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Abstract 

 

For all living organisms, macromolecular interactions facilitate most of their 

natural functions. Alterations to macromolecular structures through mutations, 

can affect the stability of their interactions, which may lead to unfavourable 

phenotypes and disease. Presented here, are a number of computational 

methods aimed at uncovering the principles behind complex stability - as 

described by binding affinity and dissociation rate constants. Several factors are 

known to govern the stability of protein-protein interactions, however, no one 

factor dominates, and it is the synergistic effect of a number of contributions, 

which amount to the affinity, and stability of a complex. The characterization of 

complex stability can thus be presented as a two-fold problem; modelling the 

individual factors and modelling the synergistic effect of the combination of such 

individual factors. Using machine learning as a central framework, empirical 

functions are designed for estimating affinity, dissociation rates and the effects of 

mutations on these properties. The performance of all models is in turn 

benchmarked on experimental data available from the literature and carefully 

curated datasets. Firstly, a wild-type binding free energy prediction model is 

designed, composed of a diverse set of stability descriptors, which account for 

flexibility and conformational changes undergone by the complex in question. 

Similarly, models for estimating the effects of mutations on binding affinity are 

also designed and benchmarked in a community-wide blind trial. Emphasis here 

is on the detection of a small subset of mutations that are able to enhance the 

stability of two de novo protein drugs targeting the flu virus hemagglutinin. 

Probing further the determinants of stability, a set of descriptors that link 

hotspot residues with the off-rate of a complex are designed, and applied to 

models predicting changes in off-rate upon mutation. Finally, the relationship 

between the distribution of hotspots at protein interfaces, and the rate of 

dissociation of such interfaces, is investigated.  
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Chapter 1 

1 Introduction 
 

These days more than ever, we live in a world of networks. At its roots, a 

network is defined as a set of ‘nodes’ and a related set of ‘links’. A link between 

two nodes indicates some connection or relationship between these nodes.  More 

interestingly, a link between two nodes may indicate a transfer of information. 

Be it a transfer of information as a result of a simple conversation between two 

friends on a social network, a flip of polarity at the output of a logic gate in an 

electronic circuit network, or, and what concerns this thesis mostly, the binding 

of two molecules in a biological network. Such binding events are at the core of 

all cellular processes, and networks of molecular interactions enable each cell to 

sense its external environment, propagate the necessary information inwards, 

and make decisions concerning its cellular state or even the states of its 

neighbouring cells. With this, it then becomes clear that, not only do we live in a 

world of networks, but our health too is the result of numerous 

intercommunicating biological networks. 

This thesis is concerned with the link between two nodes, that very interaction 

between two molecules; in this case that between two proteins. The emphasis is 

placed on understanding what constitutes a stable interaction between them. 
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The stability of such interactions plays an important role in both our 

understanding of disease and that of designing better drugs; these aspects are 

detailed below in the thesis justification section, 1.4. First, as an introduction to 

this work, the signalling behaviour of T cells will be described. This case study is 

a prime example of both the centrality of protein-protein interactions, and how 

the change in stability of one of these interactions can affect the activity and 

response of the T cell itself. 

 

1.1 Information Processing in the Cell: A Key Example, T Cell 

Receptor Signalling 

 

The importance of understanding the factors controlling the binding affinities of 

proteins within a complex cellular information processing system can be well 

exemplified by the T cell receptor-signalling network. T cells (T lymphocytes) are 

a subset of white blood cells which form an integral part of our immune system 

fighting against virus infected or malignant cells. These include, T-Helper Cells, 

T-Suppressor and T-Killer Cells (cytotoxic T cells). Effectively, their function is to 

elicit a distinct and specific response depending on the foreign antigen detected. 

T cells work by a cascade of signalling events initiated from the T-cell receptor 

(TCR). The TCR recognizes peptides presented by Major Histocompatibility 

Complex (MHC) molecules from antigen presenting cells (APC). The peptides 

themselves are usually cleaved parts of cellular proteins. If the cell is infected 

with a virus, then some of these peptides will be from foreign proteins (See 

Figure 1.1a). The ability for T cells to make this distinction is therefore critical 

and defects in the normal T cell response lead to several autoimmune (Dejaco et 

al., 2006) or immunodeficiency related diseases (Edgar, 2008), some of which 

may have severe health consequences. Besides the binding of the TCR and pep-

MHC, (MHC with antigenic peptide) simultaneous binding of specific co-

receptors, CD4 on T helper cells, and CD8 on cytotoxic T cells, with the MHC 

molecule initiates a myriad of signalling events. Some of these interactions are 

depicted in Figure 1.1b.   
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Figure 1.1: T cell Receptor Signalling. 

(A) Pictorial depiction of viral infection, viral protein expression, peptide 

fragmentation and the presentation of the viral protein peptide on the Major 

Histocompatibility Complex (MHC). A neighbouring T Cell detects the foreign 

peptide using its T cell receptor (TCR). (B) Some of the interactions and 

signalling triggered by the formation of the TCR/pepMHC complex. Figure taken 

from Miller et al. (2007). (C) the structure the complex between human TCR b7, 

viral peptide (TAX) and MHC Class I molecular HLA-A 0201. (PDBid: 1BD2). This 

structure includes the extracellular portions of a T-cell receptor and class I MHC. 

TCR chains are in red and yellow. MHC chains are in green and orange. Peptide is 

shown in white. Of much debate is how the affinity and kinetic of this interaction 

affects T cell activity. 
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Upon TCR/pep-MHC binding, LCK (an Src family kinase) is recruited and 

phosphorylates the immune-receptor tyrosine-based activation motifs (ITAMS) 

which form part of the intracellular subunits of the TCR itself(Lin and Weiss, 

2001). After phosphorylation of ITAMS, ZAP-70 is activated which binds to two 

adapter molecules LAT and SLP-76 and their subsequent phosphorylation of LAT 

and SLP-76 triggers the Ras pathway (Lin and Weiss, 2001). The signal continues 

further downstream until several transcription factors are activated. This in turn 

elicits a number of responses related to T cell activation which include cytokine 

release, proliferation and apoptosis amongst others. 

Sensitivity of T Cell response signalling to TCR/pep-MHC affinity and kinetics: 

The centrality of the interaction between TCR and pep-MHC (see Figure 1.1c), 

has led to many different models of T cell activation. Initial models propose the 

TCR as simple on-off switch where TCR/pep-MHC binding elicits a full T cell 

activation (Jameson, 1998). Experiments presenting different pep-MHC 

molecules however show that different TCR ligands trigger none or only some of 

the T cell activation responses (Kersh and Allen, 1996). These have been termed 

as TCR antagonists and partial agonists respectively. The fact that some but not 

all T cell activity responses may be activated led to development of the ‘kinetic 

proofreading’ model. In this model, the affinity (or off-rates) of the pep-MHC 

molecule with the TCR is proportional to the magnitude of the T cell response (!!! 

INVALID CITATION !!!). For low residence times (fast off-rates), early activation 

events, without the presence of late T cell activation events, are elicited. Slower 

off-rates on the other hand, enable a full T cell activation response. Evidence not 

supporting this model, such as the activation of late T cell signals with fast off-

rates (Rosette et al., 2001), and the discovery that a small number of peptide-

MHC can serially engage and trigger up to approximately 200 TCRs, instigated an 

alternative ‘serial triggering ‘ hypothesis (Valitutti et al., 1995). In this case, the 

interaction’s off-rate must be sufficiently low for initial signalling to be 

completed, but high enough to allow different TCRs to bind the same pep-MHC 

molecule. This suggest that there is an ‘optimal dwell time’ which elicits T cell 

activation and anything outside this optimal range results in reduced activity. A 

model of consensus is however still hindered by several challenges (Stone et al., 
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2009). For example; outlier observations have been made that contradict both 

hypothesis; experimental binding measurements are generally made at lower 

temperatures than those of in vivo activity; and the effects of co-receptors CD4 

and CD8 should complicate the story even further (Stone et al., 2009). 

The overview of TCR signalling presented above is a crude one at most, and can 

only be refined once our theoretical knowledge of just how binding affinities are 

controlled at the atomic level improves. Moreover, there are a vast amount of 

molecular interactions and interplays between multiple pathways (Huse, 2009). 

Therefore, this example serves as a reminder of  the complexity of protein 

interactions in cellular networks, and how the response of such a system may be 

affected by the stability of just one of those interactions. The information 

processing mechanisms of the T cell receptor network, as with many other 

signalling networks, can only be truly appreciated and understood when 

considering the dynamics and stability of its molecular interactions.  

1.2 Thesis Outline 

 

In this thesis, a number of computational investigations are performed aimed at 

understanding the stability of protein-protein complexes. The investigations 

revolve around the design of a number of predictive models that correlate with 

experimental measurements for stability. Therefore, in the following section, 1.3, 

a brief overview is given of the different terms that relate to complex stability, 

and those that form part of this study; these include binding affinities, 

dissociation rates and hotspots. In section 0, justification for this thesis is further 

underlined by showing that the study of the stability of protein-protein 

interactions (PPIs), has a direct impact on recent trends in drug design. This 

includes the growing interest in PPIs as drug targets (section 1.4.1), protein 

engineering and protein drugs (section 1.4.2) and the importance of considering 

off-rates for the enhancement of in vivo drug activity. In section 1.4.4 it will also 

be described how the functional interpretation of missense SNPs is dependent on 

our ability to characterise the changes in stability resulting from these 

mutations. In section 1.5 the equations governing the kinetics and 

thermodynamics of binding are presented the energetic terms used for 
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modelling of binding free energies detailed. In section 1.6.7 an overview of the 

current models for the prediction of binding affinities is given and their 

limitations highlighted. A number of machine learning algorithms are employed 

throughout this thesis of which an overview is given in section 1.6. 

Finally, in section 1.7, I present some of my personal motivations and themes 

that drive the studies presented in this thesis. This chapter then concludes with 

an overview of each of the remaining thesis chapters. In summary, models for the 

prediction of binding affinities and their change upon mutation are presented in 

Chapters 3 and 4. In Chapter 5, models for the prediction of hotspots are 

presented and benchmarked. In Chapter 6, a set of descriptors that link hotspot 

residues with the off-rate of a complex are designed. Chapter 7 extends on this 

idea by building prediction models for off-rate changes upon mutation. Finally in 

Chapter 8, the relationship between the distribution of hotspots on an interface, 

and the rate of dissociation, is investigated.  

1.3 Facets of Complex Stability in a Nutshell: Binding Affinities, Off-

Rates and Hotspots 
 

The pathways shown in diagrams similar to Figure 1.1b, provide a very sparse 

and static picture of the nature of the environment of protein interactions. In 

reality, proteins exist in a highly dense ‘soup-like’ environment in the cell 

(Lewitzky et al., 2012). For example, the intracellular concentration of proteins 

for mammalian cells is estimated at 200-300mg/ml (Luby-Phelps, 2000) and 

macromolecules themselves occupy 40% of the total cell volume (Fulton, 1982). 

For an interaction to take place, proteins must therefore rummage through this 

crowded environment, i) find their partner, ii) find the binding site and iii) form 

a complex for an indefinite amount of time. For those protein-protein 

interactions that are sufficiently long-lived, the strength of the interaction can be 

determined by the binding affinity. This means that for a pair of proteins, being 

able to predict their binding affinity, should in theory determine whether two 

such proteins make a biologically significant interaction. In kinetic terms (as 

derived in section 1.5.1), the binding affinity of an interaction  
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Figure 1.2: The relationship between the different facets at which complex 

stability may be characterised and those which are studied in this thesis.  

(A) The off-rate (koff) represents the intrinsic disposition of a complex to 

dissociate once it has formed. The higher the time for which the complex is 

bound, the lower  the off-rate. (B) Adding to this, knowledge of the intrinsic 

disposition for the complex to associate (kon), the binding affinity (ΔG) may also 

be calculated. (C) Characterisation of the effects of mutations on both the off-

rate, koff, and on the binding affinity, ΔΔG, is central to the functional 

interpretation of disease and for computational drug design. Alanine scanning 

experiments have shown that only a few mutations cause significant disruption 

to complex stability. These are known as hotspots and are the residues 

responsible for most of the binding affinity of a protein-protein interaction. 

 

is related to how easy it is for the two partners to reach the bound state (kon), 

and how easy it is for the two partners to unbind back into separate protein 

conformations (koff). Prediction of the koff of a complex effectively determines the 

length of time (residence time = 1/koff) for which the complex is bound. From 

alanine scanning experiments on protein-protein interfaces, only a small subset 

of interface ‘hotspot’ residues is found to be responsible for the binding affinity 
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of the complex (Bogan and Thorn, 1998, Clackson et al., 1998). These hotspot 

residues may in turn affect binding through a change in koff independently of kon 

and vice versa (Moal and Fernandez-Recio, 2012). In this view, complex stability, 

as in fact explored in this thesis, may be approached at different yet related 

levels (See Figure 1.2).  

 

1.4 A Thesis Justified  
 

In this section it will be described how the characterisation of protein-protein 

binding affinities and off-rates has direct relevance to the current trends and 

difficulties of drug-design. In a similar vein, the functional interpretation of 

mutations involved in disease necessitates that we are able to accurately predict 

changes in affinities upon mutation. 

1.4.1 Protein-Protein Interactions as Drug Targets 

 

Despite their therapeutic relevance and major involvement in cellular signalling, 

PPIs have traditionally received less attention as drug targets, or attempts to 

target them have shown few success stories. For example, Bcl-2 family proteins 

are key regulators of programmed cell death and Bcl-XL and Bcl-2 are 

overexpressed in many cancers. Bcl-XL expression is correlated with chemo-

resistance and reduction in Bcl-2 expression increases sensitivity to anticancer 

drugs and in vivo survival. Several drugs targeting these proteins have been 

explored but resultant affinities have not been found to be sufficiently high 

(Oltersdorf et al., 2005). The main difficulty in achieving high-affinity binding is 

that the structural properties of PPIs do not have common drug-like site 

properties. The large surface area of the PPI binding site is typically much larger 

than that covered by the small-molecule drug. In addition, PPIs have 

characteristically flat interfaces and no well-defined binding pockets; this limits 

the contact surface area the small-molecule drug can make with the protein 

(Mullard, 2012, Jin et al., 2014). The ‘undruggable’ view started to change in the 

1990s after studies on protein-protein interactions identified certain hotspot 

residues responsible for most of the binding free energy (Bogan and Thorn, 
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1998, Clackson et al., 1998). This shows that, even though large in surface area, 

binding energy is not distributed homogenously across the interface and it is 

therefore potentially sufficient to design drugs which target only these hotspot 

residues (Hajduk et al., 2005). The recent interest in inhibiting PPIs is reflected 

by several pharmaceutical firms which are now in the process of extending drug 

discovery programs aimed at identifying PPI inhibitors and expanding their 

libraries to account for this class of targets (Mullard, 2012). In the light of this 

new interest for PPI inhibitors, a number of companies have also moved past the 

preclinical stage. Lifitegrast (SAR1118), a small molecular inhibitor for treatment 

of dry eye is in phase III trials. It works by reducing T cell-mediated 

inflammation, blocking the PPI between ICAM-1 and LFA-1. Two anti-cancer 

agents blocking the PPI of p53 and MDM2 are under phase 1b trials (Vassilev et 

al., 2004, Mullard, 2012) and key PPIs inhibiting the function of the pro-survival 

BCL-2 family proteins are in phase-II development as anticancer agents (Mullard, 

2012, Oltersdorf et al., 2005). 

Two main challenges are therefore present in targeting PPIs with small-molecule 

drugs; knowing where to target on the protein interface, and doing so with high 

affinity. For competitive drug binding, the affinity of the protein-drug complex on 

its own gives no indication to its inhibitory effect. Rather, this protein-drug 

affinity becomes relevant only when higher than the affinity of wild-type protein-

protein interaction i.e. that which it is competing against. Therefore, knowledge 

of the wild-type protein-protein binding affinities, as presented in Chapter 2, is a 

critical piece of information in competitive inhibitor design. As mentioned above, 

for small-molecule drugs targeting PPIs, only a small portion of the protein-

protein interface can be targeted; therefore, knowing where at the interface to do 

so is imperative. Although hotspots are indeed good targets, unappreciated is the 

fact that hotspots can occur at disjointed parts of an interface or within  clusters 

called hotregions (Keskin et al., 2005). Therefore, whereas the presence of 

hotspots greatly reduces the druggable search space of an interface, multiple 

potentially druggable sites are still present. In Chapter 8, an investigation is 

reported on which hotspot sites are contributing the most towards stability. Such 
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investigations should further guide the design of small-molecule drugs targeting 

PPIs. 

1.4.2 Protein Engineering and Protein Drugs 

 

In the previous section it was described how knowledge of the affinity and 

determinants of complex stability for protein-protein interactions, is important 

to the design of small-molecule drugs inhibiting PPIs. Here a more direct 

application of the methods developed in this thesis, that of protein engineering 

and protein drug design is presented.  Protein engineering refers to the 

reengineering of proteins to enhance the affinity of existing interactions or 

develop new ones. In theory, the applications are numerous and include the 

rewiring of cellular networks by redesigning specificities; the design of proteins 

mimicking antigenic epitopes for potent vaccines and the design of protein 

probes for dissection of cellular protein networks and protein drug inhibitors 

(Mandell and Kortemme, 2009). Though applications are still exploratory in 

nature, proofs of concept have already started to surface. Recent work in the 

computational design of protein interactions includes the redesign of specificity 

at a protein-protein interface which was applied to model novel interacting 

DNase-inhibitor protein pairs (Kortemme et al., 2004); the use of positive 

(affinity increasing) and negative (affinity decreasing) design strategies to 

convert a homodimer into a heterodimer (Bolon et al., 2005); the redesign of a 

micromolar affinity human hyperplastic disc protein binding the kinase domain 

of PAK1 (Jha et al., 2010); the design of a high affinity interaction by grafting 

known key residues onto an unrelated protein scaffold (Liu et al., 2007) and 

more recently, (Fleishman et al., 2011) designed two proteins that bind a 

conserved surface patch on the stem of the influenza hemagglutinin (HA) from 

the 1918 H1N1 pandemic virus with low nanomolar affinity.  

The methods mentioned above employ a variety of computational approaches, 

including conformational sampling mechanisms, docking algorithms and scoring 

functions. The latter function should be capable of identifying designs (generally 

through interface mutations), which increase the affinity of the desired 

interaction. In Chapter 4, the design of computational models capable of rank 
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ordering mutations on a protein-protein interface according to their change in 

affinity (ΔΔG) is reported upon. The models are benchmarked on two protein 

drugs where affinity-increasing mutations formed less than 5% of all the 

mutations to be tested.  

1.4.3 Off-Rates in Drug design 

 

Traditionally, early stage drug development is characterised by the optimization 

of the binding affinity or its other forms, IC50, or EC50 that calculate the drug 

concentration needed to achieve half-maximal inhibition. This is based on the 

assumption that binding affinity in closed in vitro systems is a good indicator of 

in vivo drug efficacy (Pan et al., 2013). In vivo systems, where the concentration 

of a drug-like ligand exposed to its target receptor is not constant, the drug 

efficacy is no longer well described by the in vitro measured dissociation 

constant. Rather, it depends on the association (kon) and dissociation (koff) rate 

constants (Copeland et al., 2006). The enhancement of the on-rate is limited in 

several ways, which highlights the reduction of the off-rate as the more favoured 

route. For example, the diffusion-rate remains an upper-bound restricting 

further optimisation of the on-rate. Modulating receptor desolvation and 

molecular orientation in a systematic way, is not trivial. Also, the rate of 

association depends not only on the kon, but also on the concentration of ligand, 

which in turn is affected by multiple steps in vivo;  as absorption, distribution 

and clearance all have an effect on ligand concentration (Copeland et al., 2006). 

Off-rate optimization on the other hand, is independent of such factors and 

entirely dependent on the short-range interactions between the bound 

monomers in question. Swinney (2004) hypothesizes that the most effective 

drugs utilize non-equilibrium transitions to enhance activity, and therefore 

methodologies that measure kinetics (most notably off-rates), non-equilibrium 

binding events and conformational diversity might have more potential than 

previously thought. Similar recent opinions can be found in (Holdgate and Gill, 

2011), where surrogates of the off-rate, i.e. residence time (1/koff) and kinetic 

efficiency are proposed as additional optimization targets to improve drug 

potency.  A case in point is the management of Chronic Obstructive Pulmonary 

Disease (COPD). COPD encompasses a number of pulmonary diseases including 
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chronic bronchitis, emphysema and chronic obstructive airways disease. 

Ipratropium bromide (Baigelman and Chodosh, 1977) the drug commonly 

administered for the treatment of COPD has now been replaced by Tiotropium 

bromide (Kato et al., 2006) as the drug of choice. Both of the drugs have similar 

drug mechanism of action; namely by binding to the M3 muscarinic receptor, 

leading to a reduction in smooth muscle contraction which in turn opens up the 

airways. Both drugs also have similar structures and pharmokinetic profiles; 

however, the duration of action of Tiotropium (24hrs) is four times that of 

Ipratropium, which can be administered daily. Studies (Disse et al., 1999) show 

that the difference in the duration of action between the drugs lies in their rates 

of dissociation from the M3 muscarinic receptor. Namely Tiotropium has a 

residence time of 34.7 hours compared to 0.26 hours for Ipratropium. 

In contrast to studies on binding affinities and on-rates, work on off-rates is still 

very limited (Moal and Bates, 2012). Up until this work, no models for the 

prediction of changes in off-rate upon mutation were reported. The release of the 

SKEMPI dataset (Moal and Fernandez-Recio, 2012) which contained a set of 713 

off-rate mutations, enabled for the first time the modelling of off-rates on a 

diverse set of PPIs. In chapter 5-8 work is presented on the design of descriptors 

and models for characterising changes in off-rate upon mutation using SKEMPI. 

1.4.4 Changes in Protein-Protein Stability and Disease 

 

In the previous sections, it is argued that understanding and predicting the 

stability of protein-protein complexes is at the core of applications related to 

drug design. Presented in this section is, the other side of the spectrum, namely 

that predicting the change in stability of mutations on protein-protein 

interactions, is central to the understanding of disease mutations, such as those 

driving cancer. 

Single Nucleotides polymorphisms (SNPs) are variations in the DNA sequence 

that have a direct effect on our susceptibility to disease and response to 

treatment. For those SNPs that occur in the coding regions, the SNPs can either 

be synonymous (not affecting protein amino-acid sequence), or non-synonymous 
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(affecting the protein amino-acid sequence). For the latter category, the SNPs can 

either by nonsense, where the protein amino-acid sequence is truncated, or 

missense where amino-acid substitutions take place. Nonsense non-synonymous 

(nsSNPs) generally result in a non-functional protein as a result of the truncation 

(Gregersen et al., 2000), missense nsSNPS are however more diverse and 

depending on where the variation occurs, effect on protein function can be 

anything from disease related to indiscernible (Haber and Settleman, 2007).  

A major goal is therefore linking nsSNPs to phenotype through structure and 

function. For example, missense nsSNPs which translate to a mutation at the core 

of a protein generally destabilizes the protein-fold (Yue et al., 2005). 

Consequently all of the protein’s interactions are lost. A study on nsSNPs on a 

number of protein-protein interactions show that disease causing nsSNPs not 

found at the core of a protein, tend to frequent the interface more than the non-

interacting surface (David et al., 2012). Missense nsSNPs resulting in surface 

mutations may affect PPIs in a number of ways; they may destabilise existing 

interactions by disrupting favourable intermolecular contacts at the interface, 

affect post-translational-modifications, or even modulate the intrinsic disorder 

of the protein. In some cases it may also lead to the creation of new interactions 

consequently re-wiring the PPI network (Yates and Sternberg, 2013).  

Being able to predict the consequence of a mutation at a protein-protein 

interface is therefore vital to uncovering the mechanism of action of disease 

causing nsSNPs. For example, depending on its sign and magnitude, the 

prediction of the ΔΔG may tell us whether the mutation has no effect on the given 

interaction, whether it leads to its loss or whether it helps stabilise a potential 

novel interaction. Models for the prediction of ΔΔGs are designed and presented 

in Chapter 4. 
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1.5 Modelling the Binding Free Energy 
 

1.5.1 The Kinetics of Binding 

 

The derivation of the binding free energy of an interaction may be approached 

from two perspectives; from a kinetic and from a thermodynamic standpoint. 

Take a non-covalent interaction between a receptor R and a ligand L and their 

complex form RL, where [R] and [L] is the concentration of the free molecules 

and [RL] is the concentration of their bound form. Then 

 R L RL   1.1 

Two processes exist; an association process of the two molecules into their 

bound form RL; and a dissociation process back to free molecular R and L. The 

rate at which association or dissociation takes place, depends on the 

concentrations of each molecular species as: 

 rate of association [R][L]onk  1.2 

 rate of dissociation [RL]offk  1.3 

kon and koff represent the intrinsic disposition of R and L to associate or RL to 

dissociate respectively. The rate of change of concentration of R, L and RL is as 

follows: 

 [ ] [L]
[ ] [ ][ ]off on

d R d
k RL k R L

dt dt
    1.4 

 [ ]
[ ][ ] [ ]on off

d RL
k R L k RL

dt
   1.5 

For this system to be in equilibrium (i.e. constant concentrations of R, L and RL), 

the rate of association must equal the rate of dissociation and using equation 1.4 

and 1.5: 

 [ ][ ] [ ]on offk R L k RL  1.6 

 [ ][ ]

[ ]

off

D

on

k R L
K

k RL
   

1.7 
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where KD is the dissociation constant that is related to the binding affinity of the 

interaction.  

