are interested in. In interpreting results we
must always be aware of the limits of the model to ensure that results and
phenomena predicted by the theory are properly interpreted, and that we do
not have unrealistic expectations of what the model can do.

The standard continuous models of traffic model traffic as a fluid with the
state of the fluid being given by the flow q and the density or concentration, k
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. It is important to be clear about what these quantities are. They are average
quantities take over time periods usually of the order of 100 seconds or more for
flow and of 100 metres are more for density. This will influence the scale of what
we expect to see in the model. It is thus unrealistic to expect a model describing
the behaviour of such quantities to describe in detail phenomena that happen
over much sorter distances and time scales, although it may still reflect the bulk
net effect of such changes. The speed and density discontinuities at shockwaves
that arise in the kinematic wave models are a good example. The model tells
us that there is an change marking for example the back of a queue. For many
modelling and traffic management purposes this is the important information.
In practice under normal conditions when approaching slow moving traffic cars
slow smoothly in a short distance and in a short time but this period of dec-
laration may well be smaller than the intervals over which average quantities
are measured. It is here that we come up against the limit of the trying to
follow developments in fluid dynamics too closely. in a real fluid although the
region of the shock may be small compared to the dimensions of the fluid be
studied it is still very large compared to the dimensions of molecules making up
the fluid. This may not the case for traffic. However detail of the how slowing
occurred may not be important; although it could be from, for example, a safety
aspect. If a more detailed understanding of what happens at the shock wave is
needed then a car following model may be more appropriate. It is also worth
bearing in mind that a traffic stream does not truly represent a car, but rather
the conditions that a smeared out “average” car would experience.

3 Kinematic Wave Models

We will take as our beginning the work of Lighthill and Whitham (1955)), and
Richards (1956)). They introduced a model that describes the evolution of
traffic flow, q , and traffic density, k , along a motorway or arterial road. The
model gives useful insights into some traffic phenomena such as the creation and
propagation of shock waves.

While the kinematic wave model is the most widely known of the continuum
flow models there has been steady interest in the development of other mod-
els.((Kerner, Konhaüser and Shilke 1996), (Bui, Nelson and Sopasakis 1996))
There has been recently been a flurry of interest and number of new models
proposed.((Zhang 2001),(Zhang 1999),(Jiang, Wu and Zhu 2002)).

The kinematic wave model makes two assumptions:

• The conservation of traffic. Following Whitham (1999), on any section of
road x1 < x < x2 we have the conservation equation

q(x2, t) − q(x1, t) +
d

dt

∫ x2

x1

k(x, t)dx = 0. (1)
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For appropriate assumptions of differentiability this leads to the more fa-
miliar local equation of continuity

∂k

∂t
+

∂q

∂x
= 0. (2)

This is the assumption made by Lighthill and Whitham (1955) and Richards
(1956) in their original work. However the existence of shockwaves shows
that the assumption is not universally valid.

• The equilibrium assumption. The traffic flow q is a function of the traffic
density k .

q = Q(k). (3)

Since there is a maximum density of traffic, associated with the “jam”
density of stationary traffic we must have Q(0) = 0 and Q(kj) = 0. The
graph of Q(k) in the k-q plane is the Fundamental Diagram.

Empirical observations suggest that Q should be convex downward; lines
joining a pair of points on the fundamental diagram must lie on or below the
curve.(See Zhang (2001) for a brief discussion of the effects of non-convex funda-
mental diagrams.) The convexity assumption ensures that there is a unique local
maximum, giving the maximum flow. It is usually assumed that this maximum
occurs at a single value kc. From the definition of traffic speed, v = q/k, we
obtain the equivalent assumption that the equilibrium traffic speed is a function
of density.

Assuming sufficient differentiability we then obtain the first order wave equa-
tion

∂k

∂x
+ Q′(k)

∂k

∂x
= 0. (4)

The characteristics of this equation are the curves of constant density and
are straight lines. They represent waves of constant density propagating with
velocity Q′(k).

The theory of kinematic waves successfully models, at least qualitatively, two
important traffic phenomena:

• Traffic moves faster than traffic conditions: v <= ω.

• The occurance of shock waves.