1.5.2 The Thermodynamics of Binding 

 

A second route towards characterising binding affinity is that based on the 

standard free energy of binding (Gilson et al., 1997). The free energy of binding is 

the change in free energy when one receptor and one ligand react to form a 

complex. The free energy of binding can therefore be expressed as 

 ΔG=URL-UL-UR 1.8 

Where URL is the change in free energy of a solution when the complex RL is 

added to the system, and -UL and -UR are the change in free energy of a solution 

when one ligand L, and one receptor R, are removed from the system, 

respectively (Gilson and Zhou, 2007). The chemical potential UP of a protein can 

be expressed as 

 
( ) (r )

2
( )/8

ln( )
rp p

U W RT

p p

p

u RT e dr
C

  

    
1.9 

where R is the gas constant and T the absolute temperature, Cp is the 

concentration of the protein p, U(rp) is the potential energy of the protein at the 

conformation rp and W(rp) is the solvation energy at the conformation rp (Gilson 

and Zhou, 2007). Substituting equation 1.8 into 1.9 for each species, the free 

energy of binding can be obtained as: 
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1.10 

The system is in equilibrium when the free energy of binding ΔG=0. Therefore 

equation 1.10 becomes 

 ( ) (r )
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1.11 

 

Multiplying both sides of equation 1.11 by the standard concentration Co gives 
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1.12 

and replacing the concentration in equation 1.10 by the standard concentration 

Co, the standard free energy of binding is 
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1.13 

Substituting equation 1.12 in 1.13 gives 
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1.14 

and from the kinetics approach and equation 1.7  
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This equation links both the kinetics and the thermodynamics of the binding 

process. 

Equation 1.13 can be decomposed into 

 o o

RL R L RL R L configG U U U W W W T S          1.17 

The standard free energy of binding can be decomposed into the enthalpic 

contribution to binding oH and the entropic contribution to binding 
oT S as 

 o o oG H T S      1.18 

In 1.17, RLU and RLW  are Boltzmann-average potentials for the potential 

energy and solvation energy respectively. As seen in equation 1.13, in this form, 

though the integral is taken over all conformations of the species in question, 

only the low energy contributions contribute significantly to the potential. 

o

configT S represents the change in entropy when the receptor and ligand move 

from the unbound to the bound form, this includes, a loss in translational, and 

rotational entropy, and change in side-chain entropies. The solvation energies
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RL r LW W W   also include an entropic component related to the freedom 

of water molecules. Equation 1.17 forms the basis of many binding affinity 

predictive models (see section 1.5.7), where a number of physics-based 

descriptors representative of the energetic terms in equation 1.17, are 

calculated. The modelling of the three main components of equation 1.17, the 

potential energy, solvation energy and entropy are discussed below in sections 

1.5.3, 1.5.4, and 1.5.5 respectively. Further, in section 1.5.6, the use of statistical 

potentials and the role of miscellaneous descriptors for affinity are also 

mentioned. 

1.5.3 Potential Energy 

 

The potential energy of a macromolecule can be thought of as an energy surface, 

which is a function of the atomic, nuclear, and electron positions in space. The 

parameter space covering the positions and motions of electrons for large 

macromolecules is still too large to be dealt with using quantum mechanical 

methods. A more accessible alternative is the use of empirical force-fields, where 

the energy of a system is a function of the nuclear positions only (Leach, 2009). 

In general most of the molecular modelling force-fields describe both the intra- 

and intermolecular forces within a system. An example of which is the potential 

energy function U(rN) shown in Figure 1.3.   
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Figure 1.3:  Representation of the main energetic terms involved in a 

molecular mechanics force field describing the potential energy of a 

molecule or system.  

These are bond stretching, angle bending, torsional terms and non-bonded 

interactions. Figure derived  from (Leach, 2009). 

 

The intramolecular forces are described by terms which represent an energetic 

penalty associated with some deviation of bond lengths, angles or rotations from 

a reference state (Leach, 2009). The intermolecular forces may include energetic 

terms such as the Lennard-Jones 12-6 Van der Waals potential and the Columbic 

energy. The rij-12 term in the Lennard-Jones potential is based on the Pauli 

exclusion principle, which states that no two particles can occupy the same 

region of space. Computationally, this prevents the generation of clashes that 

may arise from two interacting molecules. The rij-6 term is related to correlated 

motions of electrons known as London dispersion forces, which give rise to 

spontaneous dipoles or higher multipoles. In turn these dipoles may induce 
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electrostatic complementarity, which decreases the potential energy of the 

system. The Coulombic energy represents the favourable electrostatic 

complementarity arising from charged particles within an electric field. Charged 

particles arise when electrons concentrate around atoms with large 

electronegativities, and deplete elsewhere. This leads to partial atomic charges, 

leading to polar atoms for those atomic charges that are large enough in 

magnitude. The potential describing this non-bonded interaction between partial 

atomic charges is represented by the product of the two-point charges qi and qj, 

separated by a distance rij, where o  represents the permittivity of free space. All 

terms in the empirical force-field shown in Figure 1.3 are a function of N atoms 

and their positions in space (r). Each term can be computed separately and 

therefore varying levels of sophistication can be added as required. 

1.5.4 Solvation Energy 

 

Protein interactions are surrounded by salt-water, which in turn has a significant 

effect on binding. The solvation energy represents the proteins’ interactions with 

water and its effect can be summarized into the dielectric screening of water and 

the hydrophobic effect. Dielectric screening results from the different 

permittivities of different mediums. Water has a high dielectric constant, which 

makes the interaction between charged, and polar atoms in water favourable. 

Atoms in areas of low solvent accessibility, those forming part of the interface 

when a complex is bound, have a lower effective dielectric constant. There may 

therefore be an energetic penalty associated with moving polar atoms out of 

water and into a binding site (Gilson and Zhou, 2007). In simple solvation 

screening models, the dielectric constant is directly proportional to the inter-

atomic distance of two particles. Methods such as the Poisson-Boltzmann (PB) 

(Honig et al., 1993), apart from other considerations, account for the fact that the 

solvent accessibility surrounding an atom, is also a function of the atoms 

surrounding it. A second effect of water on the formation of protein interactions 

is the tendency of non-polar atoms to be brought together and away from water 

(Kauzmann, 1959, Hildebrand, 1979). This is known as the hydrophobic effect, 

and is a major driving force in protein folding (Lins and Brasseur, 1995, Dill, 
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1990) and also an important aspect of protein binding (Tsai et al., 1997). The 

non-polar parts of the protein exposed to water, restricts the movement of water 

molecules resulting in the formation of ordered ‘water cages’. Bringing non-polar 

atoms from a solvent exposed site, to a solvent inaccessible site such as the 

binding interface, results in an increase in the system entropy that decreases the 

binding free energy (equation 1.18). A common method employed to model the 

hydrophobic effect implicitly, is to calculate the change in the solvent accessible 

area of non-polar atoms upon going from the unbound to the bound state (Chen 

et al., 2004). The addition of surface area terms accounting for the hydrophobic 

effect in Poisson-Boltzmann implicit solvation methods are known as PBSA 

(Sitkoff et al., 1994). Faster approximations to the PBSA also exist such as the 

Generalized Born model with Surface Area (GBSA) (Qiu et al., 1997). 

1.5.5 Configurational and Side-Chain Entropy  

 

The binding free energy of complex formation, as presented in equation 1.18, 

shows that complex formation may be either enthalpy or entropy driven. 

Therefore, the correct modelling of the potential and solvent energies involved in 

the binding process (ΔH in equation 1.18) still does not give an accurate 

estimation of the binding free energy. To do so, the change in entropy (ΔS) of the 

system also has to be characterised. One entropic aspect important for binding is 

the change in entropy experienced by water molecules described by the 

hydrophobic effect. This is generally accounted for in solvation energy models 

such as those described in the previous section. The formation of a complex also 

involves changes in the configurational (rotational and translational) entropy of 

the receptor and ligand. In general it is widely assumed that the changes in 

rotational and translational entropy have negligible contribution to the binding 

free energy in aqueous solutions at 1 M standard state (Yu et al., 2001) or that 

they are constant across different interactions. However, it has been shown that 

for complexes, which are not tightly bound, the change in configurational 

entropy is not the same as that of a tightly bound complex (Chen et al., 2004). 

Upon binding, the side-chains of the receptor and ligand become 

conformationally restricted if they form part of the binding interface. This results 
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in a reduction in entropy upon binding. Traditional methods of accounting for 

the change in side-chain entropies make use of rotamer libraries (Dunbrack and 

Cohen, 1997, Chandrasekaran and Ramachandran, 1970, Dunbrack and Karplus, 

1993, Dunbrack and Karplus, 1994) or simply the number of rotatable bonds 

affected upon binding (Finkelstein and Janin, 1989). 

1.5.6 Knowledge-Based-Potentials and Miscellaneous Descriptors 

 

The approaches discussed in previous sections, 1.5.3, 1.5.4 and 1.5.5, in 

modelling the terms of the binding free energy function presented in equation 

1.17, are derived from the underlying physical processes driving complex 

formation. An alternative method is to use knowledge-based potentials. In this 

approach, rather than enumerating all potential physical processes responsible 

for complex formation and affinity, the relative positions of atoms or residues 

are used as an indication of the validity (in the case of protein folding or docking) 

or strength (in the case of binding affinity prediction) of the complex in question.  

The central hypothesis made by knowledge-based potentials (also referred to as 

statistical potentials throughout this work), is that the frequency of two specific 

atoms/residues at a specific distance is an indication of how favourable the 

contact between the pair of atoms/residues is. More frequently occurring 

contacts are considered to be favourable and likely the result of capturing some 

underlying physical process.  
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Figure 1.4: Example of Atom-Types and Contact Frequency-Distance plots 

of a typical knowledge-based potential.  

Top of figure shows the atoms considered in the statistical potential, and bottom 

of figure shows the potentials (frequency-distance plots) generated for three of 

the contacts. These include a backbone-backbone contact potential (1-1), a 

backbone-side-chain contact potential (7-4) and a side-chain-side-chain contact 

potential (8-6). The figures are taken from the work of (Su et al., 2009). 

 

For example, the contact frequency-distance plots of the Potential-Mean-Force 

(PMF) potential from Su et al. (2009), show functions very similar to the 

Lennard-Jones potential (See Figure 1.4). This is characterised by strong 

repulsions at very short distances, followed by a global minimum on increasing 

distance, which approaches zero at larger distances. An important aspect which 

affects the success of statistical potentials, is the reference state taken. Namely, 

the reference state must account for frequency and volume, and many potentials 

do in fact differ by their reference state (Zhang et al., 2004, Su et al., 2009, Shen 

and Sali, 2006). Besides differences in the reference state, different statistical 

potentials include; atom-based  and coarse-grained (Lu et al., 2008, Rykunov and 

Fiser, 2010) (residue level through centroid or Cα, Cβ distances) potentials; pair 

potentials and multi-body potentials (Feng et al., 2010); those derived on protein 

structures for protein folding and stability (Zhou and Skolnick, 2011), and those 
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derived on protein-protein complexes for docking and binding affinity prediction 

(Liu and Vakser, 2011). One drawback of knowledge-based potentials is that they 

do not account for solvation or entropy terms and only recently for protein-

ligand interactions has this consideration been attempted (Huang and Zou, 

2010). Therefore, one way of thinking about statistical potentials in binding 

affinity prediction is as an alternative or addition to terms related to the 

potential energy. 

Another class of descriptors termed as ‘miscellaneous’ descriptors, are again 

those that do not model a particular physical process, but their presence may 

capture some underlying physical property that favours complex stability. These 

include; secondary structure elements, such as the proportion of interface 

resides which are in alpha helices, or beta sheets; geometrical properties such as 

interface planarity, volume of empty space at the interface and interface surface 

complementarity. With this in mind, the inclusion of such descriptors in binding 

affinity models is primarily exploratory in nature and must be interpreted with 

caution. 

1.5.7 Binding Affinity Prediction (BAP) Methods 

 

Between 1989 and 2011, 19 publications have specifically dealt with the 

prediction of binding affinities for protein-protein complex formation. Most of 

these Binding Affinity Prediction (BAP) models contain empirical functions 

where the terms include relevant enthalpic and entropic contributions to binding 

(as the terms described in sections 1.5.3, 1.5.4 and 1.5.5); most commonly, terms 

for the contribution of electrostatics, hydrophobic burial, hydrogen bonding, 

side-chain entropy etc. (Novotny et al., 1989, Horton and Lewis, 1992, Krystek et 

al., 1993, Vajda et al., 1994, Nauchitel et al., 1995, Xu et al., 1997, Weng et al., 

1997, Noskov and Lim, 2001, Ma et al., 2002, Jiang et al., 2005, Audie and 

Scarlata, 2007, Bougouffa and Warwicker, 2008, Bai et al., 2011). The second 

category of BAP models is model's that consist of statistical potentials (Zhang et 

al., 1997, Jiang et al., 2002, Liu et al., 2004, Su et al., 2009). Here the relative 

positions of atoms or residues observed in experimental structures are used to 
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infer a potential of mean force that is then correlated to binding affinity (see 

section 1.5.6). 

On analysis of the aforementioned BAP models, the following limitations were 

identified: 

I. Models restricted to complexes for which the component parts 

undergo little to no conformational changes upon complex formation. 

II. Assumed that complexes and component parts exist as static 

structures (assumed all proteins are rigid entities)  

III. Routine use of Linear Regression. 

 

1.5.7.1 Models Restricted to Proteins that Undergo Little to No Conformational 

Changes Upon Complex Formation. 

 

Most of the BAP models are designed under the assumption that minimal to no 

conformational changes take place upon complex formation. To satisfy this 

assumption, the complexes used to test the models are specifically selected to be 

rigid-body complexes. The descriptor calculations therefore generally take the 

form of:  

 Complex - (ReceptorBound + LigandBound) 1.19 

where the monomers are assumed to be pre-organised in their bound 

conformation when in their free state. Moreover, up until the work of Liu et al. 

(2004), careful analysis of the complexes used for training and testing were 

limited to protease-inhibitor pairs (Krystek et al., 1993, Nauchitel et al., 1995, 

Vajda et al., 1994, Wallqvist et al., 1995, Zhang et al., 1997) with the addition of a 

few other high-affinity rigid complexes such as such as Barnase-barstar, the 

insulin dimer, the α and β chains of deoxyhaemoglobin and lysozyme-antibody 

complexes (Ma et al., 2002, Horton and Lewis, 1992, Audie and Scarlata, 2007, 

Bougouffa and Warwicker, 2008, Jiang et al., 2002, Weng et al., 1997, Xu et al., 

1997). For some of these models, the correlation with experimental binding 

affinities is exceptionally high. However, as seen from the restrictions on 
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conformational changes and on the diversity of structures used, the models are 

highly biased, and the final correlation coefficients should be treated with 

caution. This bias was confirmed in the work of (Kastritis and Bonvin, 2010; 

Kastritis et al., 2011) where the top performing BAP energy functions were 

tested on two recent benchmark datasets, with no restrictions on conformational 

changes. Correlations with experimental binding affinities were only as high as 

0.53 and as low as 0.17 (Kastritis and Bonvin, 2010; Kastritis et al., 2011). 

After the introduction of a larger (ranging from 52 to 86 complex structures) and 

a more diverse set structures by Liu et al. (2004), subsequent work on BAP was 

characterised by less accurate predictive models. Moreover, the bias was still 

towards rigid structures and conformational changes were never explicitly 

accounted for. It is also worth to note, that in a recent affinity benchmark dataset 

with 144 protein-protein complexes (Kastritis et al., 2011), when considering 

complexes with limited conformational changes (rmsd <1 Å), a ∆G prediction 

scheme that only uses the interface area achieves performance similar to more 

elaborate empirical models. 

1.5.7.2 Conformational Flexibility  

 

Proteins, and even protein complexes, do not exist as static structures but as an 

ensemble of conformations. As shown in equation 1.13, the binding free energy 

of a protein complex depends on the Boltzmann weighted average of the 

energies of the conformational states accessible by the complex, and those 

accessible by the free monomers.  With this in mind, none of the BAP models 

mentioned above (with one exception (Vajda et al., 1994)) explicitly account for 

this. Rather all energetic calculations are calculated on a single static structure. 

In the case of the work of (Vajda et al., 1994), the static restriction is not 

employed. However, flexibility is still only accounted for the ligands, which in 

this case are flexible peptides binding an MHC receptor. For these cases, the 

authors also show that ligand flexibility contributes 30-50% of the free energy 

change. A recent study (Yang et al., 2009) shows how the inclusion of an 

ensemble of protein-ligand conformations, obtained from MD simulations, 

improves the prediction accuracy of affinity scoring functions. Though 
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promising, this work is again limited to ligand flexibility, which has a 

significantly lower conformational space than the two components of a binary 

protein complex.  

1.5.7.3 Routine use of Linear Regression 

 

The diversity in macromolecular interactions and their structural properties 

(Nooren and Thornton, 2003) suggests that an energetic contribution dominant 

in a given interaction is not necessarily the dominant contribution in another. 

For example it is known that protein-protein interfaces tend to be hydrophobic 

(Young et al., 1994, Chothia and Janin, 1975) and planar (Baker and Der, 2013). 

However, hydrophilic interfaces are also common (Ben-Naim, 2006) and 

interfaces can also be protruding (Yura and Hayward, 2009). Moreover,  Cho et 

al. (2006) show that there are specific interaction types based on the functional 

category of the protein complex, and such interaction types are conserved 

through the common binding mechanism, rather than through sequence or 

structure conservation. Effectively, this indicates that generalizations concerning 

the determinants of protein-protein binding affinity may be limited in the 

context of a large and diverse dataset of protein complex families. Hence, a model 

such as Linear Regression (LR), which can only exploit globally well-rounded 

descriptors, might not be adept for a set of diverse complexes, such as the one 

used in this work. 

 

All BAP models developed until the work reported in this thesis (those reported 

in section 1.5.7), that are not statistical potentials, use LR to combine the 

energetic factors deemed responsible for complex affinity. Effectively, LR seeks a 

set of descriptors which best describe the dataset as a whole, which means that 

certain intricacies of a dataset, perhaps represented by a particular set of 

descriptors that are each specific to different cases, are overridden by 

descriptors which achieve higher overall, but limited, correlations. For example, 

electrostatics is a major driving force for small interface formation whereas 

hydrophobic burial tends to be more significant in larger interface formation 

(Sheinerman and Honig, 2002). Hence, for a dataset where small interfaces are 

underrepresented the effect of electrostatics may be underestimated as opposed 
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to the hydrophobic burial effect. Namely, as datasets become diverse, LR is not a 

sufficient model to represent such diversity. Rather, feature space-partitioning 

methods, which can encompass logical reasoning such as: ‘if interface is small 

use these descriptors, if the interface is larger use these other descriptors’, is 

more appropriate; these models are able to subset the feature space so that 

different features can contribute in different situations. The topic of machine 

learning is detailed the following section 1.6. 

1.5.8 Hotspot Prediction 

 

The binding free energy of a complex may also be understood through alanine 

scanning of residues at its interface. From such scans, it is understood that not all 

interface residues have marked effects on binding. Rather, only a subset of 

residues termed ‘hotspots’ contribute significantly to the binding energy of the 

complex (Clackson and Wells, 1995, Bogan and Thorn, 1998). Traditionally, a 

residue is a hotspot, if upon its substitution into alanine, is causes a reduction in 

binding free energy of 2kcal/mol or higher. Analysis on protein-protein 

interfaces and hotspot residues has shown that: hotspots tend to occur in regions 

of low solvent accessibility (Bogan and Thorn, 1998); Tyr, Trp and Arg are the 

most frequent hotspots (Ma and Nussinov, 2007, Bogan and Thorn, 1998); and 

hotspot tend to cluster into densely packed regions known as hotregions (Keskin 

et al., 2005). As mentioned in section 1.4.1, the major attraction of hotspot 

residues is that they are crucial for targeting of protein-protein interfaces with 

small drug-like molecules (Fry, 2012, Thangudu et al., 2012, Arkin and Wells, 

2004). This has led to the development of several computational hotspot 

prediction algorithms (Kortemme and Baker, 2002, Cho et al., 2009, Lise et al., 

2009, Lise et al., 2011, Tuncbag et al., 2010, Tuncbag et al., 2009, Xia et al., 2010, 

Zhu and Mitchell, 2011, Grosdidier and Fernandez-Recio, 2012, Morrow and 

Zhang, 2012, Wang et al., 2012). The predictors generally use a combination of 

solvent accessibility and physiochemical descriptors, which are then fed into 

machine learning algorithms trained on experimental datasets such as ASEdb 

(Bogan and Thorn, 1998)and BID (Fischer et al., 2003). For example, Robetta 

(Kortemme and Baker, 2002) uses an empirical energy function using potential, 

solvation and entropic energy terms. These include, the Lennard-Jones potential, 
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orientation dependant hydrogen bonding, shape complimentarity and an implicit 

solvation model. KFC2 (Zhu and Mitchell, 2011) consists of two support vector 

machine models (KFC2a and KFC2b). Besides standard energy terms such as van 

der Waals terms and hydrogen bonding, the solvent accessibility and local 

flexibility surrounding the target residue, were also included as features. 

Hotpoint (Tuncbag et al., 2010) takes a more efficient approach by basing the 

hotspot prediction only on solvent accessibility and a pair potential. The authors 

claim that even with such minimal features, the method still outperforms Robetta 

and KFC2. One major limitation of the aforementioned algorithms is that they 

have been trained and tested on very limited alanine scanning databases, namely 

the ASEdb (Thorn and Bogan 2001) and BID (Fischer, Arunachalam et al. 2003). 

The shortcoming of these datasets as benchmarks has been highlighted in (Xia, 

Zhao et al. 2010; Moal and Fernandez-Recio 2012).  

In Chapter 5, two hotspot prediction algorithms (RFSpot and RFSpot_KFC2) are 

designed and their performance compared to a number of hotspot predictors. 

The hotspot predictors are then used in scheme which involves alanine scanning 

for the prediction of off-rate changes upon mutation, as described in Chapter 6. 

1.6 Machine Learning 
 

Machine Learning (ML) is a subfield of computer science that deals with 

frameworks for identifying and exploiting patterns in data (Bishop, 2007). 

Nowadays, in all its forms, ML has become an enabling technology in a number of 

fields and industries, and even if it is not immediately obvious, your first guess 

should be that at any moment, you are making use of something where ML has 

been implemented in. This includes machine vision algorithms for your camera’s 

face recognition feature (Turk and Pentland, 1991); your e-mail spam filter and 

virus software on your computer (Bishop, 2007); or even your movie 

recommendations on Netflix (Ricci et al., 2011). The search of patterns from data 

is neither a novel idea nor limited to artificial systems. Rather, throughout 

history, most of what we know today about the world around us, is based on 

observers uncovering regularities and patterns in some physical phenomena. For 

example, Johannes Kepler only developed the empirical laws of planetary motion 
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by discovering consistencies in the astronomical observations of Tycho Brahe in 

the 16th century. Pattern recognition (not necessarily learnt recognition) is an 

inherent characteristic of even the simplest forms of living organisms (Bray, 

2009). In addition, associative learning is one of the main characteristics of 

organisms with nervous systems and evidence also shows that organisms 

without such a dedicated system are capable of advanced learning behaviour, 

such as the anticipation of environmental stimuli (Mitchell et al., 2009). The first 

computational learning algorithms, most commonly, Artificial Neural Networks 

(ANNs), (the earliest example of which being the perceptron (Rosenblatt, 1958)), 

are in fact inspired from the human’s central nervous systems. ANNs use a 

number of artificial neurons connected together to learn the appropriate 

response from a given input pattern. ANNs and other similar supervised machine 

learning algorithms are concerned with the automatic discovery of regularities in 

data using computer algorithms (Bishop, 2007). Their aim is to make predictions 

(apply the appropriate response) on some unseen data based on the regularities 

they have discovered and based on the comparison of these regularities to those 

observed in the new data. 

Setting up a problem in a ML framework, for instance that of supervised learning, 

invariably requires three main elements; a training dataset of target output 

values, a set of input features and a learning algorithm. The aim is to make 

predictions on some unseen data after having learnt a model from the training 

dataset. The model effectively learns a mapping between the input features and 

the target output values. Once this mapping is learnt, the model can be invoked 

to make new predictions on input features calculated on data with unknown 

target output values. Apart from supervised learning, other ML frameworks, 

which are not necessarily distinct from each other, include unsupervised learning 

which involves the clustering of data into distinct regions without target values 

to learn on; Anomaly detection (both supervised and unsupervised) which 

involves the identification of irregularities which do not conform to the expected 

pattern of data and Reinforcement Learning where an optimal sequence of 

decisions are to be made in an environment which is largely unknown. All ML 
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methods implemented in this thesis are either supervised classification or 

regression methods. 

1.6.1 Machine Learning in this Thesis 

 

The ML framework is used consistently throughout this thesis for modelling the 

stability of protein-protein complexes at various levels. This includes wild-type 

binding affinity (ΔG) prediction, ΔΔG and hotspot prediction; and Δkoff prediction. 

It is important to highlight that highly ML specific investigations are beyond the 

scope of this thesis. For example, there is no motivation to compare and contrast 

different learning algorithms for the same problem. The general belief employed 

is that the largest gains in prediction accuracy are best made with better feature 

design and careful analysis of the dataset. Consequently, in seeking better 

predictions, an exhaustive evaluation of a number of learning algorithms or 

parameters in hope of increasing accuracy, is not employed. With this in mind, a 

conscious effort is made throughout, firstly to validate the choice of learning 

algorithms in relation to the datasets and features available and secondly, not to 

use machine learning in a black-box fashion. Figure 1.5 shows the dependencies 

between different elements of a supervised machine-learning framework. These 

dependencies are not an exhaustive list, but rather highlight those dependencies 

that are given careful consideration in this work. These include dependencies 

considered prior to the learning phase, and those discovered subsequent to it 

upon analysis of the results. 

1.6.2 Dependencies in a Supervised Machine Learning Framework 

 

The dataset is the main source of training and benchmarking and its biases and 

diversity have a direct effect on both the choice of learning model and features 

employed. Bias in the context of this work is not limited to a class distribution 

bias (commonly referred to as dataset imbalance). The datasets used in this 

thesis (see Methods section 2.1) contain PPIs, which in turn come in many forms; 

different structural, physiochemical and conformational properties (Moal and 

Fernandez-Recio, 2012, Kastritis et al., 2011). A dataset which is not a 

representative sample of this diversity is therefore, also biased. For example, in 
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section 1.5.7.1 it is shown that previous binding affinity prediction (BAP) models 

use datasets without conformational and complex-family diversity. In this case, 

simple learning algorithms such as linear regression are sufficient to produce 

accurate results (‘Dataset->Choice of Learner’ in Figure 1.5). 

 

Figure 1.5: Dependencies in a supervised machine learning framework.  

White boxes highlight dependencies that must be considered prior to learning; 

blue boxes highlight dependencies affecting the interpretation of results 

subsequent to learning. Though not an exhaustive list of dependencies, the ones 

shown here are those that are discussed in this thesis. Some of these 

dependencies were considered pre-emptively; for example when selecting 

descriptors or learning algorithms, whereas others were discovered upon 

analysis of the results; for example when assessing the results of feature 

importance measures for different learning algorithms. 

 

 The BAP model developed in Chapter 3 made use of a larger and more diverse 

set of structures. To account for this diversity, new descriptors (for example 
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those accounting for unbound to bound transitions) and non-linear ML models 

were introduced (‘Dataset->Choice of Learner/ Choice of Features’  in Figure 

1.5). The choice of the learning algorithm should be an informed one taking into 

consideration both the domain knowledge of the problem at hand and the nature 

of the features available for learning (‘Choice of Features/Domain Knowledge-

>Choice of Learner’ in Figure 1.5). For instance, features also come in many 

forms, particularly those for modelling complex stability (See sections 1.5 and 

2.2). Some might be good global estimators, whereas others might only hold 

predictive value within certain ranges. For the latter, a learning algorithm like 

linear regression cannot exploit these locally predictive regions. Therefore, it is 

imperative that the choice of learner matches this information. Domain 

knowledge refers to the prior beliefs we have about the problem at hand. This in 

turn again affects the learner choice.  

An informed interpretation of the results and analysis (through benchmarking 

and descriptor importance) must also consider the relevant dependencies (see 

Figure 1.5). For example in Chapter 3 it is observed that descriptors identified as 

being important for modelling affinity are not only a function of the dataset at 

hand, but also a function of the learning algorithm employed and other features 

available to the learning algorithm. Moreover, in in section 7.3.3 it is shown that 

certain descriptors are highly important to the characterization of certain off-

rate mutations in the dataset but not for others. Therefore, global feature 

importance measures are not necessarily the appropriate choice, particularly in 

diverse datasets. In summary, this shows that any tentative conclusions on the 

importance of a particular descriptor must also be made in light of all of its 

dependencies.  
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1.7 Outline of Thesis 
 

1.7.1 Motivations Behind this Work 

 

This work deals directly with computational experiments investigating protein-

protein complex stability at various levels. These include prediction models for 

binding affinity, dissociation rates and hotspots. Characterising the effect of 

mutations on complex stability forms a major part of this thesis, and emphasis is 

given on the detection of rare mutations that can further enhance the stability of 

protein-protein interactions. The understanding is that being able to do so, is 

central to future computational drug design algorithms (See section 1.4). Though 

ultimately, the central motivation is to design accurate predictive models, 

parallel to this, an equal goal is that of uncovering determinants of complex 

stability. 

The intention is that this thesis asks the questions which have not been asked 

before, or for those which have been, improvements are made which directly 

address the deficiencies of current methods. In some instances, this work might 

take unconventional approaches, be it the use of the uncommon Radial Basis 

Function learner in Chapter 3; the position-specific models designed in Chapter 

4; or even, the design of descriptors derived from hotspots for characterising 

changes in dissociation rates in Chapter 6. The thesis attempts to answer most of 

the questions that come to mind, but for those that remain answered, the hope is 

that the questions raised are worthy of further investigation. The aim for this 

thesis was also to be in line with what we do know about complex stability. For 

instance, building a large and diverse set of descriptors (not limited to 

biophysical descriptors) and using them for characterizing the stability of 

protein-protein interactions may seem as a naïve or ungrounded pursuit to 

some. On the other hand what best way forward than to make use of, otherwise 

forgotten, descriptors that have been carefully designed by other researchers in 

the field in these last years. With this in mind, this methodology is not to be 

confused with one where a ‘bunch’ of descriptors are thrown blindly, in hope of 

finding something that correlates with our target. Firstly, the works of authors 
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that do so are reported for their deficiencies, and all models developed in this 

work are analysed for their biophysical plausibility. Recent publications 

(Kastritis and Bonvin, 2013) also put forward the argument that a simple model 

of buried surface area or simple biophysical models can still achieve reasonable 

correlations for binding affinity. The implication being, usually explicitly 

mentioned, that more complex binding affinity models (where complexity refers 

to large sets of descriptors and machine learning models), improve very little. 

These arguments I feel, fail to make a distinction between good correlation and 

high correlation. For uncovering a relationship, good correlations are acceptable, 

as they are for proofs of concept. A predictive algorithm with reasonable 

correlation is however unusable in most practical situations. Any predictive 

algorithm designed in this work, and others’, remain purely explorative in nature 

until significantly high accuracies are achieved. Only until then may such 

algorithms become standard protocol. Predictive performance is thus one of the 

major motivations behind this work. It should be noted that the algorithms 

designed here are part of an on-going pipeline of algorithms that came before 

and will come after. Attention is therefore given to highlighting clearly where the 

algorithms fail, which structures we still cannot characterise well, which 

mutations are harder to predict and how we might improve. In a similar vein of 

reasoning, all publications resulting from these investigations contain model 

prediction lists for direct comparison analysis by other researchers. Careful 

benchmarking is also employed, be it with the use of alternative cross-validation 

folds, or diverse and validated datasets.  

1.7.2 Chapter Summaries and Themes 

 

Chapter 2: The datasets, stability descriptors and machine learning models used 

throughout this thesis are summarized and described here. Following this, the 

hotspot prediction algorithm developed in this work (RFSpot), is described and 

benchmarked against other hotspot predictor algorithms. In addition a number 

of descriptors generated using the predicted hotspots are presented. These are 

termed as hotspot descriptors and subsequently used for the prediction of off-

rate changes upon mutation in Chapters 6-8. 
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Chapter 3: In this chapter the prediction of wild-type binding affinities on a 

diverse set of protein-protein interactions is investigated. In contrast to previous 

related work, the structures cover a wide range of complex families and 

conformational changes upon complex formation; thereby addressing the 

limitations associated with the BAP methods up until this work. Moreover, non-

linear machine learning algorithms were used for modelling and the use of 

unbound structures and conformational ensembles was also introduced into the 

descriptor calculations. A number of molecular descriptors were calculated 

which include, biophysical, statistical and miscellaneous descriptors. The 

prediction model (a consensus of four machine learning algorithms) achieves a 

cross-validated correlation coefficient with experimental affinities of R=0.77. 

Significant reduction in accuracy is observed for complexes undergoing 

conformational changes and those for which their experimental affinities have 

not been corroborated.  

Chapter 4: In this chapter the prediction of changes in binding affinity upon 

mutation (ΔΔG) is studied. The models are benchmarked in CAPRI round 26 on a 

blind set of circa 1800 mutations on two different protein drugs each binding the 

stem of the flu virus hemagglutinin. For the first round, a ΔΔG predictor based on 

similar principles as those presented in Chapter 3 are used. For the second 

round, a ΔΔG model that exploits correlations between similar mutations at a 

given mutation site, is designed. For both rounds, the predictions compared 

favourable to other competing groups, and also ranked as the top predictor for 

one of the protein drug targets. The difficulty in such scenarios, is that datasets 

available for training are mostly dominated with alanine mutations, which tend 

to be neutral or destabilizing (affinity decreasing). On the other hand, stabilizing 

mutations (affinity increasing) are rarely alanine mutations and only form ~2-

5% of all the 1800 mutations considered. In turn, the detection of these affinity 

increasing mutations is central for high affinity drug binding. 

Chapter 5: In this chapter, two hotspot prediction algorithms (RFSpot and 

RFSpot_KFC2) are designed and benchmarked against a number of hotspots 

predictors. The results confirm the importance of having solvent-accessibility 

related descriptors and more comprehensive ΔΔG datasets. 
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Chapter 6: This chapter approaches complex stability from a more specific facet, 

that of the dissociation rate. The question here shifts to that of understanding 

what makes a complex remain bound once the complex has formed. A dataset of 

50 complexes with 713 mutations for which their Δkoff was measured 

experimentally was extracted from the SKEMPI database (Moal and Fernandez-

Recio, 2012). Computational alanine scans, using a number of hotspot prediction 

algorithms, were performed on the wild-type and mutated interfaces. The 

hotspots predicted from these scans are used to design a number of hotspot 

related descriptors, which are correlated with Δkoff.. When compared to 

molecular descriptors, the hotspot descriptors achieve consistently higher 

correlations. The ‘averaging out effect’ of energetics across an interface when 

using molecular descriptors and the synergy of hotspot residues are proposed as 

the two main contributors to the success of the hotspot descriptors.   

Chapter 7: In the previous chapter, hotspot descriptors are introduced and 

benchmarked against molecular descriptors, as estimators of Δkoff. This chapter 

goes one step further and feeds both sets of hotspot and molecular descriptors 

into ML regression and classification algorithms. Besides the numerical 

prediction of Δkoff, emphasis is also put on the detection of the rare, residence 

time increasing (koff increasing) mutations which amount to < 5% of the off-rate 

dataset. ML models with hotspot descriptors show consistently better predictive 

performance both in the numerical prediction and for the detection of koff 

increasing mutations. In order to see whether certain classes of mutations are 

harder to characterise, the 713 off-rate mutation dataset is subset into data 

regions, and results analysed separately for each. Predictions for mutations 

occurring at the rim region of protein complex interfaces for example are less 

accurate to those at the core of region of interfaces. The relationships between 

different descriptors and different regions of the dataset are studied using 

descriptor-data region networks. These networks uncovered highly specific 

relationships between descriptors and certain classes of mutations, and 

conversely, descriptors that are broadly predictive over a number of mutation 

classes. The effects of conformational changes and alternative cross-validation 

routines, on predictive accuracy, are also reported. 
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Chapter 8: In chapters 7 and 8 it is shown how counting the energies of hotspot 

energies, pre- and post-mutation provides an accurate description of changes in 

koff. Here, the focus shifts towards understanding to which extent the off-rate of a 

complex is affected by the distribution of hotspots. For example, studies have 

shown that hotspots are likely to occur at the core regions of an interface and 

tend to cluster into hotregions. Though these two properties are observed on 

protein-protein interfaces, their link to stability is only implicated. The main 

motivation behind this chapter is to uncover advantages, if any, of hotspot 

distributional properties, by assessing the effect they have on the dissociation 

rate. As a result of the investigations, it is found that hotspots in the core region 

are solely critical for the stability of large complexes. For small complexes, rim 

hotspots become as important and their role is no longer secondary. The 

intention of introducing distribution into the equation of stability is to be able to 

make more informed decisions on ‘where’ to mutate when designing 

computational interactions.  
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Chapter 2 

2 Materials & Methods 
 

In this chapter, the datasets (section 2.1), stability descriptors (section 2.2) and 

machine learning models (section 0) used in this thesis are presented. The 

performance measures applied for the assessment of model predictions and 

descriptors are also detailed in section 2.4.  

2.1 Datasets 
 

2.1.1 Dataset for Binding Affinity (ΔG)  

 

The structures and experimental affinities for the recently published binding 

affinity benchmark (Kastritis et al., 2011) were used as the main source for 

training and testing the BAP described in Chapter 3. As listed in the appendices 

Table 10.2, this dataset consists of a total of 144 complex structures for which 

the crystal structures of each complex, 
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along with each of its unbound components at high resolution (< 3.25Å), are 

available. To avoid redundancy and the potential for over training, complexes 

with high sequence identity are not included; this facilitates the use of cross-

validation routines such as leave-one-out for benchmarking test predictions. A 

key aspect of this dataset, which improves upon previous datasets used in BAP, is 

its diversity: 

 Several receptor/ligand protein-binding partners undergo significant 

conformational change upon complex formation, of which some exhibit 

disorder to order transitions.  

 Complexes, within different protein families, cover a wide range of 

functions; a total of 19 Antibody/Antigen, 40 Enzyme/Inhibitor, 21 

Enzyme-regulatory/accessory chains, 17 G-protein binding proteins, 13 

Receptor containing complexes and 34 Miscellaneous. 

 Wide range of affinities. A total of 20 high affinity (KD < 10-10M), 90 

medium affinity (10-10M <KD<10-6M) and 34 low affinity (KD > 10-6M). 

2.1.1.1 Validated Set 

 

The affinities available for the protein complexes in the binding affinity 

benchmark come from a number of experimental methods including isothermal 

titration calorimetry, surface plasmon resonance, stopped flow fluorimetry and 

other spectroscopic techniques. For a number of complexes, more than one 

group measured the KD values or an additional experimental technique was used. 

For such measures that are within 1 kcal mol-1 of each other, the complexes were 

said to form part of the ‘validated set’. This high-quality subset is used to assess 

to which extent experimental error in affinities affects the model predictions. 

One should note that in this validate set the diversity in affinity and complex 

families is still present. Affinities range between 13 kcal mol-1 and complex 

families include; 3 antibody/antigen complexes, 16 enzyme/inhibitor complexes, 

5 enzyme substrate complexes, 5 enzyme complexes, 8 G-protein binding 

complexes, 7 receptor-ligand complexes and a remaining 13 miscellaneous 

complexes. 
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2.1.2 Dataset for Off-Rate (Δkoff) 

 

The structures and experimental off-rates from the SKEMPI database (Moal and 

Fernandez-Recio, 2012) were used as the main source of benchmarking 

descriptors, training and testing models for Δkoff  prediction in Chapter 6, 7 and 8. 

Wild-type and mutant koff values were transformed into Δlog10(koff) using  

 Δlog10(koff) = log10(koff)Mut - log10(koff)WT 2.1 

 

Where the value range is, -8.6 < Δlog10(koff)  < 6.5 with a mean of 0.7 

(destabilizing). The 713 off-rate mutations from SKEMPI are also subdivided into 

the following data regions for analysis: Single-Point (SP) alanine mutations, 361; 

SP non-alanine mutations, 155; SP mutations, 516; Multi-Point (MP) mutations, 

197; SP mutations to polar (Q, N, H, S, T, Y, C, M, W) residues, 39; SP mutations to 

hydrophobic (A, I, L, F, V, P, G) residues, 309; SP mutations to charged (R, K, D, E) 

residues, 68; mutations exclusively on core regions, 272; rim regions, 79; 

support regions, 114; mutations on complexes of Large-Interface-Area (>1600 

Å2) , 355 and Small-Interface-Area (<1600 Å2), 358. The off-rate dataset is listed 

in appendices Table 10.3. 

An assessment of how severely variations in experimental temperature, ionic 

strength and pH can introduce noise into log10(koff) and Δlog10(koff) was also 

performed. Firstly, 635 of the 713 values come from experiments reported to be 

performed in the 295–298K range, and 72 values either did not have their 

temperature reported, or were reported as ‘room temperature’ or ‘standard 

conditions’, corresponding to the 293–298K range. The remaining six 

experiments were performed at 323K. Thus, only 0.8% of the data lies outside of 

a 5K temperature range. Although not reported in the SKEMPI database, most of 

the rate constants were determined using surface plasmon resonance or 

stopped-flow fluorescence in a relatively narrow range of standard buffer 

conditions. Further, ionic strength and pH predominantly affect the rate of 

association rather than the rate of dissociation; electrostatic shielding and 

changes in protonation state influence the long-range forces which drive protein 
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association, rather than the short-range forces which keep the buried surfaces of 

the binding partners together. For instance, in the M3-XCL1 complex, in which 

ionic strengths in the 0.2 to 1.5 M NaCl range were investigated, the rate of 

association varied by over 70-fold, while the rate of dissociation varied by less 

than 3 fold (Figure 2C and Table III of  Alexander-Brett and Fremont (2007)). 

Similarly, in a study of a VEGF-antibody interaction, varying pH in the 6.5–8.5 

range resulted in around 30% variation in dissociation rate, while varying the 

ionic strength in the 10–1000 mM range produced a two-fold change 

in koff (Moore et al., 1999). Even assuming a large three-fold standard error 

in koff, this would result in a standard error of 3/ln10≈1.3 in logkoff  (Moore et al., 

1999). Lastly and most importantly, the assumption was made that though 

reference states may change across experimental methods and studies, within a 

given experiment the reference state is constant for the experimental 

determination of the wild-type and its mutants, which tend to be generated 

within the same experimental work. Given that we training is performed on 

values for Δlog10(koff) as shown in equation 2.1, any systematic variations 

associated with experimental conditions are eliminated, this issue is less likely to 

be prominent for mutation prediction as it is for wild-type.  

2.1.3 Off-rate Classification Data Sets (CDS1 and CDS2) 

 

The 713 off-rate mutations in the previous section of 2.1.2 are partitioned into 

(Δlog10(koff)<−1), representing the stabilizing portion of the dataset, and 

(Δlog10(koff)>0), representing the neutral to destabilizing portion of the dataset 

(referred to as CDS1 –Classification Dataset 1). The motivations behind the 

thresholds of CDS1 are two-fold. Firstly, previous error estimates show that 

experimental noise in the data can be as high as 2kcal/mol (Moal et al., 2011, 

Moal and Fernandez-Recio, 2012). Experimental noise causes miscategorization 

errors when converting Δlog10(koff) from continuous values to categorical bins, 

and therefore, the exclusion of data-points within [−1, 0] should reduce 

sufficiently the number of miscategorization errors between stabilizing and 

neutral/de-stabilizing mutations. Secondly, being able to detect stabilizing 

mutations from neutral ones is an important aspect of interface design (see 

section 1.4.3). A total of 43% of the mutations lie within the range of [0, 1]. 

http://www.ploscompbiol.org/article/info%3Adoi%2F10.1371%2Fjournal.pcbi.1003216
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Therefore, the removal of Δlog10(koff) within the range [−1,0] still allows a 

sufficient amount of neutral mutations. This data subset, results in a dataset of 

501 neutral to destabilizing mutations (referred to as non-stabilizing mutations) 

and 31 stabilizing mutations. To further investigate the discrimination ability of 

the descriptors, an additional threshold satisfying |Δlog10(koff)| >1 is also 

investigated. This dataset which removes most of the neutrals is referred to 

CDS2 – Classification Dataset 2. 

 

2.1.4 Dataset for Hotspot (ΔΔGALA) 

 

All single-point alanine mutations, limited to the complex interfaces, were 

extracted from the SKEMPI database. This totals to a set of 635 non-redundant 

mutations with experimental ΔΔG in 59 different complexes and 154 hotspot 

residues with ΔΔG >= 2 kcal/mol. All hotspots represent the positive training 

examples and anything, which is not a hotspot (ΔΔG < 2 kcal/mol) as negative 

training examples. The hotspot dataset is listed in the appendices Table 10.4. 

 

2.2 Stability Related Descriptors 

 

A number of stability related descriptors are calculated and listed in Table 2.1. 

These include descriptors related to the potential and solvation energy, entropy 

related descriptors, statistical potentials and a number of miscellaneous 

descriptors. These different classes of descriptors have been described in the 

introductory section of 1.5. 
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Table 2.1: Stability Related Descriptors. 

A list of stability related descriptors calculated in this thesis. The descriptors are 

categorized under four sections; Potential / Total Energy, Solvation Energy, 

Entropy, Statistical Potentials and Miscellaneous Descriptors. It should be noted 

that some of the descriptors are not exclusive to one type of category, but are 

only included one for ease of reference. The entries in the columns ΔG (Chapter 

3), ΔΔG (Chapter 4), Δkoff (Chapter 7) and HS - Hotspots (Chapter 5), indicate 

whether the descriptor was used in the respective predictive models. Note that 

this is only an indication of a descriptor being available to the learning models, 

and not necessarily the case that the descriptor formed part of the final 

prediction model. Those which do, are reported at the respective chapters. Not 

included in the table are all FoldX energy terms which are used for ΔΔG, Δkoff and 

HS prediction models (Schymkowitz et al., 2005). 

Potential / Total Energy 
Descriptor Type Description Note / Package Reference ΔG ΔΔG Δkoff HS 

ROS_HBOND 
Directional H-Bonding 
Potential 

PyRosetta 
(Chaudhury et al., 
2010) 

Y 
   

H_BOND 
12_10 Hydrogen Bonding 
Potential 

Firedock 
(Andrusier et al., 
2007) 

Y 
   

PI_PI Orientation Independent pi-pi Firedock 
(Misura et al., 
2004) 

Y 
   

CATION_PI 
Orientation Independent 
catian-pi 

Firedock 
Misura, Morozov et 
al. 2004) 

Y 
   

ALIPHATIC 
Orientation Independent 
aliphatic-aliphatic 

Firedock 
Misura, Morozov et 
al. 2004) 

Y 
   

ROS_TOTAL Total Energy PyRosetta 
(Chaudhury et al., 
2010) 

Y 
   

ACE22_ALL Total energy CHARMM 22 Forcefield 
(Schaefer and 
Karplus, 1996) 

Y 
   

STC_H STC Enthalpy STC package 
(Lavigne et al., 
2000) 

Y 
   

STC_G STC free energy STC package 
(Lavigne et al., 
2000) 

Y 
   

ROS_FA_ATR / 
PY_fa_atr 

Lennard-jones attractive 
PyRosetta 
 

(Chaudhury et al., 
2010) 

Y Y Y Y 

ROS_FA_REP 
PY_fa_rep 

Lennard-jones repulsive PyRosetta 
(Chaudhury et al., 
2010) 

Y Y Y Y 

PY_fa_dun 

Internal energy of side-chain 
rotamers as derived from 
Dunbrack's statistics based 
pair term 

PyRosetta 
(Chaudhury et al., 
2010) 

 Y Y Y 

PY_fa_pair Favors salt bridges PyRosetta 
(Chaudhury et al., 
2010) 

 Y Y Y 

PY_hbond_lr_bb 
Backbone-backbone H-bonds 
distant in primary sequence 

PyRosetta 
(Chaudhury et al., 
2010) 

 Y Y Y 

PY_hbond_sr_bb 
Backbone-backbone H-bonds 
close in primary sequence 

PyRosetta 
(Chaudhury et al., 
2010) 

 Y Y Y 

PY_fa_Intra_rep 
Lennard-jones repulsive 
between atoms in the same 
residue 

PyRosetta 
(Chaudhury et al., 
2010) 

 Y Y Y 

PY_hbond_bb_sc 
H-bond energy sidechain-
backbone 

PyRosetta 
(Chaudhury et al., 
2010) 

 Y Y Y 

PY_hbond_sc 
H-bond energy sidechain-
sidechain 

PyRosetta 
(Chaudhury et al., 
2010) 

 Y Y Y 

PY_pro_close Proline ring closure energy PyRosetta 
(Chaudhury et al., 
2010) 

 Y Y Y 

ROS_CG_VDW Coarse grained VDW PyRosetta 
(Chaudhury et al., 
2010) 

Y 
   

ACE22_COUL / 
ACE19_COUL 

Coulombic Energy 
CHARMM 22/19 
Forcefield 

(Schaefer and 
Karplus, 1996) 

Y Y Y Y 

ACE22_ELEC / 
ACE19_ELEC 

Total Electrostatic (ACE_INTE 
+ SELF) 

CHARMM 22/19 
Forcefield 

(Schaefer and 
Karplus, 1996) 

Y Y Y Y 

ACE22_INTE / 
ACE19_INTE 

COUL+SELF 
CHARMM 22/19 
Forcefield 

(Schaefer and 
Karplus, 1996) 

Y Y Y Y 

CHARM_total Total Energy CHARMM 19 Forcefield 
Schaefer and 
Karplus 1996) 

 Y Y Y 

CHARM_elec Electrostatic Energy CHARMM 19 Forcefield 
Schaefer and 
Karplus 1996) 

 Y Y Y 

CHARM_vdwaals VDW potential CHARMM 19 Forcefield 
Schaefer and 
Karplus 1996) 

 Y Y Y 
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NUM_HB 
Number of interfacial 
Hydrogen Bonds 

HBPlus 
(McDonald and 
Thornton, 1994) 

Y 
   

NUM_SB 
Number of interfacial Salt 
Bridges 

HBPlus 
(McDonald and 
Thornton, 1994) 

Y 
   

NUM_WB 
Number of interfacial Water 
Bridges 

HBPlus 
(McDonald and 
Thornton, 1994) 

Y 
   

Solvation Energy 
Descriptor Type Description Note Reference ΔG ΔΔG Δkoff HS 

DELISI_SOLV Atomic Desolvation Energies 
ACE – Atomic Contact 
Energies 

(Zhang et al., 1997) Y 
   

LK_SOLV /  
PY_fa_sol 

The Lazaridis-Karplus effective 
energy function 

PyRosetta 
(Lazaridis and 
Karplus, 1999) 