Although conceptually simple and useful for qualitative investigation the
kinematic wave model proved difficult to work with practically. Given an initial
distribution at the start of the link extracting information downstream was not
easy because of the occurance of shockwaves. In particular the extraction of the
travel time information required the solution of the traffic trajectory

dv

dt
= Q(k)/k. (5)
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3.1 The Accumulated Flow Formulation

The next step forward was made by (Newell (1993a)). Newell showed that the
theory could be formulated in terms of the accumulated flow A(t,x) , the total
amount of traffic that has passed point x up to time t. The accumulated flow
A(t,x) is assumed to be continuous and piecewise differentiable. The flow and
density are then obtained from the time and space derivatives respectively.

q(x, t) =
∂A(t, x)

∂t
, k = −

∂A(t, x)

∂x
. (6)

In his formulation Newell notes that the link need not be homogeneous. The
fundamental diagram is allowed to dependent on location.

q = Q(k, x). (7)

This is an aspect of the kinematic wave model that has not yet been adequately
explored.

In fact there is no theoretical reason why Q should not also be function of
time.(See also (Nagel and Nelson 2005), (Daganzo 2004a) There do not however
seem to be compelling reasons why this this is needed. It seems more likely that
a small number of fundamental diagrams may be appropriate for day and night
or wet and dry conditions.

Along a characteristic of the wave equation (a wave of constant density in
the homogeneous case) we have that

dA

dt
= q − ωk. (8)

Thus the accumulated flow can be found by integration, analytically in simple
cases and by quadrature in other cases. For the homogeneous case q − ωk is
constant and results is A(t,x) being a ruled surface. Owing to the occurance of
shocks the solutions of the the differential equation (8) may result in a multi-
valued solution. The solution surface A(t, x) is then taken to be the minimum
envelope.

These insights into the kinematic wave model made it possible to perform
useful calculations in traffic management investigations using the kinematic wave
model as the flow model. (Heydecker and Addison 1996).(Heydecker and Addi-
son 2005).

3.2 The Variational Formulation

More recently Daganzo (2004a), in an important development, has shown that
the accumulated flow A(t,x) function is obtained as the solution of a minimisa-
tion problem given a boundary D on which A(t, x) is known.

The fundamental diagram is taken to be neither stationary nor homogeneous.

q = Q(k, t, x). (9)
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The function is required to be convex in k .
Let P = (tP , xP ) be the point for which we want to know A(t, x); PP be the

set of all valid paths in the t-x plane from D to P . A path p(s) = (s, x(s)) in the
plane is called valid if it is continuous, piecewise differentiable and dx

ds
is within

the range of possible wave speeds.(I have restricted to paths where the ordinate
t is normalised, Daganzo only requires that the path be forward pointing in
time.) In what follows all paths are required to be valid. For a valid path p
Daganzo defines a functional ∆(p) that has the property that if the path is a
characteristic of the underlying kinematic wave model, then ∆(p) is the change
in A(t,x) along the path.

The variation ∆(p) along a path is given by

∆(p) =

∫ tP

TB

R(x′(t), t, x(t))dt. (10)

The function R(u, t, x) is derived from ((8)), which gives the rate at which
A(t,x) changes along a wave. Define r by

r = Q(k, t, x) − ukwhereu = Qk(k, t, x). (11)

Assuming Q is strictly convex in k we can invert to obtain k as a function of u.
Substituting in ((11)) gives r as a function R(u, t, x) of u, t and x. This function
is defined for an for any valid path and hence so is the variation ∆(p). The
essential result is

A(tP , xP ) = min
p∈PP

{Bp + ∆(p)} (12)

where Bp is the value of A(t, x) at its starting point on the boundary D.
In a companion paper (Daganzo 2004b) Daganzo shows how by superimpos-

ing a discrete lattice over the t − x-plane approximate solutions can be found
with controlled errors. The application of this new approach is being vigor-
ously explored by Daganzo and his coworkers, see for example (Daganzo and
Mennendex 2005).