Y Y Y Y 

SASA SASA model Ferrara et al. 2002 Ferrara et al. 2002 Y 
   

ROS_CG_ENV Rossetta Cbeta Potential PyRosetta 
(Chaudhury et al., 
2010) 

Y 
   

ROS_CG_BETA Rosetta Environment Potential PyRosetta 
(Chaudhury et al., 
2010) 

Y 
   

ACE22_SCRE / 
ACE19_SCRE 

Electrostatic Screening 
CHARMM 22/19 
Forcefield 

(Schaefer and 
Karplus, 1996) 

Y Y Y Y 

ACE22_SELF / 
ACE19_SELF 

Electrostatic Self Energy 
CHARMM 22/19 
Forcefield 

(Schaefer and 
Karplus, 1996) 

Y Y Y Y 

ACE22_SOLV / 
ACE19_SOLV 

Sum of SELF and SCREEN 
CHARMM 22/19 
Forcefield 

(Schaefer and 
Karplus, 1996) 

Y Y Y Y 

ACE22_HYDR / 
ACE19_HYDR 

Hydrophobic Burial 
CHARMM 22/19 
Forcefield 

(Schaefer and 
Karplus, 1996) 

Y Y Y Y 

ACE19_SASL SASA Solvation Energy CHARMM 19 Forcefield 
(Schaefer and 
Karplus, 1996) 

 Y Y Y 

CHARM_gb 
Generalized Born Implicit 
Solvation Energy 

CHARMM 19 Forcefield 
(Schaefer and 
Karplus, 1996) 

 Y Y Y 

CHARM_sasa Hydrophobic Solvation Energy CHARMM 19 Forcefield 
(Schaefer and 
Karplus, 1996) 

 Y Y Y 

CHARM_gb+sasa 
Generalized Born + 
Hydrophobic Solvation Energy 

CHARMM 19 Forcefield 
(Schaefer and 
Karplus, 1996) 

 Y Y Y 

STC_S_SOL Hydrophobic Burial STC package 
(Lavigne et al., 
2000) 

Y 
   

        Entropy 
Descriptor Type Description Note Reference ΔG ΔΔG Δkoff HS 

S_TR 

Change in 
rotational+translational 
entropy upon complex 
formation 

  
Y 

   

S_R 
Change in rotational entropy 
upon complex formation 
rotational 

  
Y 

   

S_T 
Change in translational 
entropy upon complex 
formation 

  
Y 

   

S_VIB 
Change in vibrational entropy 
upon binding using normal 
modes via M1 scheme 

 
(Carrington and 
Mancera, 2004) 

Y 
   

STC_S_SC 
Entropy changes arising from 
restriction of side-chain 
conformation upon binding 

STC Package 
(Lavigne et al., 
2000) 

Y 
   

S_GP_ALL2 Disorder to order transitions 
 

(Zhou, 2004) Y 
   

S_GP_INT2 Disorder to order transitions 
 

(Zhou, 2004) Y 
   

S_WLC_ALL2 Disorder to order transitions 
 

(Zhou, 2001) Y 
   

S_WLC_INT2 Disorder to order transitions 
 

(Zhou, 2001) Y 
   

STC_S Total Entropy Change STC package 
(Lavigne et al., 
2000) 
 

Y 
   

Statistical Potentials 
Descriptor Type Description Note Reference ΔG ΔΔG Δkoff HS 

ROS_FA_PP Atomistic pair potential Protein Folding 
(Chaudhury et al., 
2010, Simons et al., 
1999) 

Y 
   

ROS_CG_PP Coarse-grained pair potential Protein Folding 
(Chaudhury et al., 
2010, Simons et al., 
1999) 

Y 
   

AP_DARS Atomic distance dependent 
Protein Docking 
Inc. AP_URS/AP_MPS 

(Chuang et al., 
2008) 

 Y Y Y 

AP_DOPE Atomic distance dependent 
Protein Folding 
Inc. AP_DOPE_HR – High 
Res. 

(Shen and Sali, 
2006) 

 Y Y Y 

AP_T Two-step atomic potential 
Protein Docking 
Inc. AP_T1/2. 

(Tobi, 2010)  Y Y Y 

CP_TSC 
Two-step residue level contact 
potential 

Protein Docking (Tobi, 2010)  Y Y Y 

CP_TB Residue level contact potential Protein Folding 
(Tobi and Bahar, 
2006) 

 Y Y Y 

DFIRE 
Atom based orientation 
dependent 

Protein Folding (Zhang et al., 2004) Y Y Y Y 
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DDFIRE 
Atomic distance dependent 
level potential 

Protein Folding 
(Yang and Zhou, 
2008) 

Y Y Y Y 

DCOMPLEX 
Atomic distance dependent 
Level potential 

Protein Docking (Liu et al., 2004) Y Y Y Y 

OPUS_CA 
Residue/C-Alpha distance 
dependent 

Protein Folding (Lu et al., 2008) Y Y Y Y 

OPUS_PSP 
Atom contact potential for 
Side-chain packing 

Protein Folding 
Inc. OPUS_PSP1/2/3. 

(Lu et al., 2008) Y Y Y Y 

RF_PP Residue level potential Protein Folding 
(Rykunov and 
Fiser, 2010) 

Y 
   

EMPIRE Atomic level Protein Docking (Liang et al., 2007) Y 
   

GEOMETRIC 
Packing and distance 
dependent potential function 

Protein Folding / Protein 
Interaction 

Unpublished Y Y Y Y 

CP_RMFCEN1 
Side-chain centroid distance 
dependent potential 

Protein Folding 
(Rajgaria et al., 
2008) 

 Y Y Y 

CP_RMFCEN2 
Side-chain centroid distance 
dependent potential 

Protein Folding 
(Rajgaria et al., 
2008) 

 Y Y Y 

CP_RMFCA Calpha distance dependent Protein Folding 
(Rajgaria et al., 
2006) 

 Y Y Y 

CP_SKOIP 
 Residue level interaction 
contact potential 

Protein Docking  (Lu et al., 2003)  Y Y Y 

FOUR_BODY 
Four-body coarse grain 
potential 

Potentials'R'Us (Feng et al., 2010) Y Y Y Y 

GEN_4_BODY 
Four-body coarse grain 
potential 

Potentials'R'Us (Feng et al., 2010) Y Y Y Y 

SHORT_RANGE Residue level pair potential Potentials'R'Us (Feng et al., 2010) Y Y Y Y 

QA_PP Residue level pair potential 
Potentials'R'Us 
Also referred to as CP_Qa 

(Feng et al., 2010) Y Y Y Y 

QM_PP Residue level pair potential 
Potentials'R'Us 
Also referred to as CP_Qm 

(Feng et al., 2010) Y Y Y Y 

QP_PP Residue level pair potential 
Potentials'R'Us 
Also referred to as CP_Qp 

(Feng et al., 2010) Y Y Y Y 

HLPL_PP Residue level pair potential 
Potentials'R'Us 
Also referred to as 
CP_HLPL 

(Feng et al., 2010) Y Y Y Y 

SKOB_PP Residue level pair potential 
Potentials'R'Us 
Also referred to as 
CP_SKOb 

(Feng et al., 2010) Y Y Y Y 

SKOA_PP Residue level pair potential 
Potentials'R'Us 
Also referred to as 
CP_SKOa 

(Feng et al., 2010) Y Y Y Y 

SKJG_PP Residue level pair potential 
Potentials'R'Us 
Also referred to as 
CP_SKJG 

(Feng et al., 2010) Y Y Y Y 

MJPL_PP Residue level pair potential 
Potentials'R'Us 
Also referred to as 
CP_MJPL 

(Feng et al., 2010) Y Y Y Y 

MJ3H_PP Residue level pair potential 
Potentials'R'Us 
Also referred to as 
CP_MJ3h 

(Feng et al., 2010) Y Y Y Y 

MJ2H_PP Residue level pair potential 
Potentials'R'Us 
Also referred to as 
CP_MJ2h 

(Feng et al., 2010) Y Y Y Y 

TS_PP Residue level pair potential 
Potentials'R'Us 
Also referred to as CP_Ts 

(Feng et al., 2010) Y Y Y Y 

BT_PP Residue level pair potential 
Potentials'R'Us 
Also referred to as CP_BT 

(Feng et al., 2010) Y Y Y Y 

BFKV_PP Residue level pair potential 
Potentials'R'Us 
Also referred to as 
CP_BFKV 

(Feng et al., 2010) Y Y Y Y 

TD_PP Residue level pair potential 
Potentials'R'Us 
Also referred to as CP_TD 

(Feng et al., 2010) Y Y Y Y 

TEL_PP Residue level pair potential 
Potentials'R'Us 
Also referred to as CP_Tel 

(Feng et al., 2010) Y Y Y Y 

TES_PP Residue level pair potential 
Potentials'R'Us 
Also referred to as CP_TEs 

(Feng et al., 2010) Y Y Y Y 

RO_PP Residue level pair potential 
Potentials'R'Us 
Also referred to as CP_RO 

(Feng et al., 2010) Y Y Y Y 

MS_PP Residue level pair potential 
Potentials'R'Us 
Also referred to as CP_MS 

(Feng et al., 2010) Y Y Y Y 

MJ1_PP Residue level pair potential 
Potentials'R'Us 
Also referred to as 
CP_MJ1 

(Feng et al., 2010) Y Y Y Y 

MJ3_PP Residue level pair potential 
Potentials'R'Us 
Also referred to as 
CP_MJ3 

(Feng et al., 2010) Y Y Y Y 

GKS_PP Residue level pair potential 
Potentials'R'Us 
Also referred to as 
CP_GKS 

(Feng et al., 2010) Y Y Y Y 

VD_PP Residue level pair potential 
Potentials'R'Us 
Also referred to as CP_VD 

(Feng et al., 2010) Y Y Y Y 

MSBM_PP Residue level pair potential 
Potentials'R'Us 
Also referred to as 
CP_MSBM 

(Feng et al., 2010) Y Y Y Y 
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Miscellaneous 
Descriptor Type Description Note Reference ΔG ΔΔG Δkoff HS 

DASA 
Change in surface area upon 
binding 

Naccess 
 

Y 
   

RES_P % interface residues: polar Naccess 
 

Y 
   

RES_NP 
% interface residues: non-
polar 

Naccess 
 

Y 
   

RES_C % interface residues: charged Naccess 
 

Y 
   

ATOM_P # interface atoms: polar Naccess 
 

Y 
   

ATOM_NP # interface atoms: non-polar Naccess 
 

Y 
   

ATOM_N # interface atoms: charged Naccess 
 

Y 
   

PLANARITY Interface planarity SURFNET (Laskowski, 1995) Y 
   

ECCENTRIC Numerical eccentricity SURFNET (Laskowski, 1995) Y 
   

INT_ALPHA 
Proportion of interface 
residues which are in alpha 
helices 

DSSP 
 

Y 
   

INT_BETA 
Proportion of interface 
residues which are in beta 
sheets 

DSSP 
 

Y 
   

GAP_VOL 
Volume of empty space at the 
interface 

SURFNET (Laskowski, 1995) Y 
   

GAP_INDEX 
Volume of empty space at the 
interface divided by interface 
Area 

SURFNET (Laskowski, 1995) Y 
   

NIP Interface packing score 
 

(Mitra and Pal, 
2010) 

Y Y Y Y 

NSC Surface complimentarity score 
 

(Mitra and Pal, 
2010) 

Y Y Y Y 

STC_CP 
Change in specific heat upon 
binding 

STC package 
(Lavigne et al., 
2000) 

Y 
   

BIOSIMZ_KON 
Predicted log(kon) calculated 
using BioSimz  

Li,2011 Y 
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2.3 Machine Learning Algorithms 
 

2.3.1 Random Forest (RF) 

 

The Random Forest (RF) (Breiman, 2001a) is the most commonly employed 

learning algorithm in this thesis. The RF is used both for problems of regression 

and classification and a Matlab implementation of the RF algorithm, as described 

by Breiman (2001a), is used. RF is an ensemble of decisions trees, where the final 

prediction is a majority vote (for classification) or an average (for regression) of 

all the trained decision trees. The ‘Random’ aspect of the RF algorithm is related 

to the way it builds each decision tree. For a training set of N samples, sampling 

with replacement is performed and two thirds of this sample is used as the 

training set for a given decision tree in the forest. The other one third (termed as 

the oob (out-of-bag) data, is used to get an unbiased estimate of the test error 

and for variable importance measures. The second randomization involved in 

the RF’s decision trees, is that at each node, not all features are available for 

making a split. Rather a random sample of mtry features are chosen at each node 

and the best split is chosen amongst them. An important aspect of the RF is that 

the test error is reduced with more accurate and less correlated decision trees. 

Part of the randomization procedures employed in the tree building are in fact 

aimed at introducing variability in hope of achieving low correlation between 

decision trees. The mtry parameter is therefore central the RF. Given a powerful 

descriptor in the set of features, for high mtry values, it is more likely that this 

descriptor would be chosen in the random sample and subsequently used at the 

node split. Therefore this descriptor would dominate most of the trees, resulting 

in highly accurate trees but with low correlation. If the mtry parameter is set too 

low, then the powerful descriptor might be missed out from most of the trees. 

The RF would then consist of low correlation trees but with low accuracy. 

Though this parameter is the one for which the RF is most sensitive to, it has a 

broad range of optimal values (Breiman, 2001a). This was also found to be true 

in this work, and for most scenarios the mtry parameter was set to be withitn the 

range   where M is the number of features available in the 

training set.  
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RF Variable Importance Measure: After the random forest has been built and the 

oob error estimate for each tree recorded, the importance of each feature to the 

prediction is measured as follows. For each feature m, all of its values are 

randomly permuted and the oob examples are fed through the trees with m 

randomly permuted. The importance score of feature m is the different between 

the original oob error estimates, and the new ones with m permuted. The 

importance score is then normalized by the standard deviation of these 

differences across all trees. Large values imply more important features. Another 

feature importance measure available to the RF, and invoked in this work, is the 

case-wise feature importance measure. Here, during permutation, the error of 

each oob example is recorded. In this way feature importance can also be 

quantified in relation to specific examples. 

2.3.2 M5’ Regression Tree (M5’) 

 

The M5 model tree is similar to standard regression trees with the additional 

possibility of having a linear regression model at the leaves (Quinlan, 1992). In 

this work, the M5′ algorithm, a modified version of the original M5 regression 

tree described by Wang and Witten (1996) was used. This version is able to 

achieve more interpretable trees through smaller trees which still have similar 

predictive performance. Two phases are used to build an M5’ tree; the growing 

phase and the pruning phase. In the growing phase, a greedy algorithm is 

employed where at each node a split is made which minimizes the standard 

deviation of the examples falling on each side of the split. By the end of the 

growing phase, the tree is typically large and the samples partitioned by the 

latter splits are small in number. Therefore the error estimates for the latter 

splits become unreliable, and it is likely the tree overfits the data. To address 

this, a pruning stage is performed where a function which considers the tree size 

and the estimated test error is minimised. The M5’ implementation in the 

M5PrimeLab toolbox in Matlab was used to construct one of the empirical 

binding free energy functions described in Chapter 3.  
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2.3.3 Multivariate-Adaptive-Regression-Splines (MARS) 

 

MARS is a non-parametric regression method which uses a set of hinge functions 

to model non-linear relationships between the input variables and the target 

output (Friedman, 1991). The model is formed from a sum of weighted basis 

functions Bi(x),  

 

 

2.2 

where each basis function contains a hinge function or a product of two or more 

hinge functions, if we seek to model higher order interactions between variables. 

The hinge function takes two forms; max(0, m-constknot) or max(0, constknot -m), 

and is defined by some feature m and a knot constknot. Therefore in the training 

phase, MARS automatically assigns the weights for each basis function wi, the 

variables for a given hinge function, and the values for the knot positions 

constknot. Similar to the M5’ regression tree, the MARS model also has two phases 

termed as the forward pass and the backward pass. In the forward pass, the basis 

functions are added in pairs until a stopping criterion is reached. This is usually 

set by the user, and can be some minimum error threshold or the maximum 

number of basis functions. Given that the forward phase my produce models that 

overfit the training data, in the backward phase, basis function are removed and 

model subsets are compared using a generalized cross-validation (GCV) routine. 

The GCV is a function of the residual sum-of-squares of the training data, the 

number of observations, the number of parameters and the number of knots. 

Therefore more flexible models, with the addition of more knots, are penalized in 

the backward phase. One notable aspect concerning hinge functions is that for 

the range in which the function is zero, the feature associated with it does not 

contribute to the prediction. Effectively this can be used as a mechanism to 

disregard noisy parts of descriptors and a higher weighting to more informative 

regions. The MARS implementation in the ARESLab toolbox in Matlab was used 

to construct one of the empirical binding free energy functions described in 

Chapter 3. 
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2.3.4 Radial-Basis-Function Interpolation (RBF) 

 

RBFs are common in both artificial neural networks (ANNs) and support-vector-

machine (SVM) learning algorithms.  They are functions whose value depends on 

some distance from the origin or some point in space. The sum of a set of radial 

basis functions can in turn be used to approximate functions in the form of: 

 

 

2.3 

Several distance functions may be used such as the multiquadric basis function: 

 
 

2.4 

 

Where d=||x-xi||. The fact that weights wi are learnt for examples rather than 

features, means that during training, uninformative examples are down-

weighted and representative ones are up-weighted. The RBF implementation in 

Matlab was used to construct one of the empirical binding free energy functions 

described in Chapter 3. 

2.3.5 Genetic Algorithm Feature Selection (GA-FS) 

 

The GA-FS Algorithm runs feature selection on subsets of the off-rate mutation 

dataset defined as data regions. Two separate GA-FS runs are performed, one for 

Linear Regression models and another for Support Vector Machine (RBF) 

Regression Models (using LIBSVM package). Two separate 10-Fold Cross-

Validation loops are used. One to assess prediction accuracy on the off-rate 

mutations for the given data region and the second to derive the optimal feature 

set. A 10-Fold inner-cross validation loop is used within the GA-FS fitness 

function to drive the feature selection process with Pearson’s Correlation 

Coefficient. After the GA has converged, the LR/SVM model is tested for its 

accuracy on the outer-loop fold. This process is repeated 10 times such that all 

10 outer loop folds are used as a test set validation for the final model. Therefore 

the accuracy of the final model is tested on data that is not used to derive the 

feature set. As an initial feature set available for selection, 110 molecular 
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descriptors (as shown in the Δkoff column in Table 2.1) and 16 hotspot 

descriptors (as shown in Table 6.3) from the best performing off-rate prediction 

model RFSpot_KFC2 are available. A fixed feature set size of 5 is chosen so as to 

avoid overfitting on smaller sized data regions. Therefore the genome size for the 

GS-FS (LR) is 5 whereas that for GA-FS (SVM) is 7 to also optimise the cost and 

gamma parameters of the RBF. Available Cost parameters values are quantized 

into 111 bins ranging from 2-5 to 26. Gamma parameter values are quantized into 

1300 bins ranging from 2-8 to 25. The GA’s initial population size was set at 1000 

individuals, and generated such that the initial population included at least one 

instance of each of the 126 features. Tournament selection is employed with a 

size of 8 individuals. Uniform random crossover is used with a crossover fraction 

set to 50% and a mutation rate exponentially decreasing with the number of 

generations applied. Note that for each data region 50 separate GA-FS runs are 

performed. 

2.3.6 Hotspot Descriptor Calculation and Dataset 

 

As depicted in Figure 6.1, for any given complex, a computational alanine 

scanning is first performed on the wild-type interface using a hotspot prediction 

algorithm. This enables calculation of the set of hotspot descriptors summarized 

in Table 6.3 . The respective single-point or multi-point mutation is then applied 

using FoldX (Schymkowitz et al., 2005), and another computational alanine scan 

is performed on the mutated interface, again using the same hotspot prediction 

algorithm invoked for the wild-type scan, from which a new set of hotspot 

descriptors are calculated. The energetic value contributed by each hotspot 

descriptor is then the difference in its energetic value pre- and post-mutations: 

 
_ _ _

MUT WT

HS Desc HS Desc HS DescE E E     2.5 

 

The hotspot descriptors are calculated for a set of 713 mutations from SKEMPI 

database (Moal and Fernandez-Recio, 2012) described in section 2.1.2. Therefore 

in total, for each hotspot prediction algorithm, 50 wild-type and 713 mutant 

computational alanine scans are made. To ensure that off-rate predictions are 
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not made via hotspots models trained on the same examples, all 713 

computational alanine-scans made by RFSpot, RFspot_KFC2, RFHotspoint1 and 

RFHotspoint2 are strictly 20-fold-test predictions for mutations common 

between the off-rate and hotspot datasets, and test predictions for the rest. 

Therefore all hotspot predictions on which the hotspot descriptors are calculated 

are unbiased and not susceptible to over-fitting.  

2.3.7 Hotspot Descriptor Functional Forms and Design 

 

The aim of the hotspot descriptors designed in this work is to capture both the 

energetics and distributional properties of hotspots. These in turn may affect 

complex destabilization to differing degrees. The relevance of each descriptor to 

off-rate variation is then assessed with different feature importance measures 

and the key determinants of the dissociation process reported.  

2.3.7.1 Interface Hotspot Descriptors 

 

Int_Energy_1 is the difference in the sum of the single-point alanine ΔΔGs of all 

interface residues N, pre- and post-mutation. 

 

 

1 1

_ _1

MUT WT
N N

n Ala n Ala

n n

Int Energy G G 

 

   
      
   
   
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Int_HS_Energy is the difference in the sum of the single-point alanine ΔΔGs of all 

hotspot residues NHS, pre- and post-mutation. 

 

1 1

_ _
HS HS

HS HS

HS HS

MUT WT
N N

n Ala n Ala

n n

Int HS Energy G G 

 

   
      
   
   
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No_HS is the change in number of hotspots predicted at the interface pre- and 

post-mutation. This can be considered to be a coarse-grained version of 

Int_HS_Energy. 
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2.3.7.2 Solvent Accessible Region Hotspot Descriptors 

 

To account for the different solvent accessible regions where hotspots may occur 

at the interface, the following hotspot ΔΔGs are summed separately for the core, 

rim and support regions  and termed as CoreHSEnergy, RimHSEnergy and 

SuppHSEnergy respectively. Therefore these hotspot descriptors are similar to 

Int_HS_Energy but limited to counting ΔΔG for hotspots that fall in the given 

region. In addition, CoreHS, RimHS and SuppHS descriptors, count the hotspot 

changes within each region. Again these can be considered as coarse-grained 

versions of their respective counterparts. The core, rim and support regions of 

the complex interface are defined according to Levy (2010). Core residues are 

generally exposed in the unbound configuration but buried in the bound state. 

Rim regions are generally exposed in both the bound and unbound states 

whereas support residues are generally buried in both states. The thresholds 

chosen in defining these regions are such that each region has a similar number 

of residues (Levy, 2010). 

2.3.7.3 Hotregion Cooperativity Descriptors 

 

The cooperativity of a pair of residues m1 and m2, can be calculated by 

comparing the gain of adding each residue separately from a neutral reference 

state of both wild-type residues mutated to alanine (ΔΔGA1,A2->A1,m2 + ΔΔG A1,A2-> 

m1,A2) to that of adding both residues concurrently, given the same reference state 

(ΔΔG A1,A2->m1,m2) (Albeck et al., 2000). Namely, let A1 and A2 represent the alanine 

mutation of m1 and m2 respectively, then 

 ΔΔΔG= (ΔΔGA1,A2->A1,m2 + ΔΔG A1,A2-> m1,A2 ) - ΔΔG A1,A2->m1,m2 2.8 

 

If ΔΔΔG is positive, this indicates positive cooperativity as the contribution of 

both residues together is more stabilizing than the sum of their parts. Conversely 

if the ΔΔΔG is negative, this indicates negative cooperativity, whereas if the ΔΔΔG 

is close to zero, then such pairs can be considered to be effectively independent 

of each other hence their contributions to be additive in relation to each other. 
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Expanding  ΔΔGA1,A2->A1,m2 and ΔΔG A1,A2-> m1,A2 we get 

 ΔΔΔG= ([ΔΔG m1,m2 -> A1,m2 - ΔΔG m1,m2 -> A1,A2] 

 + [ΔΔG m1,m2 -> m1,A2 - ΔΔG m1,m2-> A1,A2])  - ΔΔG A1,A2->m1,m2 

2.9 

 ΔΔΔG= (ΔΔG m1,m2 -> A1,m2 + ΔΔG m1,m2 -> m1,A2) – ΔΔGm1,m2 -> A1,A2 2.10 

 

In this work, we only make single point-mutations during the alanine scan and 

calculate the energetics associated with such complex states as in equation 2.10: 

ΔΔG m1,m2 -> A1,m2 and ΔΔG m1,m2 -> m1,A2. The summation of these energies is then 

used as an estimate of the off-rate. If hotspots within a cluster are additive, then 

the summation of ΔΔG m1,m2 -> A1,m2 + ΔΔG m1,m2 -> m1,A2 would be a sufficient 

estimate of the cluster’s contribution to the off-rate. However if m1 and m2 are 

positively cooperative, then their contribution towards the off-rate using the 

summation ΔΔG m1,m2 -> A1,m2 + ΔΔG m1,m2 -> m1,A2 would be an overestimate of the 

true contribution ΔΔGm1,m2 -> A1,A2, hence the positive value for ΔΔΔG. Therefore in 

this case, to account for positive cooperativity we down-weight the summation 

of ΔΔG m1,m2 -> A1,m2 + ΔΔG m1,m2 -> m1,A2. Conversely if m1 and m2 were negatively 

cooperative, then a positive weighting would be more suitable to account for the 

underestimation. Further, higher order cooperativity effects involving three or 

more residues are known (Albeck et al., 2000) and it is likely that many binding 

modules exhibit such complexity, where it is not possible to decouple the 

contributions from each individual residues. However, if we assume that 

cooperativity effects are taking place, the weighting applied should also reflect 

the number of residues suspected to be cooperative. With this in mind, the 

cooperativity hotspot descriptors are designed as follows; given a set of 

predicted hotspots at the interface, each hotspot is categorized according to the 

hotregion cluster size it is found in. As Int_HS_Energy assumes hotspot 

contribution is additive, the sum of the hotspot energies is independent of the 

hotspot locations (equation 2.7). On the other hand, HSEner_PosCoop and 

HSEner_NegCoop are the sum of the hotspot energies downweighted / 

upweighted using simple linearly decreasing / increasing functions related to the 

size of the hotregion the given respective hotspot is in: 
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where wHRDec = (0.125, 0.25, 0.375, 0.5, 0.625, 0.75, 0.875, 1) and wHRInc = (1, 

0.875, 0.75, 0.625, 0.5, 0.375, 0.25, 0.125) for hotspot nHS in a hotregion of sizes 

(HR=1, 2, 3, 4, 5, 6, 7, 8+) respectively. Though more complex non-linear 

weightings could be investigated, such as ones fitted to the off-rate data itself, 

this would require sacrificing parts of the data for fitting. With this in mind, all 

hotspot descriptors designed in this work were independent of any off-rate data. 

Coarse-grained versions HS_PosCoop and HS_NegCoop, which weight hotspot 

counts instead of energies, are also implemented in the model. One should note 

that since the energetic contribution of a hotregion taken as a whole is 

considered to be additive and independent of other hotregions (Keskin et al., 

2005, Reichmann et al., 2005) we only aim to investigate and account for intra-

hotregion cooperativity using these descriptors as opposed to inter-hotregion 

cooperativity. 

2.3.7.4 Hotspot Coverage Related Descriptors 

 

Other hotspot descriptors relate to the spread of hotspots across the interface. 

The intuition here is that a heterogeneous distribution of hotspots across the 

interface might be more beneficial to complex stability than if hotspots where 

concentrated onto a specific region of the interface only. AVG_HS_PathLength is 

the average path length between all possible pairs of hotspots at the interface, 

normalized to the average path length of all possible pairs of a random set of 

residues at the interface. The path length between two residues is calculated as 

the least number of contacting residues linking them together. Two residues are 

considered to be in contact if any of their atoms are at a distance smaller than the 

sum of their van der Waals radii + 0.5 Angstroms. No_Clusters counts the number 

of unique hot regions, where it is likely that more hotregions may span the 
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interface given that separate hotregions are not in contact. MaxClusterSize counts 

the change in the number of hotspots in the largest hotregion. 

2.3.7.5 Definition of a Hotregion 

 

Some of the hotspot descriptors use hotregion information within them 

(No_Clusters, MaxClusterSize, HSEner_PosCoop/HS_PosCoop and 

HSEner_NegCoop/HS_NegCoop). A hotregion is created whenever two or more 

hotspot residues are in contact. Two hotspot residues are considered to be in 

contact if any of their atoms are at a distance smaller than the sum of their van 

der Waals radii + 0.5Å. A hotspot residue is added to an existing hotregion, if any 

of its atoms makes contact with any of the hotspot residues already in the 

hotregion. 

2.4 Performance Measures and Significance Tests 
 

A number of performance measures are employed in this work to assess the fine-

grained and coarse-grained ability of both descriptors and model predictions.  

For fine-grained assessment of how well a descriptor or model predictions 

describe experimental data, the Pearson’s product-moment correlation 

coefficient (PCC) is used. This is calculated as the covariance of the two variables 

divided by the product of their standard deviation. This parametric measure of 

correlation assesses the strength of linear dependence between two variables 

and is a widely accepted metric. A second method employed is the Mann-

Whitney U-test. This checks whether a set of two independent observations have 

smaller or larger values than the other. The test is used to assess the coarse-

grain predictive power of our descriptors or predictors in discriminating 

between say stabilizing mutants from destabilizing mutations. Several other 

classification related measures are used for this same purpose also, namely: 

True-Positive-Rate (TPR) / Recall:   

TP

TP FN
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False-Positive-Rate (FPR):  

FP

FP TN
 

Specificity:  

TN

TN FP
 

Precision:  

TP

TP FP
 

Accuracy:  

TP +TN

TP +FP+ FN +TN
 

Matthew’s Correlation Coefficient (MCC): 

( ) ( ) ( ) ( )

TP TN FP FN

TP FP TP FN TN FP TN FN

  

      
 

F1-Score:  

2 precision recall

precision recall

 


 

where TP=True-Positive,  FP=False-Positive, TN=True-Negative, FN=False-

Negative.  

For comparison of two PCCs, say for the comparison of two prediction 

algorithms, a significance of the difference between the two correlations is 

calculated using the Fisher r-to-z transformation. p-values less than 0.05 are 

considered to be significant. 
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Chapter 3 

3 A Model for Protein-Protein 

Binding Affinity Prediction 
 

 

3.1 Introduction  
 

In this chapter, the characterization and prediction of protein-protein affinities is 

studied. The computational prediction of binding affinities requires not only an 

understanding of the driving forces behind complex formation and stability, but 

also an accurate computational representation of such forces. Subsequently, a 

model is then employed to optimally combine the influence of each of these 

driving forces into one coherent prediction of affinity. Throughout this process, a 

benchmark set of protein-protein X-ray structures and their experimentally 

determined binding affinities, is used to validate the accuracy of the model 

predictions. 

As detailed in section 1.5.7, up until this work, several attempts at the prediction 

of binding affinities were made. The limitations of these models are highlighted 
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in sections 1.5.7.1, 1.5.7.2 and 1.5.7.3 form the motivations behind the binding 

affinity prediction model devised in this work. First, the dataset of protein-

protein structures and their experimental affinities used to benchmark the 

affinity model is described in section 3.3.1. A large set of molecular descriptors 

calculated on these structures is detailed section 3.3.2. This descriptor set 

significantly expands on what was used in previously published affinity models. 

Namely, besides a number of physical descriptors, it adds a broad range of 

statistical potentials, new solvation models and better entropic terms. The 

molecular descriptors are then fed into a number of machine learning models 

(described in 3.3.3) that are combined to make the final prediction. This is 

termed as the consensus model. The setup used is that of four base learning 

models: random forest (RF) regression, M5’ regression, multivariate-adaptive-

regression-splines (MARS) and radial-basis-function (RBF) interpolation, with 

the mean of their prediction constituting the final affinity prediction model. The 

motivations behind these learners are mostly based on the limitations 

surrounding linear regression in modelling, such as accounting for non-

linearities and dealing with a large set of noisy descriptors. 

The consensus model approach is successful in increasing upon the accuracy of 

its best base learners and more importantly, outperforms all other published 

methods tested. Two aspects that stood out from this work include firstly, the 

limitations in our ability to predict the affinities for complexes which undergo 

significant conformational changes and secondly, the reduction in accuracy 

observed when the errors in experimental binding affinities are not controlled 

for with a validated set of complexes. Finally, in section 3.5, the binding affinity 

methods developed post-publication of this work are discussed and suggestions 

for future work outlined. 

This work was done in collaboration with my colleague Iain Moal. The selection 

and calculation of the molecular descriptor set was performed by Iain Moal. The 

machine learning algorithm selection and design was performed by myself. The 

analysis of the results was performed jointly.  
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3.2 Approach and Motivations 
 

The limitations mentioned in section 1.5.7.1– bias towards  complexes for which 

their component parts undergo little to no conformational change, section 

1.5.7.2– static-structures and section 1.5.7.3– models not able to account for 

diversity, form the motivations behind the BAP model developed in this work. 

The following methods section 3.3 detailing the dataset, descriptors and learning 

models, shows how the limitations mentioned above are addressed. In section 

3.3.1 the dataset of protein-protein complexes is described. This consists of a 

diverse set of protein-protein interactions with varying conformational changes. 

In section 3.3.2 the affinity descriptors used in this work are presented. These 

include energetic descriptors calculated on conformational ensembles of each 

complex and their unbound components. Finally, in section 3.3.3, the machine 

learning models used for training and prediction are detailed. 

3.3 Methods 
 

In section 3.3.1 the dataset of protein-protein complexes is described. This 

consists of a diverse set of protein-protein interactions with varying 

conformational changes. In section 3.3.2 the affinity descriptors used in this 

work are presented. These include energetic descriptors calculated on 

conformational ensembles of each complex and their unbound components. 

Finally, in section 3.3.3, the machine learning models used for training and 

prediction are detailed.  

3.3.1 Binding Affinity Benchmark Dataset 

 

The structures and experimental affinities for the recently published binding 

affinity benchmark (Kastritis et al., 2011)were used as the main source for 

training and testing the BAP model designed in this work. The dataset is 

described more thoroughly in section 2.1.1. In summary, the dataset consists of a 

total of 144 complex structures for which the crystal structures of each complex, 

along with each of its unbound components at high resolution (< 3.25Å), are 
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available. A key aspect of this dataset, which improves upon previous datasets 

used in BAP (see section 1.5.7), is its diversity: 

 Several receptor/ligand protein-binding partners undergo significant 

conformational change upon complex formation, of which some exhibit 

disorder to order transitions.  

 Complexes, within different protein families, cover a wide range of 

functions. 

 Wide range of affinities.  

From the total set of 144 complexes, 137 were used. The complexes with protein 

database codes, 1UUG, 1IQD and 1NSN, were removed, as affinities available 

were only denoted by upper limits; codes, 1DE4, 1M10, 1NCA and 1NB5 were 

removed, as certain features were difficult to calculate for them 

A high-quality validated subset of the original affinity dataset is analysed 

separately. This validated set is used to assess to which extent experimental 

error in affinities affects the model predictions. One should note that in this 

validated set, the diversity in affinity and complex families is still present. More 

details on this validated set are presented in methods section 2.1.1.1. 

3.3.2 You are what you eat.. Affinity Descriptors 
 

In collaboration with Iain Moal, a large set of 200 molecular descriptors were 

calculated on the binding affinity benchmark and fed into the machine learning 

models described in section 3.3.3. A detailed list of the descriptors is provided in 

Table 2.1 of the methods section 2.2. The descriptor set covers a wide-range of 

known determinants of complex formation and affinity. The set contains 

different contributors to the free energy function described in section 1.5, and 

includes descriptors related to the potential energy, solvation energy and 

entropic contributions to binding. In addition to the biophysical descriptors, a 

number of statistical potentials are added, which vary from pair to multi-body 

potentials and contain both coarse-grain and atomistic potentials. Though some 

specific packages are used for a number of descriptors, most  were calculated 
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using the ProtorP server (Reynolds et al., 2009), CHARMM forcefield (Brooks et 

al., 2009), PyRosetta (Chaudhury et al., 2010) and the Potentials ‘R’ Us server 

(Feng et al., 2010). For the assumption that binding is rigid-body, and structures 

are static, descriptors were calculated as:  

 
, , L,b( )RL b R bE E E E    3.1 

The motivations behind the descriptors calculated here are several fold. Firstly, 

most of the descriptors are directly related to known physical contributors of 

affinity, including terms for Hydrogen Bonding, Van der Waals and Electrostatics. 

Emphasis was given to entropy related terms, as this effect is harder to 

characterise. Therefore entropic terms include rotational, translation and side-

chain entropy terms, vibrational and disorder loop entropy terms along with 

terms for the hydrophobic effect. Solvation is another important aspect modelled 

at different levels of sophistication. Here, both simple terms related to buried 

surface area and more sophisticated continuum electrostatics models are 

included. Different to other BAP models, in this work we do not limit ourselves to 

physic-based descriptors only. A number of statistical potentials and 

miscellaneous descriptors are also added to the descriptor set. The advantage of 

statistical potentials is that they implicitly capture a number of effects that are 

otherwise only modelled individually using physics-based terms. As pH can have 

a significant effect on binding affinity, even over a narrow range, some 

descriptors were chosen for their ability to account for variable protonation 

states. PROPKA was used to determine the pH of the titratable amino acids (Bas 

et al., 2008). The most probable assignment of protonation states, at the 

experimental pH, was determined using PDB2PQR (Dolinsky et al., 2004). These 

assignments were used in all of the descriptors calculated using the CHARM22 

forcefield, which are prefixed with ACE22.  

The two major introductions in the BAP model of this work relate to structural 

ensembles and unbound structures. These are described in the following 

sections of 3.3.2.1 and 3.3.2.2 respectively. 
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3.3.2.1 Unbound-Bound Descriptors 

 

To account for potential conformational changes, descriptors were also 

calculated on the unbound receptor and ligand. Descriptor calculations ignored 

residues which were not in both the bound and unbound structures. In this way, 

any energetic differences in the two conformational states, is irrespective of 

additional residues in the bound. All descriptors calculated on the unbound 

structures have a suffix of ‘_UB’ and are calculated as: 

 
, ,u L, L,u( ) ( )UB R b R bE E E E E     3.2 

 

3.3.2.2 Descriptor Ensembles 

 

Proteins both in their unbound and bound forms do not exist as static structures. 

Rather they exist in a number of conformations of varying energetic accessibility 

(See section 1.5.2). As seen in equation in 1.17, RLU and RLW  are Boltzmann-

average potentials for the potential energy and solvation energy respectively. 

Also, equation 1.13 shows that only the low energy conformations contribute 

significantly to the potential energy. Therefore sampling only the low energy 

conformations provides a sufficient approximation. To generate such 

conformational ensembles, the use of an approximate method CONCOORD (de 

Groot et al., 1997) was preferred to complex molecular dynamics simulations, 

mostly due to computational efficiency. Unlike MD trajectories, the 

conformations generated by CONCOORD have no dependencies on previous 

conformations; consequently, the conformational space is sampled more 

broadly. Comparisons of CONCOORD simulations against MD simulations on 

common structures show great overlap in both the accessible motions and their 

magnitude (de Groot et al., 1997). 

For each example in the benchmark, an ensemble of 100 structures was 

generated using CONCOORD with dynamic tolerance setting. This, for each 

ligand, receptor and complex. Descriptors are then calculated on these 
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ensembles and given that CONCOORD generates structures of equal plausibility, 

a mean value is taken over all ensembles for each descriptor. To distinguish them 

from descriptors calculated on a single static structure, the ensemble 

calculations have a ‘_ENS’ suffix and are calculated as: 

 
, , L,b( )ENS RL b R bE E E E    3.3 

For those descriptor calculations where the ensembles were calculated on the 

unbound ligand and receptor, a suffix of ‘_EBU’ was used, and calculated as: 

 
, ,u L, L,u( ) ( )EBU R b R bE E E E E     3.4 

 

3.3.3 Machine Learning Methods 

 

As highlighted in section 1.5.7.3 models for BAP have previously been limited to 

a sum of terms with the weights of each optimised using linear regression. Here, 

a selection of four machine learning methods was combined to form a consensus 

prediction, with the consensus prediction being the mean prediction of the four 

base models. It should be noted that more complex forms of ensemble learning 

are indeed possible (Wolpert, 1992). For example one may have a meta-learner 

learn weights for each base-learner according to the input example at hand; 

however attractive, such methods would require a further validation set which is 

not available in this case. The four base models are the Random Forest (RF), the 

M5’ Regression Tree, the Multivariate-Adaptive-Regression-Splines (MARS) and 

the Radial Basis Function Interpolation (RBF) each of which are describe in the 

methods section 0. The aim was not to use the learning models in a black-box 

fashion but rather the selection of models was guided by the following 

considerations: 

 Addressing limitations of linear regression. LR has been routinely applied 

to protein-protein affinity prediction methods. The ML algorithms 

selected here aim to address some of the limitations LR would reach in 

our dataset and feature set. These include; inability to account for non-
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linear relationships; inability to partition the input space and apply sub-

models; degradation in performance in high-dimensions. 

 Differing conceptual attributes. The prediction of each of the four ML 

models is combined to form a final prediction which is the mean of the 

four models. This is similar to a stacked learning methodology in its most 

basic form. Ideally for effective stacking, the base learning models should 

be accurate but show weak correlation between their predictions 

(Wolpert, 1992). The combination of all four base models would then 

work synergistically rather than redundantly. To try and achieve this, the 

learners were chosen on the basis of having different conceptual 

attributes in how they form their model. For instance, the RF is derived 

from the consensus of tree models trained on variable subsets of data and 

features. The M5’ method on the other hand is built using one complex 

tree model with the added flexibility of applying further regression sub-

models within the tree itself. Using its hinge functions, the MARS model 

works by allowing certain descriptors to contribute within certain ranges 

and not others. Therefore, it can exploit the ‘predictive’ parts of a 

descriptor and avoid the ‘noisy’ parts. Moreover, all of the methods above 

base their final prediction on a selection of features, rather than the whole 

available set. Therefore, depending on the final features selected by the 

model, this is likely to add some variability in their predictions. The 

variability in the features making it to each of the final models is 

confirmed in the results section 3.4.5. Finally, the RBF method works in a 

completely opposite fashion to the other three models. Here, the 

emphasis is placed on particular data-points that are furthest from the 

current data-point. Therefore, the RBF uses all descriptors but not all 

examples in its final model.  

 Overfitting avoidance. Given the large set of descriptors available to the 

models and the limited size of the training set, overfitting can be an issue. 

To avoid this, the methods chosen either implicitly or explicitly avoid 

overfitting.  RFs do not overfit as more trees are added. Rather, the test 

error converges to a limiting value (Breiman, 2001a). They are able to 
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achieve low bias predictions through trees built from different subsets of 

the data and descriptors, and low variance through averaging the output 

of all trees. The M5’ and MARS learners have inbuilt backward elimination 

routines to reduce model complexity, by the removal of tree branches and 

basis functions respectively. Consequently, both of these operations 

reduce the number of features in the final model. In the RBF learner, the 

feature weights are not optimised. With this in mind, an outer-cross 

validation loop is still performed for benchmarking the predictions of 

each model. 

 Parameter optimization. To avoid having to sacrifice data for parameter 

optimization, all methods chosen are known to work well under their 

default parameters settings. No tweaking of learning parameters was 

therefore performed. 

 Interpretability and visibility. Understanding how the features are used in 

the final model was a key consideration for selecting the learners. Besides 

forming an accurate predictor of binding affinity, it is also important to 

ascertain the physical plausibility of the final models, by knowing which 

features are essential to the prediction and how they are employed by the 

model itself.  With the RF model, both global feature importance and case-

wise feature importance measures are available. The case-wise feature 

importance measure is particularly desirable. For example, one hopes 

that having descriptors which calculate energetics on the unbound 

structures of the complex would help the affinity prediction of complexes 

which undergo significant conformational changes. Invoking the case-

wise feature importance measure one could verify this specifically by 

checking whether the features on unbound structures are shown as being 

important for those cases which undergo significant conformational 

change. The M5’ regression trees used, lack an inbuilt feature importance 

measure; however, the trees can be easily visualized and feature 

importance was still evaluated. The nature of the MARS model basis 

functions, not only indicates which features form part of the final model, 

but also the functions applied to each of these features. Effectively the 
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function shows us the parts where the given feature has little influence, 

and where it positively contributes to the prediction. 

3.3.3.1 Random Forest (RF) 

 

A Matlab implementation of the RF algorithm, as described by (Breiman, 2001a), 

was used. The workings of the RF algorithm are detailed in section 2.3.1. In this 

implementation, the number of decision trees was set to 750 and, when building 

the decision trees, the mtry parameter was limited to 20 at each node; no 

maximum was set on the three depths and the final prediction is returned as the 

mean of all trees.  

3.3.3.2 M5’ Regression Tree (M5’) 

 

The M5’ model tree is similar to standard regression trees with the additional 

possibility of having a linear regression model at the leaves (Quinlan, 1992). The 

workings of the M5’ algorithm are detailed in section 2.3.2. Rather than applying 

one M5′ to the full feature set, an ensemble of M5′ regression trees was used. In 

total 16 M5’ regression trees were divided into four tree sets of four. For each 

tree set, all features are divided randomly into four feature subsets. Each 

different random feature subset is then used to train each of the four trees within 

this tree set. Therefore, for a given tree set, all features are available for use, but 

for each tree within the tree-set, a random subset of features is available. For 

prediction, the mean output of all of the 16 trees is used.  

3.3.3.3 Multivariate-Adaptive-Regression-Splines (MARS) 

 

MARS is a non-parametric regression method which uses a set of hinge functions 

to model non-linear relationships between the input variables and the target 

output (Friedman, 1991). Default values were used without tuning, as follows: 

the maximum limit on the number of basis functions grown in the forward phase 

is 21, there was no limit on the number of basis functions used in the final model 

after pruning. Model complexity is also limited by setting the knot-cost to the 

recommended value of two. Piece-wise cubic modelling was used to model hinge 

regions for smoother transitions. To keep the model as interpretable as possible, 
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no self-interactions between input variables and no interactions between 

variables in the basis functions were allowed. The ARESLab toolbox 

implementation was used. 

 

3.3.3.4 Radial-Basis-Function Interpolation (RBF) 

 

A Matlab implementation of the RBF method, as section 2.3.4 was used. All 

descriptors values were normalized in the range [0, 1] before training. The key 

parameter in the RBF is the choice of the basis function. For this, the default 

multiquadric basis function was used. A unique characteristic for the RBF is that 

the model finds weights for examples as opposed to features. Therefore in this 

way, uninformative examples as opposed to uninformative features are weighted 

out of the model. 

3.3.4 Model Evaluation 

 

To assess our ability to model and predict binding affinities, leave-one-out cross-

validation (LOO-CV) was employed and the predicted affinities were compared 

to the experimental affinities using Pearson’s product-moment correlation 

coefficient. To establish significant differences in correlations achieved by 

different models, a Fisher r to z transformation of the correlation coefficients 

was used.  

 

3.4 Results 

 

3.4.1 Model Performance on the Binding Affinity Benchmark – Validated Set 

 

Initially the four base learners (MARS, M5’, RF and RBF) were trained and tested 

using leave-one-out cross-validation on the validated set. The performance of 

which is shown in Figure 3.1 alongside that of the Consensus model (Cons.), 

which combines the prediction of the four base learners by taking the mean of 

their predictions.  
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Figure 3.1: Model performance for the 57 complexes in the validated set.  

Correlation between the experimental and predicted binding affinities for the 

learners and their consensus, using leave-one-out cross-validation. The 

potentials of Liu et al. (2004) (DFIRE) and Su et al. (2009) (PMF) are also shown 

for comparison. 

 

As a benchmark comparison, the performance of DFIRE (Su et al., 2009) and PMF 

(Liu et al., 2004) are also shown. To assess the effect of conformational changes 

on the prediction accuracy, performance is separately tested for cases which are 

rigid (Rig. with Calpha RMSD < 1.5 Å) and flexible (Flex. with Calpha RMSD > 1.5 Å). 

The consensus model achieves a correlation of RVAL=0.77 with experimental 

affinity, which is significantly higher than that achieved by the potentials PMF 

(RVAL=0.51 p=0.012) and DFIRE (RVAL=0.44 p=0.003).  

 

3.4.2 Model Performance on Binding Affinity Benchmark – Entire Dataset 

 

The learners presented in Figure 3.1 were also evaluated on the remaining 

complexes that are not part of the validated set. To observe the performance 

over the complete dataset, the learners were trained on all 137 complexes, and 

the leave-one-out cross validated predictions of the non-validated complexes 

amalgamated with those of the validated set in Section 3.4.1. The correlations of 

the learners and experimental affinities, in a similar fashion to Figure 3.1, are 

presented in Figure 3.2. 
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Figure 3.2: Model performance for the 137 complexes in the whole 

benchmark. 

Correlation between the experimental and predicted binding affinities 

for the learners and their consensus. The potentials of Liu et al. (2004) 

(DFIRE) and Su et al. (2009) (PMF) are also shown for comparison. 

 

Though, in comparison to the results on the validated set, the relative 

performance of the four base leaners changed, the consensus model still 

performs better than the most accurate base learner. In addition, the consensus 

model achieves significantly higher correlations (RALL=0.7) to that of DFIRE 

(RALL=0.52, p=0.02) and PMF (RALL=0.62,p=0.03). 

Comparison of Figure 3.1 and Figure 3.2 indicates a clear drop in predictive 

power across all methods as experimental affinities that are not validated are 

used. One should note that, this drop is despite the fact that the validated set still 

has a proportion of non-rigid cases and interaction types similar to that of the 

entire set (see section 2.1.1). These results provide strong evidence to the 

importance of having affinity data that is corroborated using different 

experimental techniques. To remove any possibility that this drop in accuracy is 

model dependant, a number of methods are tested on the 37 complexes for 

which predictions are available for all methods, and presented in Figure 3.3.  
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Figure 3.3: Performance of the consensus model on the 37 complexes in the 

intersection between the dataset of (Kastritis and Bonvin, 2010) and the 

benchmark (All), and the 14 in the intersection with the validated set 

(Validated).  

Leave-one-out cross-validation is used for the interactions which intersect the 

validated set. Correlations for a number of other energy functions are also shown 

(see Section 3.4). 

 

Comparing the performance of each method on all 37 complexes, and the 14 of 

which are validated, a consistent trend is observed were methods tend to 

perform better on the validated set. Once again, here it is shown how the 

consensus model is still the best performer, even on these specific test subsets. 
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Figure 3.4: Scatter plot for predicted and experimental affinities.  

Flexible (green circles) and rigid (red squares) proteins are shown. Leave-one-

out cross-validated values for the validated set are highlighted in solid. 