4 Higher Order Models

Higher order models had been introduced primarily to correct perceived de-
fects of the original kinematic wave model. There seem to two main sources
of perceived defects; dissatisfaction with the existence of shocks( Somewhat
ironic given the title of Richard’s paper) and “spontaneous” flow break down
and non-equilibrium traffic conditions. The first models introduced were those
of Payne((Kerner et al. 1996),(Zhang 2001)) and Whitham (Whitham 1999).
The motivation was a better understanding of shock waves. (It is not clear
how seriously Whitham was offering his model as it seems to a large extent a
pedagogical devise it illustrate the need for additional theories to understand
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shocks in hyperbolic systems.) As is now well known these higher order models
suffer from a number of deficiencies. (Daganzo 1995), (del Castillo, Pintado and
Benitex 2005). The two primary deficiencies sighted are that they given rise
to forward moving waves and more seriously to negative flows. The problem
existence of forward moving waves need not in itself be fatal provided that they
decay sufficiently quickly; drivers to after all have rear view mirrors and so may
respond to events behind them and information may be propagated forward by
vehicle overtaking, i.e. vehicles that are travelling faster than the equilibrium
speed. If such waves exist observing them in practice will prove a formidable
challenge. Only by analysing video footage on a second by second basis may
one be able to detect them. Despite the critical assault of (Daganzo 1995) there
have been recent efforts to produce higher order models that avoid the diffi-
culties of the older models. (Aw and Rascle 2000) achieve this by doing away
with the relaxation and diffusion terms that characterise the Payne-Whitham
family of models. Instead they introduce a convective derivative. Another more
concerted attempt to produce a model for non-equilibrium traffic is the work of
Zhang (Zhang 1998), (Li and Zhang 2001).

The question still arises as to whether we need “higher order” models and
for what purpose. For many purposes of traffic modelling and management the
discontinuities of shockwaves do not matter provided they are properly inter-
preted. It makes little difference if the there is a discontinuous change in speed
or speed changes continuously over a small distance, or in a short time. If de-
tailed knowledge of the behaviour in this region is needed then car following
models should give better and more useful insights.

The issue of ’flow break’ down is also potentially resolvable in other ways,
for example the use of inhomogeneous fundamental diagrams. In a recent paper
Nagel and Nelson (2005) have critically compared the kinematic wave model
with observational data. This excellent paper shows the difficulties inherent
in deciding that the kinematic wave model is inappropriate. The clarity and
careful considerations that inform the paper seems to be byproduct of the very
different attitudes and expectations of the two authors. They draw attention
to a number of important issues that need to be addressed. One of the most
important especially in terms of justifying “higher order” models is the question
of whether flow break down is a truly emergent characteristic of traffic or whether
it can be explained by external factors.

Regardless of the origins of “flow breakdown” there can be little doubt that
traffic exhibits “phase” transitions between flow patterns with differing char-
acteristics. It is in understanding the change from one “phase” to another,
particular the sudden onset of a transition, that higher order models may play
their part. In developing such models we must bare in mind that a traffic ele-
ment in such a model does not represent an individual vehicle any more than
a fluid element represents as molecule. The useful non-equilibrium models will
give us an insight as to how traffic conditions evolve when conditions are away
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from the equilibrium.

5 Tomorrow

One of the aims of this paper is to identify topics for future investigation. There
are of course many problems that require the application of traffic theory models.
However I shall focus on problems that seem to me to relate directly to the
further development of the traffic flow theory. The problems range from the
possible to the near impossible.

• Understand properly the range of phenomena that can be explained by the
kinematic wave model. In a particular what phenomena does the model
predict when an inhomogeneous fundamental diagram is used? One would
expect that the behaviour would be very sensitive to the changes in the
fundamental diagram when free flow is near to the maximum capacity.
This may give rise to a form of flow break down as a transition from free
flow to congested flow occurs. This should be amenable to analysis.

• Can “spontaneous” flow break down be shown to be an intrinsic property
of traffic flow by deriving it from car following models? And under what
conditions will it occur?

• A coherent theory of phase transition. The need for a theory of phase
transition is illustrated by the empirical so called reverse λ fundamental
diagram. One interpretation of the diagram is that traffic can be come
“super-saturated” during free flow giving rise to higher flows than are
predicted by the equilibrium fundamental diagram. At some stage this
super saturated state will need to relax back into the equilibrium state.

More generally an understanding based on driver behaviour and car fol-
lowing models needs to be coherently developed. See (Zhang 2001) and
(Daganzo 2002) for some recent developments and discussion.

The development of continuum models has often being guided by devel-
opments in fluid dynamics. However in fluid dynamics there is kinematic
theory and statistical mechanics to guide development and understanding.
In an analogous way and most challengingly is to develop a continuum
model theory based on car following/driver behaviour models.

• Is it possible derive a “fundamental diagram”? What sort of fundamental
diagram arises?

• Based on ensembles use a car following/driver behaviour theory to derive
a (continuum) theory based on average properties of the ensembles. What
are the evolution equations that arise.
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• Derive bounds giving the likely deviation of observed conditions from the
means. The robustness of the results derived from statistical mechanics
depend on various central limit theorems.(See the exposition of (Khinchin
1949).) We cannot rely on the central limit theorems to the same degree.
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