 

Figure 3.4 shows the scatter plot of predicted and experimental affinities were 

the validated complexes are marked in solid. There are two notable features, the 

first being the lower spread of points for the validated set. The second, that the 

dense upper left corner indicates that for those cases, the affinity is 

overestimated. Given that most of these data-points are flexible complexes, the 

entropy loss due to conformational change is not characterised well enough to 

balance out the enthalpic contribution towards binding affinity. 

3.4.3 Consensus Model vs. a Single Learning Algorithm. 

 

The consensus model in all three data types (All validated RVAL=0.77, rigid RVAL-

RIG=0.9 and flexible RVAL-FLEX=0.59) achieves a correlation, which is higher or as 

good as the best base learner in the set. For example, M5’ achieves the highest 

correlation of RVAL-RIG=0.59 on the flexible cases, but one of the poorest in 

predicting the rigid cases. In the latter case, the RBF achieves the highest 

correlation (RVAL-RIG=0.87) of all base learners. The consensus model is able to 

take the best of both worlds by achieving the highest correlations in both of 

these situations. This confirms that the four base models are working 
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synergistically together and taking the mean of their predictions is a valid 

approach. The correlations between the predictions of each of the four base 

learners, is also evaluated. As expected, the tree-based learners (RF and M5’) are 

highly correlated with R=0.95. The RBF method shows a correlation of R=0.87 

and R=0.86 with the RF and M5’ learners. The MARS model showed the least 

correlation with the other methods (R=0.65, R=0.69, R=0.68, respectively). 

Though this may suggest that the MARS is picking out features that the other 

learners are not, one must also keep in mind that the MARS model was the 

weakest learner of all.  

3.4.4 Descriptors Derived from Unbound Structures, Improves Performance for 

Flexible Cases. 

 

A key element of the BAP method developed in this work, as described in section 

3.3.2, is the introduction of ensembles and unbound structures. To determine the 

gain in having energetics calculated on the unbound and non-static structures as 

part of the model, the consensus model is trained on specific feature subsets. 

These are: the UnBound (UB) subset; features calculated on the unbound 

structures, the ENSemble subset (ENS); features calculated using the CONCOORD 

ensembles of the bound components, the Ensemble Bound/Unbound EBU: 

features calculated using the ensembles of bound and unbound structures and 

BASIC in which neither ensembles nor unbound structures are considered. The 

LOO-CV correlation achieved by training the consensus model on just the BASIC 

descriptors is used as a reference point to assess  gain or loss in predictive power 

by adding the UB, ENS, EBU features to this BASIC subset. 

 

 

 

 

 

 

 

 

 

 

 



Chapter 3. A Model for Protein-Protein Binding Affinity Prediction 

89 
 

Table 3.1: Performance of the consensus model trained on different feature 

subsets.  

The UB subset: features calculated on the unbound structures, ENS: features 

calculated using the CONCOORD ensembles of the bound components, EBU: 

features calculated using the ensembles of the bound and unbound structures 

and BASIC in which neither ensembles nor unbound structures are considered. 

The correlation achieved by training the consensus model on just the BASIC 

descriptors is used as a reference point to assess what is gained by adding the 

UB, ENS, EBU features to this BASIC subset. All correlations shown are those 

between the LOO-CV predictions with the experimental affinities. 

Feature Subset All Rigid Flexible 

BASIC 0.67 0.91 0.44 

BASIC+ENS 0.69 0.85 0.45 

BASIC+UB 0.74 0.91 0.47 

BASIC+EBU 0.73 0.90 0.54 

ALL 0.77 0.90 0.59 

 

The results are summarized in Table 3.1. First, it is noted that the addition of the 

unbound descriptors, both on the unbound static structures (UB) and on the 

unbound ensemble structures (EBU), increases the correlations over the BASIC 

model. BASIC RVAL=0.67, whereas BASIC+UB and BASIC+EBU models achieve 

correlations of RVAL=0.74 and RVAL=0.73 respectively. This increase in the overall 

correlation results from the additional accuracy in predicting the flexible cases 

(from RVAL-FLEX=0.44 to RVAL-FLEX=0.47 and RVAL-FLEX=0.54 for BASIC, BASIC+UB, 

BASIC+EBU respectively). In fact, the prediction of rigid cases remained constant 

at around RVAL-RIG=0.9. One should note however that the increase in correlation 

with the addition of the unbound descriptors is mostly evident when ensembles 

were calculated on the unbound structures. Conversely, the addition of bound 

ensembles (with no consideration of the unbound structures) to the BASIC set 

has, as expected, no effect on the prediction of flexible cases. An interesting 

result is that addition of ensembles actually degrades the signal for rigid cases 

(BASIC RVAL-RIG=0.91 and BASIC+ENS RVAL-RIG=0.85). This may be explained by 

some conformational ensembles generated, not being representative of those 

accessible by the rigid complex in question. It may be the case that, for these 

rigid structures, more flexibility than is energetically accessible is being 
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generated by CONCOORD. This translates itself as noise added to the true signal 

to be captured. 

From these results, it can be concluded that the inclusion of descriptors derived 

from the unbound structures improves the performance for the flexible 

complexes, without compromising the accuracy for the rigid cases. This 

improvement is enhanced when used in combination with structural ensembles, 

despite the ensembles not enhancing the consensus model when information 

derived from the unbound structures is omitted. These results should still be 

treated with caution, as the increases/decreases in correlation are not 

statistically significant with p<0.05 as the number of data-points is restricted to 

the 57 complexes in the validated set. Therefore, when the data allows, the same 

analysis must be performed again on a larger dataset to confirm the claims 

above. With this in mind, one complex, which for example shows clear 

improvement in the prediction of its affinity upon the inclusion of unbound 

descriptors, is the interaction between MK2 and p36 MAPK (PDB code, 2OZA). 

MK2 undergoes a significant disorder-order transition upon binding, and the 

strongest within the dataset. In this case, when training the consensus model on 

the BASIC set of features (i.e. not including unbound-bound transitions), the 

predicted affinity (17.4kcal mol-1) overestimates the experimental affinity of 

(11.7kcal mol-1). Once descriptors on the unbound were calculated, the learners 

are able to make use of available descriptors that calculate the entropy changes 

due to disorder-order transitions, and the predicted affinity (10.9kcal mol-1) 

achieved was a closer approximation to the experimental affinity.  

3.4.5 Learning from the Learners – Assessment of the Physical Plausibility of the 

Learning Models and the Key Determinants of Affinity. 

 

One of the driving forces behind the selection of the base learners for the 

consensus model is the interpretability of the models. In this section, the learnt 

models from each of the base learners, is probed further for validation of their 

selected features. 

 



Chapter 3. A Model for Protein-Protein Binding Affinity Prediction 

91 
 

RF base learner: Both the global features importance and the case-wise feature 

importance measures are invoked for the RF learner which was trained on the 

full set of descriptors and validated set of affinities.  

 

Table 3.2: Top 10 most important descriptors using for the RF base learner 

trained on the validated set.  

Feature importance in this case is the mean decrease in normalised mean square 

error generated from the RF learner.  

Rank Descriptor Descriptor Importance 

1 ACE19_HYDR 0.100 

2 ROS_FA_ATR 0.094 

3 ACE22_VDW 0.094 

4 ROS_HBOND_ENS 0.078 

5 DDFIRE_ENS 0.076 

6 S_VIB 0.063 

7 MJ2H_PP 0.049 

8 ROS_FA_ATR_ENS 0.047 

9 MJ1_PP 0.046 

10 H_BOND_ENS 0.044 

 

The top 10 most important features making up the RF model include a 

combination of thermodynamic terms, statistical potentials and miscellaneous 

descriptors. The most prominent being hydrophobic burial (ACE12_HYDR), 

London dispersion forces (ROS_FA_ATR), Van der Waals (ACE22_VDW) and 

hydrogen bonding (ROS_HBOND_ENS). Also ranked highly are the change in 

vibrational entropy (S_VIB) and a number of statistical potentials (DDFIRE_ENS, 

MJ2H_PP and MJ1_PP). This confirms the physical plausibility of the model as it 

includes terms related to the potential and solvation energy and also those 

related to entropic contributions (See section 1.5). 

 From the top 10 descriptors, four terms are calculated on structural ensembles, 

but no descriptors using the unbound structures are listed. In section 3.4.4 it was 

shown that the introduction of UB and EBU descriptors improves the prediction 

of the flexible cases, the case-wise feature importance measure of the RF was 

invoked in order to understand whether the UB/ EBU descriptors were at least 

being invoked for the flexible cases. Here, a feature calculated using the unbound 

structure appeared as one of these top 5 features for 16 of the 29 flexible 
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complexes (55%). This compares to only 3 of the 28 rigid complexes (11%); this 

indicates, that to some extent, the learnt model is making correct use of the UB 

and EBU descriptors for the complexes that should gain from it. 

 

M5’ Base Learner: The full descriptor set was assigned randomly to the four sub-

trees within a tree set. A descriptor can therefore be in the final model of only 

one of the four sub-trees in a tree-set. This means that at most, a given descriptor 

can show up four times in the whole set of 16 M5’ trees. Each of the M5’ sub-tree 

models was analysed, its features extracted and their occurrence summed in 

Table 3.3. 

 

Table 3.3: Top 10 most important descriptors using for the M5’ base 

learner trained on the validated set.  

Descriptor importance refers to the number of times a descriptor is part of a sub-

tree. The maximum of which is four. 

Rank Descriptor Descriptor  Importance 

1 NSC 4 

2 OPUS PSP ENS 4 

3 ROS CG BETA 4 

4 ROS FA ATR 4 

5 BIOSIMZ KON 3 

6 DDFIRE ENS 3 

7 GEOMETRIC EBU 3 

8 H BOND 3 

9 INTERNAL UB 3 

10 NUM HB 3 

11 PLANARITY 3 

12 ROS FA REP ENS 3 

13 S R 3 

14 SKJG PP 3 

15 STC G ENS 3 

 

It is interesting to note that even though both RF and M5’ are tree based 

algorithms, only a few descriptors such as DDFIRE_ENS, ROS_FA_ATR and 

H_BOND are common between them in the set of most important features. 

Similar to the RF, the most important descriptors in the case of the M5’ trees are 

a combination of thermodynamic terms and statistical potentials. Even though a 
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number of entropic terms are available to the learning models, besides the 

change in vibrational entropy (S_VIB) and change in rotational entropy (S_R), 

entropic terms are not as common in the top features of the RF and M5’ models.  

 

MARS base learner: The MARS model trained on the validated set terminates with 

14 basis functions using a total of 10 descriptors. The descriptors are ranked 

according to their global importance to the model and presented in Table 3.4. 

 

Table 3.4: Top 10 most important descriptors using for the MARS base 

learner trained on the validated set.  

Descriptor importance is ranked according to the standard deviation (STD). As 

stated by Friedman (1991), the STD gives an indication to the relative 

importance of the descriptors to the overall model, and is similar to a 

standardized regression coefficient in a linear model. Shown also are the 

generalized-cross-validation (GCV) scores. This represents the decrease in GCV 

upon removal of the descriptor. Lastly, #basis indicates the number of basis 

function the descriptor is part of. 

 

 

 

 

 

 

 

 

Similar to the M5’ and RF models, the London dispersion term ROS_FA_ATR is 

the most prominent descriptor followed by the vibrational entropy term S_VIB. 

Other descriptors include solvation terms, hydrogen bonding and statistical 

potentials. Most significant here is that the MARS model makes use of a number 

of descriptors on the unbound structures (ROS_HBOND_UB, OPUS_CA_UB, 

ROS_FA_PP_EBU, IRMSD). A key aspect of the MARS model is that it is able to 

assign a variable weight for each descriptor across its range. Effectively, it can 

choose to ignore the ‘noisy’ parts of a region of a descriptor by assigning a zero 

weight within that region. It then provides a weighting to more informative 

Rank Descriptor STD / GCV/  #basis 

1 ROS FA ATR 0.618 / 0.690 / 2 
2 S_VIB 0.456 / 0.230 / 1 
3 ROS HBOND UB 0.365 / 0.071 / 2 
4 OPUS CA UB 0.364 / 0.065 / 2 
5 IRMSD 0.259 / 0.097 / 1 
6 OPUS PSP 0.191 / 0.048 / 1 
7 ROS HBOND 0.176 / 0.069 / 1 

8 SKOA PP 0.174 / 0.052 / 2 
9 ACE19 SOLV 0.172 / 0.062 / 1 
10 ROS FA PP EBU 0.169 / 0.060 / 1 
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regions of the descriptor. Such weights are presented and explained in Figure 

3.5.  

 

Figure 3.5: Descriptor contribution profiles for the descriptors selected by 

MARS.  

Normalised descriptor values are on the (x-axis) and normalised affiniies are on 

the (y-axis). The normalisation is such that 0 is the lowest affinity (ΔG = -5.66kcal 

mol-1) in the dataset and postively higher values indicate an increase in affinity 

(e.g at 0.53 the ΔG=-12.28kcal mol-1 and at 1 the ΔG=-18.04 kcal mol-1) The ‘+’ 

plots show the experimental normalised affinities. The line graphs show the 

contribution towards affinity from the basis functions of the given descriptor.  

 

For most of the data, ROS_FA_ATR’s contribution to the binding affinity linearly 

increases with more favourable dispersion forces (the normalisation in 

ROS_FA_ATR is such that 0 is highly negative in energy). However, a hinge 

function  models the outlier 2OZA to have a lower affinity then one would expect 

with its highly favourable dispersion forces  (owing to its large interface). The 

role of the hinge function is to compensate for the entropy reduction resulting 

from the disorder to order transitions occurring in a loop and at the C-terminal 

region of 2OZA. The second most significant descriptor is the vibrational entropy 

term S_VIB. At low values, its contribution is approximately zero, but becomes 

linear for higher values. This is consistent with the interpretation that, because 

this descriptor is approximate (Carrington and Mancera, 2004), the learner is 

presumably choosing to use it when its contribution to the binding energy is 

sufficient to outweigh the noise it introduces. This for example cannot be 
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performed with linear regression and such a descriptor might be completely 

down weighted and not form any significant contribution to the final model.  

 

RBF base learner: The RBF model does not learn weights on descriptors, rather it 

down weights and up weights examples according to how much they help the 

prediction of other examples. The prediction function of the RBF model takes the 

form of  

 

1

( ) (|| x x ||)
N

i i

i

F x a 


    
3.5 

Where u is the mean of the training affinities. The affinity prediction of a complex 

x, is lower than the mean affinity if ai is negative, and higher if ai is positive. The 

magnitude of this deviation from the mean depends on how many complexes are 

furthest from it in feature space. Conversely, the closer it is to complexes in the 

training set, the closer is its predicted affinity to the mean. The weights ai learnt 

by the RBF function trained on the validated set are presented in Figure 3.6. High 

affinity complexes tend to have a negative weight ai. This means that if a complex 

affinity is to be predicted, the further in feature space it is from high affinity 

complexes, the lower from the mean its affinity would be. Effectively this 

translates to a low affinity prediction. In this way, the model is a plausible and 

the coefficients learnt are in line with what one would expect to see. One may 

also appreciate that certain complexes have an ai very close to zero and have no 

significant contribution in the final RBF model. 
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Figure 3.6: The distribution of regression coefficients learnt by the RBF 

model versus binding affinity.  

Negative coefficients weaken the predicted affinity of complexes far away in 

feature space. Positive coefficients strengthen the predicted affinity of complexes 

far away in feature space. 

 

3.5 Discussion 
 

This work on binding affinity prediction is a first in many ways. Previous to the 

described consensus model, the datasets used to train and benchmark models 

did not include a diverse enough set of complex families with a wide range of 

conformational changes. There were no such limitations to this study. Namely; 

both the unbound and bound structures were considered; energetics were also 

calculated on a set of sampled conformational states; and complexes from a 

variety of complex families, undergoing a broad range of conformational changes 

included. The use of non-linear machine learning methods for the prediction of 

affinities was also put forward as an alternative to linear regression. The 

consensus model, which is the mean prediction of four machine learning 

algorithms, achieves a correlation with experimental binding affinities of R=0.77 

on a validated set of experimental affinities. The consensus model outperforms 

other previously published methods both on this dataset and when tested on 

different subsets of the dataset. 

Two major influences on the prediction of affinities. The results from this work 

uncovered two major concerns. Firstly, there is still a large discrepancy in our 
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ability to accurately predict affinities for flexible cases (those undergoing 

significant conformational change) as opposed to rigid cases. To address this, 

several descriptors related to entropy were included, along with calculations of 

descriptors on the unbound complexes. Such additions specifically increased the 

accuracy of flexible complexes, yet correlations are still in the region 0.6 with 

experimental affinities. On the other hand, for rigid cases (RVAL-RIG=0.9), the 

RMSE of 1.67 kcal mol-1 is within the variation expected due to experimental 

errors and unaccounted environment factors, around 1.4 kcal mol-1 (Kastritis et 

al., 2011). A second finding, and that which had a striking effect on the prediction 

of affinities, is the training and benchmarking of models on affinities 

corroborated by different experimental methods or studies; one should be 

critical of generalizations concerning the importance of descriptors when used in 

models trained on non-validated affinities as the descriptors in such models 

might be only acting as noise-compensators rather than their intended purpose. 

Linear regression models are even more susceptible to using descriptors in this 

unintended way.  

Consistent determinants of affinity. In this work, four machine-learning 

algorithms, with different conceptual attributes, were used. Their prediction 

outputs were then combined in a consensus model. Analysis of the most 

important descriptors for each model showed that certain descriptors were 

common to all models. This inspite of the ML algorithms having significantly 

different methods in the way they build their models. Such consistent 

descriptors include; London dispersion forces (ROS_FA_ATR), several hydrogen 

bonding terms, and the change in vibrational entropy (S_VIB). The two most 

common statistical potentials were the DDFIRE and OPUS PSP. For the most part 

however, descriptors which were important to each model for its prediction 

were not shared across models. Again, this should be taken into consideration 

when making outright claims on the importance of a descriptor from the feature 

importance list of only one learning model.  
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Binding affinity prediction methods published after this work. Subsequent to the 

work described in this chapter, three notable BAP methods were published 

(Vreven et al., 2012, Yan et al., 2013, Ma et al., 2014), all of which use the same 

benchmark set of complexes used in this work (Kastritis et al., 2011). In the work 

of Vreven et al. (2012), a linear combination of nine terms (ZAPP) achieves a 

correlation coefficient of RALL=0.63 with the whole benchmark of experimental 

affinities. This is in comparison to RALL=0.55 that was achieved in this work, on 

the same full benchmark. Given the reduction in accuracy reported in this thesis 

work when complexes with non-validated experimental affinities are used, the 

subset of predictions from ZAPP which form part of the validated set were 

extracted. The correlation for the whole validated set, rigid and flexible subsets 

respectively, were (RVAL=0.72, RVAL-RIG=0.78, RVAL-FLEX=0.65). This in comparison 

to the consensus model of this thesis with (RVAL=0.77, RVAL-RIG=0.9, RVAL-

FLEX=0.59). The higher accuracy (RALL=0.55) achieved on the whole benchmark by 

ZAPP, is most likely due to the fact that most of the terms in their final model are 

residue-based, which as they claim, introduce less-noise than atomic-based 

terms. With this in mind, once the validated set is considered, ZAPP performs 

worse than the consensus model reported in this work, most notably for the rigid 

cases. One should also note that in ZAPP, no unbound structures are used for the 

calculation of descriptors. Yet still, the correlation on the flexible cases is 

consistent and better than the consensus model. Interestingly, the only feature 

which may account for the flexible cases in ZAPP is ‘MisRes’. This feature counts 

the number of residues in the interface that are present in the bound, but not in 

the unbound form (Vreven et al., 2012). One point that is not clear in the ZAPP 

method is how the final set of nine features are chosen in the final model. The 

authors’ state that they were chosen from a larger set of features, yet details on 

any separate dataset for this feature selection is not given. Therefore, one could 

not rule out biased results. A second work which attempts BAP on the same 

benchmark set of structures, is the scoring function SPA-PP (Yan et al., 2013). 

Here, a statistical potential which incorporates both the specificity and affinity of 

an interaction into the optimisation is developed. Comparison is only provided 

on the whole benchmark where SPA-PP achieves (RALL=0.39, RALL-RIG=0.63, RALL-

FLEX=0.24), compared to (RALL=0.55, RALL-RIG=0.70, RALL-FLEX=0.36) for the 
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consensus model developed in this chapter. The third BAP method developed 

after the publication of the consensus model was that of Ma et al. (2014). A RF 

learner is trained on a set of 154 features and the method benchmarked on a test 

set of 31 samples, which is a subset of the affinity benchmark. The authors’ 

correlation on this 31 sample test set is RSAMPLE=0.91, compared to RSAMPLE=0.89 

for the consensus model and RSAMPLE=0.88 for the ZAPP method (Vreven et al., 

2012). On this test set, there are no significant differences between the three 

methods. An interesting aspect of the work of Ma et al. (2014), is the attempt to 

introduce categorical variables which indicate what type of complex family the 

interaction is part of. In theory, this could lead the algorithm to apply different 

models according to the complex family. However, the authors failed to note that 

RF would only make a split and apply separate models if the immediate split 

decreases the MSE. To achieve the intended goal of the authors, one would need 

look-ahead-regression models, or explicitly separate models for each complex 

family type. 

Future directions. The prediction of protein-protein binding affinities would 

benefit from the derivation of features, which are able to accurately characterise 

the affinity of complexes that undergo significant conformational changes and 

account for entropic contributions. As starting points, it has been shown in this 

work how the vibrational entropy term and the inclusion of unbound structures 

into the modelling process, improve the prediction of these flexible cases. 

Similarly the ‘MisRes’ feature developed in ZAPP (Vreven et al., 2012) has an 

equally contributing effect. It might be the case that the descriptors for rigid 

complexes and flexible complexes are incompatible within the same model. To 

rule out this effect, models specifically trained on flexible cases only should be 

investigated. This principle could also be applied to complexes derived from 

different functional families. As stated by Wallqvist et al. (1995), though the free 

energy change of binding has many known contributions, it is not always 

possible to invoke any general statements about the relative importance of each 

of these terms, as diverse arrangements occur that can contradict any attempted 

generalizations. For example, though on average the protein interface is more 

hydrophobic (Cherfils et al., 1991), the distribution of the composition of the 
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hydrophobic residues at an interface reveals a larger variability than in the 

interior of proteins (Tsai et al., 1997). In addition, there are many examples of 

complexes whose interfaces are largely hydrophilic  in nature (Xu et al., 1997). 

This provides two possible routes for future BAP methods; The first one, having 

family-specific models for complexes of different biological function that are 

further partitioned according to the extent of predicted conformational change 

upon complex formation. The second and alternative route is that of having one 

learning model and with carefully designed descriptors which together are able 

to account for such diversity. Therefore further investigations on ML models and 

categorical descriptors of this sort I feel is a fruitful pursuit in this regard. 
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Chapter 4 

4 Models for Predicting Changes in 

Binding Affinity upon Mutation 

4.1 Introduction 

 

Having an accurate binding affinity predictor is straightforwardly generalizable 

to the prediction of changes in binding affinity upon mutation. Rather than 

predicting the affinity of a number of unrelated complexes, the problem shifts to 

that of predicting the affinity of a single complex and a number of mutations 

applied to it. Effectively, models for the prediction of wild-type binding affinities, 

as presented in Chapter 3, are a precursor to affinity optimisation in 

computational drug design methods (Fleishman et al., 2011).  

This chapter specifically deals with the design of a scoring function which is able 

to rank order tentative mutations on a computationally designed interface. Such 

a scoring function must be able to detect those few rare mutations that are able 

to enhance the affinity of the designed interaction, even further. For practical 

purposes, the detection of these beneficiary mutations must also be accompanied 

by a low number of false-positives. Both the design and benchmarking of the 

scoring function developed in this work, is benchmarked in a special round of 

CAPRI (Round 26), on two targets T55 and T56, described below in section 4.2. 
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Traditionally, CAPRI is a blind-trial community-wide benchmark for docking 

algorithms. In this round however, the structures of the target complexes were 

given, and the task for the community was to predict the effect on binding for 

each mutation in a large set of around 1800 single-point mutations on two 

hemagglutinin influenza protein binding constructs. CAPRI round 26 was divided 

into two phases, and the prediction models designed for each are detailed in 

sections 4.3.1 and 4.4.1 respectively. In sections 4.3.2 and 4.4.2, the results for 

our laboratory’s model predictions and all the participant groups are presented 

for round 1 and round 2 respectively. Throughout both rounds, most particularly 

in the detection of the rare beneficiary mutations, the model derived in this work 

was one of the top performing predictors (Moretti et al., 2013). The novelties, 

merits and shortcomings of this approach are discussed in sections 4.3.2, 4.4.2 

and 4.4.3. 

 

4.2 CAPRI Round 26 Targets T55 and T56: Blind Trial Prediction of 

Mutations on de novo Protein Drugs to Bind the Flu Virus 

Hemagglutinin. 

 

In (Fleishman et al., 2011), two computationally designed hemagglutinin 

influenza protein construct binders HB36.4 and HB80.3 (See Figure 4.1) were 

used as a starting point for a large set of single-point mutants to further enhance 

the affinity of their interaction. For each of the 53 and 45 positions of HB36.4 

(T55) and HB80.3 (T56), single-point mutations were created to all 20 amino 

acids. An experimental enrichment value, used as a proxy for ΔΔG, was measured 

for each of the mutations as described in (Moretti et al., 2013, Whitehead et al., 

2012).  
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Figure 4.1: The structures of (A) HB36 (B) HB80 in complex with the flu 

virus hemagglutinin.  

Residues for which experimental enrichment values were available and given to 

the community are in orange; the remainder are in grey. Interface residues are 

shown as sticks. As observed, mutations on these residues may also affect 

binding by affecting monomer stability. Figure taken from (Moretti et al., 2013). 

 

The participants were asked to rank the mutations according to how beneficiary 

they are to the stability of the complex on an arbitrary scale of 0-1. In addition, it 

was also necessary to assign a class to each mutation (beneficial / neutral / 

deleterious). As starting structures, HB36.3 (PDB code, 3R2X) and HB80.4 (PDB 

code, 4EEF) were provided to the community. The difference between HB36.3 

and HB36.4, and their respective wild-type structures, on which experimental 

mutations were made and measured, is a K64N mutation for HB80.4, and the 

mutations G12K, L17I, L21I, A35K and S42K for HB80.3. Two phases were set for 

the community. In the first, participants had to make predictions on 1007 and 

856 mutations for T55 and T56 respectively. In the second, the enrichment ratios 

of half of the mutations for each residue site mutated were given to the 

community to train on. In this way it could be evaluated to which extent the 

prediction is enhanced upon having some mutational data on the complexes in 

question. 
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4.3 CAPRI Round 26 Targets T55 and T56: Round 1 
 

4.3.1 Dataset / Molecular Descriptors / Learning Model and Training Results 

 

The problem of predicting the enrichment ratio for the single-point mutants 

defined in section 4.2 was treated as a ΔΔG prediction problem i.e. predicting the 

change in binding affinity upon mutation. The methodology employed was 

similar to the one used in Chapter 3. The major difference is that whereas for the 

wild-type ΔG prediction in Chapter 3, calculations on molecular descriptors took 

the form of 

 ΔG = Complex – (Receptor + Ligand) 4.1 

Here, for the change in binding affinity, the following equation was used 

 ΔΔG = [Complex – (Receptor + Ligand)]MUT –  

[Complex – (Receptor + Ligand)]WT 

4.2 

Training dataset: A training set of mutations was first compiled from the 

literature. This amounted to a dataset of 645 single-point/multi-point mutations 

(with experimentally measured ΔΔGs) on 40 protein-protein complexes 

determined by X-ray crystallography. 

Molecular feature set. Taking note of the successful features (a combination of 

physics-based, statistical potentials and miscellaneous descriptors) for the 

consensus wild-type binding affinity models described in Chapter 3, a series of 

features were similarly calculated. These include a number of energy terms from 

FoldX (Carra et al., 2012, Schymkowitz et al., 2005), CHARMM (Brooks et al., 

2009), PyRosetta (Chaudhury et al., 2010) and STC (Lavigne et al., 2000). These 

include all of the standard thermodynamic equations, including solvation, 

electrostatics and entropy terms. In addition a number of statistical potentials 

were also calculated DFIRE/DCOMPLEX (Zhang et al., 2004), OPUS-PSP (Lu et al., 

2008), GOAP (Zhou and Skolnick, 2011) , GEOMTRIC and DECK (Liu and Vakser, 

2011). Finally, miscellaneous descriptors such as the change in solvent 

accessibility and change in normalised solvent accessibility, residue 

conservation, Interface Packing (NIP) and Surface Complementarity (NSC) terms 
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were also calculated (Mitra and Pal, 2010). Since monomer stability may also 

effect binding indirectly, some of the statistical potentials included are originally 

folding potentials. In addition I-Mutant 2.0 (Capriotti et al., 2005), a predictor of 

changes in protein stability upon mutation, was also added to the feature set. 

Unbound structures of the complex were not considered in the calculations; 

however, 100 structural ensembles were generated using CONCOORD (de Groot 

et al., 1997), and feature calculations averaged over these structures. 

Model training results: The RF regression algorithm was employed for learning 

and prediction. The number of forest trees was set to 1000 and the mtry 

parameter to 15. To assess the generalization ability of the RF model, in advance 

of predictions for round 1, a 10-fold cross-validation was performed. A 

correlation coefficient of R=0.86 between experimental and predicted ΔΔGs was 

achieved, the scatter plot of which is shown in the left hand panel of Figure 4.2.  

 

Figure 4.2: Cross-validated test predictions for the RF model on 645 

experimental single-point and multi-point ΔΔGs for 40 protein-protein 

complexes.  

Experimental ΔΔG values are shown on the x-axis and predicted ΔΔG values on 

the y-axis. 10-fold cross-validation is shown in left panel. To gain a more 

representative generalization ability of the blind prediction on T55 and T56, a 

leave-complex-out cross-validation was also performed (right panel). Here all 

mutations of a particular complex are left out as a test set in each fold.  This has 

the effect of underestimating the magnitude of affinity increasing/decreasing 

mutations. 

R=0.86 R=0.73 
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Leave-complex out cross validation, where a whole complex along with its 

respective mutations is taken out for each fold, was also performed. The 

correlation coefficient in this scenario dropped to R=0.73 (Figure 4.2 right 

panel), but gives a better indication of the model’s generalization ability when 

making predictions on unseen complexes such as those for T55 and T56. 

4.3.2 Affinity Prediction Results on T55 and T56 

 

The Capri organisation committee required participants to submit both 

numerical and categorical predictions for the 1007 and 856 single-point 

mutations on T55 and T56 respectively. For the numerical predictions, the RF 

predictions were scaled to [0, 1] with the ΔΔG=0 neutral point at 0.8246. Using 

the unscaled prediction from the RF, the thresholds for destabilizing, neutral and 

stabilizing mutations were set at ΔΔG > 1 kcal mol-1, 0 kcal mol-1 < ΔΔG < 1 kcal 

mol-1 and ΔΔG < 0 kcal mol-1 respectively. After submission of all participant 

predictions, results for the continuous predictions were evaluated using the 

Kendall tau-b correlation to the log2 (enrichment ratio) values. In this metric, all 

possible pairs of predictions are evaluated as concordant (e.g. enrichment 1 > 

enrichment 2 and prediction 1 > prediction 2) or discordant (e.g. enrichment 1 > 

enrichment 2 and prediction 1 < prediction 2). Then 

Tau-b = (concordant pairs – discordant pairs) / NxNp, 

Where Nx and Np are the number of total pairs not tied on experimental and 

predicted values, respectively. For categorical prediction, the F1-score was used 

(see methods section 2.4. 

Figure 4.3 and Figure 4.4 show the results for the 22 participant groups. The 

reference BLOSUM62 prediction is highlighted in blue, and our group (G05s) is 

highlighted in green. For numerical predictions, our model performs worse than 

BLOSUM 62. Numerical predictive performance is largely affected by how well 

the destabilizing mutations are ranked against each other. For computational 

design purposes however, the interest lies more in the ability to detect those few 

mutations that are beneficial (Moretti et al., 2013), irrespective of how well 

destabilizing mutations are ranked against each other. For HB36 (T55), 
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beneficial mutations amount to only 3.4% of the substitutions, and only 2.4% for 

HB80 (T56) (Moretti et al., 2013). In contrast to the performance on numerical 

predictions, our RF model excels at the categorical detection of beneficial 

mutations. For T55, our group ranked 1st from the 22 groups (F1-Score=0.34), 

and 6th on T56 (F1-Score=0.14). From 22 groups, only our model and two other 

were able to achieve precisions better than 10% for both proteins (Moretti et al., 

2013). 
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Figure 4.3: CAPRI 26, target T55 round 1, prediction performance of all 

participant groups. 

 A number of residue sites on T55 are mutated to each of the 20 amino-acid 

residues and an experimental enrichment ratio (proxy to the ΔΔG) is measured 

for each. This amounts to 1007 mutations on T55, for which the participants 

were asked to submit their blind predictions. Predictions were submitted in 

numerical form, scaled in the range of [0,1] according to how beneficial the 

mutation is thought to be. The groups’ numerical predictions are ranked 

according to the Kendall’s tau (top panel). Predictions were also submitted in 

categories (Deleterious/Neutral/Beneficial) and the F1-Score used for ranking 

the performance of the beneficial mutation detection (bottom panel). In blue are 

the reference BLOSUM62 predictions and in green (group G05s) the prediction of 

our group. 
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Figure 4.4: CAPRI 26, target T56 round 1, prediction performance of all 

participant groups.  

A number of residue sites on T56 are mutated to each of the 20 amino-acid 

residues and an experimental enrichment ratio (proxy to the ΔΔG) is measured 

for each. This amounts to 856 mutations on T56, for which the participants were 

asked to submit their blind predictions. Predictions were submitted in numerical 

form, scaled in the range of [0,1] according to how beneficial the mutation is 

thought to be. The groups’ numerical predictions are ranked according to the 

Kendall’s tau (top panel). Predictions were also submitted in categories 

(Deleterious/Neutral/Beneficial) and the F1-Score used for ranking the 

performance of the beneficial mutation detection (bottom panel). In blue are the 

reference BLOSUM62 predictions and in green (group G05s) the prediction of 

our group. 
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After careful analysis of the results, two things in our methodology might have 

negatively affected our predictions. Firstly, our descriptor calculations were not 

performed on the exact structures used to derive the experimental enrichment 

ratios from the mutations. T55 differed by one mutation to the structure our 

calculations were made on, however T56 differed by 5 mutations. Given that 

each residue site was mutated to every other possible residue, then 1.9% (19 of 

1007 mutations) and 11% (95 of 855 mutations) of mutation predictions, were 

affected for T55 and T56 respectively. In addition to this, the results for 

neighbouring residues which were also mutated are also affected. Given that 

>95% of all residues of T55 and T56 were mutated, it is reasonable to assume 

that for each mutated residue site, there are at least 3 other residues sites in 

contact with it which are also mutated (and hence required predictions for). This 

potentially increases the amount of mutations affected for T55 and T56 to ~6% 

and ~30% respectively. Hence, whereas for T55 the predictions are largely 

unaffected, the results for T56 must be treated with caution. This also should 

explain why the performance on T56 was markedly lower than that of T55. A 

second aspect of our methodology which could have negatively affected the 

results, was the use of the coarse-grain conformational ensembles generated 

using the program CONCOORD.  The subtle effect of the single-point mutations 

for which predictions were to be made, was more than likely subdued by the 

conformations generated by CONCOORD. In fact redoing the methodology 

without the CONCOORD structures revealed that this was a significant source of 

error. With this in mind the use of such ensembles was avoided in round 2, 

however structures used remained the same and thus predictions for T56 

remained severely constrained even in round 2.   
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Figure 4.5: Depiction of the Capri 26, round 2, strategy. 

 (A) For each mutated site, the participants were given the enrichment values for 

9 randomly selected mutations to train upon. Our approach was to try and 

uncover correlations between similar residues at a given site. A Position-Specific 

Model (PSM) was built for this purpose at each mutated site. This PSM model 

learns why at a given mutation-site, certain mutations have similar Enrichment 

Ratios (ER). For example, the residue groups (A,R,S) in blue and (F,Y) in yellow 

depicted above. (B) Shows a toy-example of a tree model that might be learnt at a 

given mutation-site using the amino-acid properties from  

 

Hydrophobicity <0.4 

Bulkiness < 0.5 

ER = 1.8 

ER = -3 

Charge > 

0.75 

ER = 0.05 

A 

B 
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Table 4.1 as features. 

4.4 CAPRI Round 26 Targets T55 and T56: Round 2 
 

To test whether having some mutational data on T55 and T56 available to the 

participants, would help prediction, an extended round of predictions was 

performed. For each residue position, the experimental enrichment values for 

half of the mutations were given to the participants. The 9 mutations were 

selected randomly at each position. The task for the community was to make 

predictions on the remaining half of mutations at each position as depicted in 

Figure 4.5. 

 

4.4.1 Design of a Position Specific Model for ΔΔG Prediction 

 

The most straightforward use of the additional mutation data provided in round 

2, is to use it to extend the ΔΔG training dataset built in round 1, and retrain the 

RF model. However, this method does not exploit the wealth of information we 

have at each position and a novel position-specific model (PSM) was developed 

for this extended round. This position specific model is based on the hypothesis 

that 

 ‘At a given position, ‘similar’ residue substitutions should act ‘similarly’’ 

The emphasis here is that similar residues should act similarly only at a given 

residue site i.e. where the context surrounding is controlled for, and constant. By 

‘act similarly’ the hope is that similar residues would have comparable 

enrichment ratios. The central issue to this method is that defining residue 

similarity is non-trivial, and depends on what amino-acid property one 

considers. For example at one residue site, the enrichment ratios for leucine are 

similar to other hydrophobic residue mutations, whereas at another residue site, 

they are more similar to mutations to large residues. Therefore, rather than 

limiting ourselves to one specific amino-acid property for calculating residue 

similarity, the similarity was instead learnt using a learning model. More 

precisely, a site-specific model learns which properties are indicative of 
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correlations between enrichment values for a set of amino acids at a given 

position. For each residue site (53 positions on T55 and 46 positions on T56), the 

9 training mutations, for which the enrichment ratios were available, were used 

as training data for a RF regression model. The feature set of which, consisted of 

a set of amino-acid properties shown in  

Table 4.1. The prediction of enrichment ratios for each residue site therefore 

has, their own unique RF model, training data, and features as depicted in Figure 

4.5. 

 

Table 4.1: A selection of amino-acid properties that form the feature set 

available to each PSM model.  

Feature Type  Amino-Acid features 

Numerical Hydrophobicity 

Numerical Isoelectric point  

Numerical Molecular weight 

Categorical Acyclic 

Categorical Aliphatic 

Categorical Hydrophobic 

Categorical Negative 

Categorical Positive 

Numerical Hydropathy 

Numerical Solvation Potential 

Numerical Linker Propensity 

Numerical Surface Exposure 

Numerical Polarity 

Numerical Hydrophobicity 

Numerical Flexibility 

Numerical Coil Propensity 

Numerical Bulkiness 

 

To estimate the generalization ability of the PSM model in advance of the round 2 

predictions, 9-fold CV was performed at each position. The PSM-Score achieved 

an Area Under the Curve (AUC) value of 0.88 for T55 and 0.83 for T56 assuming 

enrichment ratio of >0 as stabilizing. For the predictions on the blind test set of 

1040 mutations as required for round 2 of Capri 26, the thresholds for beneficial 

mutations were taken at > 0.5 and > -1 for T55 and T56 respectively. 
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4.4.2 Results for T55 and T56 using PSMs 

 

Similar metrics to the ones described in section 4.3.2 in round 1 were used to 

assess the predictions of all participants. Numerical prediction performance 

ranked according to the tau-b metric and detection of beneficial mutations 

ranked according to F1-Score. The results for all participant groups are shown in 

Figure 4.6 for T55 and Figure 4.7 for T56. The BLOSUM62 is highlighted in blue 

as a reference and our laboratory’s group (G05s) predictions in green. Our model 

for T55 ranked 1st in both the numerical estimation (Kendal-tau=0.51) and 

categorical prediction of beneficial mutations (F1-Score=0.49). For T56 results 

were also consistent for the numerical estimation of enrichment ratios, ranking 

2nd with Kendal-tau of 0.41. The detection of beneficial mutations however was 

not satisfactory and ranked very low with and F1-Score of 0.12. The discrepancy 

in performance for T56 on the detection of beneficial mutations is more than 

likely due to using a structure which differed by 5 mutations to that on which the 

experimental mutations were made on. The improvement in results from round 

1 to round 2, which is shared across most of the groups, clearly shows that 

indeed having some mutational information on the complex in question 

increases prediction performance. With this in mind, the only other group to 

show similar success to our group (G-21 Fernandez Recio) was the only other 

group to exploited positional information in their model. In their case, rather 

than having regression models unique to each position, amino-acid properties 

were added to the feature-set. Though not a purely position specific model, the 

learner in this case is potentially able to exploit correlations across different 

mutations using their amino-acid properties. Monomer stability may still affect 

binding indirectly and accounting for monomer stability was also found to be a 

key component in the top performing groups, including our own (Moretti et al., 

2013).  
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Figure 4.6: CAPRI 26 T55, round 2 prediction performance of all participant 

groups.  

A number of residue sites on T55 are mutated to each of the 20 amino-acid 

residues and an experimental enrichment ratio (proxy to the ΔΔG) is measured 

for each. Round 2 differs from round 1 in that at each residue site mutated, the 

enrichment ratios of 10 randomly selected mutations are given to the 

participants to train upon. The participants are asked to make predictions on the 

remaining mutations. Predictions were submitted in numerical form, scaled in 

the range of [0,1] according to how beneficial the mutation is thought to be. The 

groups’ numerical predictions are ranked according to the Kendall’s tau (top 

panel). Predictions were also submitted in categories 

(Deleterious/Neutral/Beneficial) and the F1-Score used for ranking the 

performance of the beneficial mutation detection (bottom panel). In blue are the 

reference BLOSUM62 predictions and in green (G05s) are the prediction result 

assessment scores from our group. 
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Figure 4.7: CAPRI 26 T56, round 2 prediction performance of all participant 

groups. Figure legend details as for Figure 4.8. 
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4.4.3 Contribution of the PSM Model to Prediction Accuracy 

 

Though the groups exploiting positional information were identified as the top 

performing groups in Capri 26 round 2, to assess whether the PSM-Score was in 

fact the driving force behind the success of our results, further analysis was 

performed. Three sets of test predictions on T55 were generated. Training was 

performed on half of the T55 mutations given in round 1 and testing performed 

on the second half. T56 was excluded from this analysis as part of the structure 

was incorrect (see section 4.3.2). The first set ‘All Molecular’, refer to predictions 

from a RF model trained on the feature set compromising of all molecular 

features described in 4.3.1 (i.e. without the PSM-Score as a feature). A second set 

‘PSM-Score’, are predictions from the PSM model and a third set, predictions 

from a RF model trained on all features including the PSM-Score combined. 

Several classification measures (described in methods section 2.4) were used to 

assess the performance of each model and presented in Table 4.2. The PSM-Score 

on its own (F1-Score=0.571) performs markedly better than the ‘All Molecular’ 

model (F1-Score=0.273). The addition of the PSM-Score with the ‘All Molecular’ 

feature set improves the performance over that of the ‘All Molecular’ set (F1-

Score=0.444). To further confirm the prominence of the PSM-Score, the RF 

feature importance measures were invoked for the model trained on the ‘All 

molecular’ features and that when the PSM-Score was added to the feature set. 

The top 10 features are presented in Table 4.3. These include, statistical 

potentials, OPUS_PSP (Lu et al., 2008), and GOAP (Zhou and Skolnick, 2011), 

together with physics-based terms such as the Lenard-Jones repulsive terms 

(fa_rep) from PyRosetta (Chaudhury et al., 2010) and FoldX (Schymkowitz et al., 

2005); and the position of the applied mutation as captured by its solvent 

accessibility using Naccess. Upon including the PSM-Score to this feature set, the 

RF model ranks it as the most important feature, superseding the importance (5-

Fold increase over 2nd ranked descriptor) of any other molecular descriptor 

available. From these results, we can conclude that the success of our group’s 

predictions for T55 in Round 2 was mostly attributed to the PSM-Score. 
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Table 4.2: Classification Performance for 3 RF Classifiers on T55 Test 

Mutations.  

All RF Models are trained on half of the T55 mutations (enrichment ratios) given 

to the participants of Capri 26 round 1. Performance shown in table that of the 

test predictions for the remaining half of the T55 mutations (enrichment ratios). 

‘All Molecular’, refer to predictions from a RF model trained on the feature set 

compromising of all molecular features described in 4.3.1 (i.e. without the PSM-

Score as a feature). A second set ‘PSM-Score’, are predictions from the PSM 

model and a third set, predictions from a RF model trained on all features 

including the PSM-Score combined. 

 
Feature Set TPR FPR MCC F1 Acc Spec Prec Rec 

All Molecular 
0.158 0.000 0.391 0.273 0.969 1.000 1.000 0.158 

PSM-Score 
0.421 0.002 0.603 0.571 0.977 0.998 0.889 0.421 

All Molecular + PSM-Score 
0.316 0.004 0.475 0.444 0.971 0.996 0.750 0.316 

 

 

Table 4.3: Comparison of Top 10 Features for ‘All Molecular’ Model and ‘All 

Molecular + PSM-Score’ Model. 

 Importance is extracted from the in-built RF feature importance measure. 

                       All Molecular                               All Molecular + PSM-Score 

Feature Name 
RF 

Importance  
Feature Name 

RF 
Importance 

fxGOAP2 209.6 
 

PSM-Score 853.7 

SolvAccessNorm 181.7 
 

fxGOAP2 151.8 

fxOPUS1 171.4 
 

SolvAccessNorm 117.4 

pyfa_rep 164.9 
 

fxOPUS1 99.6 

fxGOAP1 127.4 
 

pyfa_rep 96.7 

fxfa_rep 126.1 
 

fxGOAP1 94.0 

SolvAccess 101.6 
 

fxfa_rep 78.4 

dFOLDX 96.6 
 

SolvAccess 74.6 

fxvdwaals 92.5 
 

fxOPUS3 72.1 

fxelec 81.6 
 

Fxvdwaals 66.6 
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4.5 Discussion and Conclusions 

 

The blind test trial in the first round, were no mutational information was given 

for the targets in question, does highlight the current inability to characterise 

mutations on unseen complexes for most models. The mean and maximum 

values from all participating groups show an increase in predictive performance 

upon the availability of mutational information on the target complexes (See 

Table 4.4). 

Table 4.4: Performance comparison of group predictions for T55 and T56 

from round 1 to round 2. 

 Shown are the mean Kendall-tau and F1-Score values for all groups; the Kendall-

tau and F1-Score values for the best performing group; the Kendall-tau and F1-

Score values for our Laboratory’s group (G05s). 

Performance 

Measure 
Round 1 

Round 2 

(available mutational information) 

 
T55 T56 T55 T56 

Kendall-tau 

(mean / max / 

G05s) 

0.14 / 0.30 /  

0.09 

0.09/ 0.23 /  

0.09 

0.21 / 0.51 / 

0.51 

0.21 / 0.42 / 

0.41 

F1-Score 

(mean / max / 

G05s) 

0.11 / 0.34 /  

0.34 

0.12 / 0.26 / 

0.14 

0.19 / 0.49 / 

0.49 

0.16 / 0.5 /  

0.11 
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Figure 4.8: Plot of the AUC for the detection of beneficial mutations vs. that 

of deleterious mutations. 

 Left panel HB36 (T55) and right panel HB80 (T56). Black circles show the 

prediction for the first round and blue squares show the predictions for the 

second round. The AUC values for the BLOSUM prediction are indicated by an 

orange diamond and grey dotted line. Figure taken from supplementary 

information of (Moretti et al., 2013). 

A similar observation is made on assessment of the AUCs when having no 

mutational information (Figure 4.8 black dots) to having mutational information 

(Figure 4.8 blue dots). Though clearly present, targeting the source of this 

reduction in ability to predict changes in binding affinity upon mutations on 

complexes not in the training set is not trivial. This may be due to insufficiently 

diverse datasets of protein-protein structures on which training is performed or 

an underrepresentation of certain residue types. For example most ΔΔG training 

sets are dominated by alanine-scanning data. The training set derived from the 

literature for the training of our round 1 model contained > 50% single-point 

alanine mutations. In contrast, only 5% of the mutations on T55 and T56 were 

alanine mutations. This also stresses the importance of performing leave-

complex-out and more stringent forms of cross validation which account for 

related complexes when evaluating models for ΔΔG prediction (Moal et al., 2011, 

Lise et al., 2011).  

Whereas the participant’ results from round 2 show that the availability of 

mutational information for the complex on which other mutations must be 

predicted, helps this endeavour, the PSM model takes this one step further. This, 
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by showing that the availability of mutational information at the given site on 

which other mutations must be predicted, helps further the prediction. 

Interestingly enough, an approach similar to the one taken here, with the 

difference that it is applied for the ΔΔG of protein stability and not binding, also 

confirmed that using  known ΔΔG values of mutations at the query position 

improves the accuracy of ΔΔG predictions for other mutations in that position 

(Wainreb et al., 2011). Unfortunately, the necessity of this site specific 

mutational informational for training, limits the PSMs application, as rarely is 

such experimental data on binding available. 
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Chapter 5 

5 Prediction of Hotspot Residues on 

Protein-Protein Interfaces 
 

5.1 Introduction 

In Chapters 6-8, a number of descriptors derived from hotspot counts, energies 

and distribution are designed. These are termed as hotspot descriptors, and are 

used for characterizing the change in off-rate of protein interactions upon 

mutation. To generate the hotspot descriptors six hotspot prediction algorithms 

are used. Two are designed in this work; RFSpot and RFSpot_KFC2. In addition, 

hotspot descriptors were also generated using publicly available hotspot 

predictors KFC2 (KFC2a, KFC2b) (Zhu and Mitchell, 2011) and Hotpoint 

(RFHotpoint1, RFHotpoint2) (Tuncbag et al., 2010).   
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5.2 Methods 
 

5.2.1 RFSpot and RFSpot_KFC2 

 

For training and benchmarking the hotspot predictors RFSpot and RFSpot_KFC2, 

the SKEMPI alanine dataset described in 2.1.4 is used. For each training example 

in the dataset and hence wild-type complex PDB structure, a number of 

molecular descriptors, describing various aspects of the interaction, were 

calculated. These descriptors have already proven successful in our previous 

work related to the prediction of wild-type binding free energies (Moal et al., 

2011) and wild-type kinetic rate constants (Moal and Bates, 2012). A full list and 

explanation of the molecular descriptors can be found in the Table 2.1 under the 

column HS. After calculation of the molecular descriptors on the wild-type 

complex PDB structure, each respective structural mutation was made using 

FoldX (Schymkowitz et al., 2005) and the same set of molecular descriptors 

recalculated. Each descriptor, fed into the learning model, is determined as the 

difference between the mutant and wild-type descriptor value: 

 MUT WT

Desc Desc DescE E E     5.1 

 

As a learning algorithm the Random Forest (RF) classifier model is employed 

(Breiman, 2001b), using 1000 trees and an mtry (i.e. number of random 

variables sampled as candidates for a split) of 15. The RF learner is well suited 

for high dimension datasets, such as the one described here with 110 features. 

Throughout the thesis, this RF hotspot classifier algorithm is referred to as 

RFSpot. RFSpot_KFC2 is a similar classifier model to RFSpot with the difference 

that it adds to the 110 molecular features set, 13 features from the original 

KFC2a and KFC2b models. These include: res_hp, pos_per, delta_tot, core_rim, rot5, 

plast4, plast5, fp10 from KFC2a and res_size, ratio5, rot4, hp5, fp9 from KFC2b. 

Details on the calculation of each specific descriptors are described in (Zhu and 

Mitchell, 2011), most notably they include features which position the mutation 

using solvent accessibility. This enables the model to exploit the fact that 
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hotspots tend to occur in regions of low solvent accessibility (Bogan and Thorn, 

1998) and is the key difference between RFSpot and RFSpot_KFC2. 

5.2.2 RFHotpoint1, RFHotpoint2, KFC2a and KFC2b 

 

Similar to RFSpot and RFSpot_KFC2, RFHotpoint1 and RFHotpoint2, are Random 

Forest hotspot classifiers trained on the SKEMPI alanine dataset which use only 

features from the original Hotpoint server as features.  These include: 

relativeComplexASA, relativeMonomerASA, pairPotential, complexASA as 

described in (Tuncbag et al., 2010). RFHotpoint2 differs from RFHotpoint1 in that 

for the former, the threshold is lowered to allow for more hotspot detections at 

the cost of a higher FPR. The reason behind developing the RFHotpoint models is 

due to the fact that the original Hotpoint server does not associate an energetic 

or confidence value to its hotspot prediction, hence hotspot descriptors which 

make use of hotspot energies cannot be calculated. RFHotpoint models therefore 

enable us to use Hotpoint features, trained on a larger dataset of SKEMPI instead 

of ASEdB (as in the original Hotpoint algorithm) and most importantly, 

associated confidence values to our hotspot predictions using the Random Forest 

model. To validate RFHotpoint1 and RFHotpoint2 as a representative alternative 

to Hotpoint, predictions from Hotpoint server were generated for the SKEMPI 

alanine dataset. Any prediction for mutations also in ASEdB where removed 

since Hotpoint uses ASEdB as training data. The predictions are compared to the 

20-fold test predictions of RFHotpoint1 and RFHotpoint2 for the same mutations 

and classification results are shown below in Table 5.1. Both RFHotpoint1 and 

RFHotpoint2 achieve higher MCCs than Hotpoint and are therefore fare 

representations of this hotspot predictor. 

Table 5.1: Performance comparison of RFHotpoint1 and RFHotpoint2 with 

server prediction of Hotpoint on SKEMPI. 

Hotpot Predictor TPR FPR MCC F1 Acc Spec Prec 

Hotpoint 0.500 0.379 0.113 0.424 0.584 0.621 0.368 

RFHotpoint1 0.360 0.128 0.268 0.437 0.715 0.872 0.554 

RFHotpoint2 0.570 0.303 0.253 0.505 0.658 0.697 0.454 
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For KFC2a and KFC2b, no models needed to be re-trained again, as the original 

predictions from KFC2 server have associated with them an energetic value that 

can be directly used for the calculation of the hotspot descriptors. 

5.2.3 Generation of Hotspot Energies 

 

In the Random Forest classifier model used in RFSpot, RFSpot_KFC, RFHotpoint1 

and RFHotpoint2, each tree in the 1000-tree forest makes is own class prediction 

(Hotspot / Non-Hotspot) of the mutation in question. The class which 

accumulates the majority of tree-votes, is the predicted class, and the difference 

in the number of votes for the hotspot class relative to the non-hotspot class 

(VotesHotspot- VotesNon-Hotspot ) indicates the model’s confidence in the predicted 

class. In this work, these confidence values are used as an estimation of hotspot 

ΔΔGs. The rationale is that the higher the confidence value, the more trees have 

predicted this to be a hotspot, implying that larger numbers of different feature 

subsets consider this to be a hotspot also. Given that several different aspects of 

the protein interaction have vouched for the example to be a hotspot, then it is 

expected that the hotspot ΔΔG is larger in magnitude. To confirm this, RF 

regression models are trained on the same training data as RFSpot, RFSpot_KFC2, 

RFHotpoint1 & RFHotpoint2 RF classifiers, in order to generate true ΔΔG 

predictions and compared to the confidence values generated by each of them. 

Note that RFHotpoint1 and RFHotpoint2 use same confidence values and only 

differ by their threshold on those confidence values; hence one correlation for 

the confidence values is presented for both. The confidence values of the 

classifier models, show correlations of R=0.88, R=0.86, R=0.86 with the 

regression models’ ΔΔG predictions for RFSpot, RFSpot_KFC2 and RFHotpoint1 & 

2 respectively. Therefore, apart from the differences in their absolute values, the 

confidence values do provide relative values, which have a direct linear 

relationship to ΔΔG. On assessment of the MCCs of the regression RF models at a 

threshold of >=2 kcal/mol, the regression models achieve lower MCCs to that of 

the classifier models, all of which are the result of higher FPR. Given that 75% of 

the ΔΔG data is of the negative non-hotspot class, minimal increases in the FPR 

add a significant number of false-positives, which would subdue the gain of 

additional hotspots, correctly detected. Therefore the use of a classifier in 
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RFSpot, RFSpot_KFC2, RFHotpoint1 and RFHotpoint2, enables us to achieve a 

lower false positive rate, to that of a regression model, but still be able to have 

confidence values that relate directly to ΔΔG.  For the sake of simplicity, we refer 

to the ΔΔG confidence values extracted by the method described here as ΔΔGs. 

 

5.3 Results 

5.3.1 Performance of Hotspot Predictors on the SKEMPI Alanine Dataset 

 

The predictive accuracy of the hotspot predictors from which the hotspot 

descriptors are generated from (i.e. RFSpot, RFSpot_KFC2, RFHotpoint1, 

RFHotpoint2, KFC2a and KFC2b), is assessed on the SKEMPI alanine dataset using 

a number of classification performance measures. All hotspot prediction 

algorithms and performance measures in this section are related to how well the 

hotspot predictors are able to detect ΔΔGs of single-point alanine mutations 

which satisfy ΔΔG > 2kcal/mol i.e. the prediction of hotspots. For RFSpot, 

RFSpot_KF2, RFHotspoint1 & RFHotpoint2, the prediction results from a 20–Fold 

cross-validation are used, whereas for KFC2a and KFC2b the predictions from 

KFC2 (Zhu and Mitchell, 2011) server are used. Note that for KFC2a and KFC2b, 

the predictions for the data, which is in SKEMPI and not in ASEdB is presented, 

as KFC2 server algorithm uses ASEdB mutations for model design and training. 

The predictions are compared to a number of hotspot prediction algorithms 

(KFC2 (Zhu and Mitchell, 2011) HotPoint (Tuncbag et al., 2010), Robetta 

(Kortemme and Baker, 2002), RFMirror (Wang et al., 2012), and TSVM (Lise et 

al., 2009)). Details on each hotspot predictors and the sources of their 

predictions are presented in Table 5.2. 
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Table 5.2. Summary of hotspot predictors benchmarked in this work and the 

datasets used. 

Hotpot Predictor Description and Source of Predictions 

RFSpot 

RFSpot*: Random Forest Model trained on SKEMPI 
alanine data, with molecular features. 
RFSpot_KFC2*: Random Forest Model trained on 
SKEMPI alanine data, with molecular  features and 
features from KFC2a and KFC2b for which KFC2a and 
KFC2b Features from KFC2 server where available. 
Random Forest threshold adjusted to achieve same 
FPR of RFSpot for comparison. 

KFC2 (Zhu and Mitchell, 2011) 

KFC2a_Orig: uses predictions on ASEdB. 
KFC2b_Orig: uses predictions on ASEdB 
KFC2a *: uses server predictions on SKEMPI alanine 
data which is not in ASEdB from KFC2 Server 
KFC2b*: uses server predictions on SKEMPI alanine 
data which is not in ASEdB from KFC2 Server 

Robetta (Kortemme and Baker, 2002) Robetta: uses predictions on ASEdB. 

Hotpoint (Tuncbag et al., 2009) 

Hotpoint_Orig: uses predictions on ASEdB. 
Hotpoint uses server prediction on SKEMPI alanine 
data which is not in ASEdB  from Hotpoint Prediction 
Server 
RFHotpoint1*: Random Forest Model trained on 
SKEMPI alanine data, with original Hotpoint Features  
for which Hotpoint Features from Hotpoint server 
where available 
RFHotpoint2*: Random Forest Model trained on 
SKEMPI alanine data, with Hotpoint Features for 
which Hotpoint Features from server where available. 
Random Forest Threshold lowered to allow for more 
TPs 

RFMirror (Wang et al., 2012) RFMirror: uses predictions on ASEdB. 
SVM score (Lise et al., 2009) SVM score: uses predictions on ASEdB. 
TSVM score  (Lise et al., 2009) TSVM score: uses predictions on ASEdB. 

 

* Indicate Hotspot Predictors used for the generation of hotspot descriptors  

The performance of each hotspot predictor is shown in the Table 5.3. The test 

sets on which the performance measures are calculated, are different for each 

predictor. Namely, each test set is the intersection between SKEMPI and the 

original test set used in each respective work. The highest MCC is achieved by 

TSVM score (Lise et al., 2011). Note however that, though ranked according to 

MCC, Table 5.3 shows their performance on different mutations, therefore 

cannot be relatively compared. A relative comparison between two predictors 

can only be performed on the intersections of mutations for which both 

algorithms have unbiased predictions for. Since the all-vs-all comparison of the 

hotspot predictor algorithms is beyond the scope of this work, the comparison is 

only made for the two-hotspot predictors developed in this work namely RFSpot 
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and RFSpot_KFC2. Given that RFSpot and RFSpot_KFC2 both use SKEMPI, the 

dataset intersection with other predictors’ datasets is the same. First, for each 

predictor, the test set intersection with SKEMPI is extracted, and each predictor’s 

performance on this intersection is shown in Table 5.4. For comparison, the 

performance of RFSpot  and RFSpot_KFC2 on these same dataset intersections is 

presented in Table 5.5 and Table 5.6 respectively. Therefore the performance 

values in corresponding cells of in Table 5.4, Table 5.5 and Table 5.6 are 

comparable. For better visual inspection, in blue are highlighted the instances in 

which RFSpot or RFSpot_KFC2 perform better than the respective hotspot 

predictor. RFSpot_KFC2 outperforms all hotspot predictors with the exception of 

TSVM (Lise et al., 2011).  TSVM achieves a higher MCC as a result of a higher TPR, 

though RFSpot_KFC2 achieves higher accuracy specificity and precision than that 

of TSVM. With this, it can be concluded that RFSpot_KFC2 is as good as the best 

hotspot prediction algorithm available. This gives confidence that the hotspot 

predictions from RFSpot_KFC2 that will be used in further chapters for the 

generation of hotspot descriptors and off-rate prediction are high quality 

predictions. 

Table 5.3. Performance of Hotspot Descriptors - part 1. 

Performance of Hotspot Predictors on intersection of original data used in 

original hotspot predictors and SKEMPI. Predictors are ranked according to MCC. 

Predictor 
Intersection 

with SKEMPI 
TPR FPR MCC F1 Acc Spec Prec 

TSVM score TSVM score 0.673 0.136 0.508 0.619 0.823 0.864 0.574 

RFSpot_KFC2* RFSpot_KFC2* 0.490 0.083 0.452 0.560 0.814 0.917 0.652 

SVM score SVM score 0.615 0.152 0.438 0.566 0.798 0.848 0.525 

RFMirror RFMirror 0.500 0.094 0.434 0.545 0.816 0.906 0.600 

KFC2a* KFC2a* 0.734 0.279 0.402 0.568 0.724 0.721 0.463 

KFC2b KFC2b 0.452 0.103 0.383 0.509 0.789 0.897 0.583 

Hotpoint_Orig Hotpoint_Orig 0.552 0.196 0.368 0.593 0.707 0.804 0.640 

KFC2b* KFC2b* 0.436 0.129 0.328 0.477 0.764 0.871 0.526 

Robetta Robetta 0.458 0.155 0.295 0.440 0.769 0.845 0.423 

RFSpot* RFSpot* 0.268 0.083 0.237 0.350 0.761 0.917 0.506 

RFHotpoint1* RFHotpoint1* 0.319 0.125 0.229 0.395 0.711 0.875 0.517 

RFHotpoint2* RFHotpoint2* 0.504 0.277 0.218 0.466 0.658 0.723 0.433 

KFC2a_Orig KFC2a_Orig 0.258 0.124 0.159 0.314 0.727 0.876 0.400 

Hotpoint Hotpoint 0.500 0.379 0.113 0.424 0.584 0.621 0.368 
* Indicate Hotspot Predictors used for the generation of hotspot descriptors. 
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Table 5.4: Performance of Hotspot Predictors on SKEMPI part 2. 

Performance of Hotspot Predictors on intersection of original data used in 

original hotspot predictors and SKEMPI. Positioned for comparison with Table 

5.5 and Table 5.6. 

Predictor 
Intersection 

with SKEMPI 
TPR FPR MCC F1 Acc Spec Prec 

RFSpot_KFC2* RFSpot_KFC2* 0.490 0.083 0.452 0.560 0.814 0.917 0.652 

RFSpot* RFSpot* 0.268 0.083 0.237 0.350 0.761 0.917 0.506 

KFC2a* KFC2a* 0.734 0.279 0.402 0.568 0.724 0.721 0.463 

KFC2b* KFC2b* 0.436 0.129 0.328 0.477 0.764 0.871 0.526 

Hotpoint Hotpoint 0.500 0.379 0.113 0.424 0.584 0.621 0.368 

RFHotpoint1* RFHotpoint1* 0.319 0.125 0.229 0.395 0.711 0.875 0.517 

RFHotpoint2* RFHotpoint2* 0.504 0.277 0.218 0.466 0.658 0.723 0.433 

KFC2a_Orig KFC2a_Orig 0.258 0.124 0.159 0.314 0.727 0.876 0.400 

KFC2b_Orig KFC2b_Orig 0.452 0.103 0.383 0.509 0.789 0.897 0.583 

Robetta Robetta 0.458 0.155 0.295 0.440 0.769 0.845 0.423 

Hotpoint_Orig Hotpoint_Orig 0.552 0.196 0.368 0.593 0.707 0.804 0.640 

RFMirror RFMirror 0.500 0.094 0.434 0.545 0.816 0.906 0.600 

SVM score SVM score 0.615 0.152 0.438 0.566 0.798 0.848 0.525 

TSVM score TSVM score 0.673 0.136 0.508 0.619 0.823 0.864 0.574 
* Indicate Hotspot Predictors used for the generation of hotspot descriptors 

 

Table 5.5: Performance of RFSpot and Hotspot Predictors .  

Performance of RFSpot on intersection of original data used in original hotspot 

predictors and SKEMPI. Highlighted in Blue are instances where RFSpot 

performs better than respective hotspot predictor, as compared with values in 

the corresponding cells of  Table 5.4. 

Predictor 
Intersection 

with SKEMPI 
TPR FPR MCC F1 Acc Spec Prec 

RFSpot RFSpot_KFC2* 0.268 0.083 0.237 0.350 0.761 0.917 0.506 

RFSpot RFSpot* 0.268 0.083 0.237 0.350 0.761 0.917 0.506 

RFSpot KFC2a* 0.255 0.080 0.230 0.340 0.756 0.920 0.511 

RFSpot KFC2b* 0.255 0.080 0.230 0.340 0.756 0.920 0.511 

RFSpot Hotpoint 0.279 0.118 0.199 0.361 0.698 0.882 0.511 

RFSpot RFHotpoint1* 0.291 0.110 0.223 0.374 0.713 0.890 0.526 

RFSpot RFHotpoint2* 0.291 0.110 0.223 0.374 0.713 0.890 0.526 

RFSpot KFC2a_Orig 0.323 0.072 0.316 0.417 0.781 0.928 0.588 

RFSpot KFC2b_Orig 0.323 0.072 0.316 0.417 0.781 0.928 0.588 

RFSpot Robetta 0.417 0.062 0.418 0.500 0.835 0.938 0.625 

RFSpot Hotpoint_Orig 0.310 0.087 0.287 0.429 0.680 0.913 0.692 

RFSpot RFMirror 0.296 0.079 0.272 0.376 0.784 0.921 0.516 

RFSpot SVM score 0.269 0.073 0.252 0.350 0.786 0.927 0.500 

RFSpot TSVM score 0.269 0.073 0.252 0.350 0.786 0.927 0.500 

* Indicate Hotspot Predictors used for the generation of hotspot descriptors.  
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Table 5.6: RFSpot_KFC2 and Hotspot Predictors. 

Performance of  RFSpot_KFC2 on intersection of original data used in original 

hotspot predictors and SKEMPI. Highlighted in Blue are instances where 

RFSpot_KFC2 performs better than respective hotspot predictor as compared 

with values in the corresponding cells of  Table 5.4. 

Predictor 
Intersection 

with SKEMPI 
TPR FPR MCC F1 Acc Spec Prec 

RFSpot_KFC2 RFSpot_KFC2* 0.490 0.083 0.452 0.560 0.814 0.917 0.652 

RFSpot_KFC2 RFSpot* 0.490 0.083 0.452 0.560 0.814 0.917 0.652 

RFSpot_KFC2 KFC2a* 0.500 0.098 0.436 0.556 0.803 0.902 0.627 

RFSpot_KFC2 KFC2b* 0.500 0.098 0.436 0.556 0.803 0.902 0.627 

RFSpot_KFC2 Hotpoint 0.535 0.133 0.424 0.582 0.765 0.867 0.639 

RFSpot_KFC2 RFHotpoint1* 0.511 0.113 0.431 0.574 0.776 0.887 0.655 

RFSpot_KFC2 RFHotpoint2* 0.511 0.113 0.431 0.574 0.776 0.887 0.655 

RFSpot_KFC2 KFC2a_Orig 0.452 0.082 0.419 0.528 0.805 0.918 0.636 

RFSpot_KFC2 KFC2b_Orig 0.452 0.082 0.419 0.528 0.805 0.918 0.636 

RFSpot_KFC2 Robetta 0.583 0.052 0.583 0.651 0.876 0.948 0.737 

RFSpot_KFC2 Hotpoint_Orig 0.483 0.087 0.451 0.596 0.747 0.913 0.778 

RFSpot_KFC2 RFMirror 0.500 0.063 0.495 0.581 0.841 0.937 0.692 

RFSpot_KFC2 SVM score 0.519 0.068 0.499 0.587 0.844 0.932 0.675 

RFSpot_KFC2 TSVM score 0.519 0.068 0.499 0.587 0.844 0.932 0.675 
* Indicate Hotspot Predictors used for the generation of hotspot descriptors. 

 

5.4 Discussion 
 

In this chapter, the computational prediction of hotspot residues was 

investigated. Using a large set of mutations from SKEMPI, two hotspot predictors 

were built and benchmarked against a number of hotspot predictors. Both 

RFSpot and RFSpot_KFC2 use a set of statistical and physical descriptors to 

characterize the ΔΔG of the mutated residue in question. In addition to these 

features, RFSpot_KFC2 also uses features which estimate the local flexibility of 

the neighbouring residues, and the solvent accessibility of the residue in 

question. To maintain an unbiased prediction scheme, based purely on molecular 

and physical descriptors, the inclusion of such descriptors in RFSpot is 

intentionally avoided, and this is the probable reason for its low TPR. It is 

understood that the addition of descriptors which relate to solvent accessibility 

may increase the TPR of RFSpot as this would enable the RF learner to 

distinguish between mutations performed at the core as opposed to those at the 

rim, where less hotspots occur (Bogan and Thorn, 1998). Indeed, it has been 

shown that a predictor with just 3 solvent accessibility features can result in a 
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sensitivity of 0.87 (i.e. TP/(TP+FN)) for the BID test set (Zhu and Mitchell, 2011). 

This is also confirmed using RFSpot_KFC2 which introduces features related to 

solvent accessibility and upon setting the threshold to achieve the same FPR to 

that of RFSpot, the TPR is increased from 0.27 (in RFSpot) to 0.49 (in 

RFSpot_KFC2). With this in mind, low solvent accessibility is not a sufficient 

indicator of hotspots as most residues at the core are still non-hotspots (Bogan 

and Thorn, 1998, Zhu and Mitchell, 2011). Such models are biased towards 

predicting hotspots at the core regions and may lay the risk of not being able to 

detect mutations in other regions, as accurately. The risk is higher if the training 

set is small and other regions outside the core are underrepresented. Though 

RFSpot_KFC2 uses such solvent accessibility descriptors, the model uses other 

molecular features and is trained on a more diverse alanine dataset of SKEMPI as 

opposed to the ASEdB. The use of a data-partitioning model such as the random 

forest is particularly useful in this scenario; as it is able to characterize mutations 

in regions of low solvent accessibility with different features to those in regions 

of high solvent accessibility. 
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Chapter 6 

6 Characterizing Change in Off-Rate 

upon Mutation using Hotspot 

Energy and Architecture 
 

‘Non agunt nisi fixat’ - A substance will not work unless it is bound [Paul Ehrlich] 

 

6.1 Introduction 

 

In this chapter, the stability of protein-protein complexes is further probed using 

features and models specifically designed for the prediction of off-rates. Several 

mutational studies show that the off-rate can be independently modulated with 

no change to on-rate of an interaction (Moal and Fernandez-Recio, 2012), which 

suggests that at least in particular situations, some energetic factors are specific 

to the off-rate. As described in section 2.1.2, in contrast to on-rates, the off-rates 

are generally insensitive to ionic strength (Moore et al., 1999, Alexander-Brett 

and Fremont, 2007) indicating short-range forces should be more prominent. In 

the work of Moal and Bates (2012), a large set of molecular descriptors are 
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assessed for their correlation with kon and koff. In contrast to kon, no significant 

correlations where found for koff. This suggests that currently 

available descriptors are not able to represent the correlative effects of the 

dissociation rate, or more possibly there is no single dominant contributor to the 

stability to koff. Counter intuitive to what one would expect, the most prominent 

descriptors were found to be coarse-grained statistical potentials, rather than 

fine-grained atomic potentials (Moal and Bates, 2012). Nevertheless, correlations 

for koff were still lower than 0.35 and insignificant with (p>0.01). Here, it is 

proposed that the change in off-rate brought about by an interface mutation, can 

be explained by changes in the hotspot energy landscape as a result of the same 

mutation. For a mutation in question, computational alanine scans are 

preformed pre- and post-mutation to determine the hotspot energy landscape in 

each case. Hotspot descriptors are then designed to capture the changes in the 

pre- and post-mutation landscape. Using these hotspot descriptors, several off-

rate prediction models are then developed and their performance compared to 

models using standard molecular descriptors. 

 

Work on hotspots can be divided into three categories; the design of hotspot 

predictor algorithms (Tong et al., 2004, Wang et al., 2012, Xia et al., 2010, Darnell 

et al., 2007, Morrow and Zhang, 2012, Tuncbag et al., 2010, Zhu and Mitchell, 

2011, Lise et al., 2009, Lise et al., 2011, Kortemme and Baker, 2002); the study of 

distribution related properties of hotspots (Bogan and Thorn, 1998, Keskin et al., 

2005); and investigations into the use of hotspot regions as drug target sites 

(Grosdidier and Fernandez-Recio, 2012, Ma and Nussinov, 2007, Thangudu et al., 

2012). However, no work has used hotspot architecture to infer the dynamics of 

complex dissociation. In this chapter, it is shown how using hotspot descriptors 

and hence, the energies of single-point mutations to alanine, can be used to 

describe off-rate changes by mutations other than alanine, and also, multi-point 

mutations.  
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6.1.1 Anchor Points of Interaction – Hypothesis for Linking Hotspots Energy and 

Distribution to the Off-Rate 

 

The hotspot descriptors designed in this work aim to capture both the energetics 

and distribution (referred to as the ‘hotspot landscape’ for sake of clarity) of 

hotspot residues across the interface – more precisely, they capture the changes 

to the hotspot landscape brought about by the mutation in question. To link this 

to change in off-rate, the following hypothesis is proposed: 

 

‘Thinking of hotspot residues as the ‘anchor points’ of an interaction, if a mutation 

increases the number of ‘anchor points’ (or more precisely, the hotspot landscape 

has more favourable energy and distribution), this will result in higher complex 

stability, which manifests itself as a decrease in the off-rate’ 

 

 

6.1.2 Why Hotspots? 

 

There are two main properties of hotspots that could qualify them to be the ideal 

candidates to use as features over conventional molecular features: 

1. Synergy: What makes a hotspot? Essentially, the occurrence of a hotspot 

is not limited to any particular physical phenomena. Instead, hotspots 

result from the synergistic effect of a number of factors. These may 

include physicochemical and structural properties (Ofran and Rost, 

2007). Therefore, in terms of computation, hotspots prediction 

algorithms may encompass the combined contribution from a number of 

features; for example in this work, the hotspot prediction algorithm is 

built using a broad range of molecular features listed in Table 2.1 of 

Methods section 2.2 

 

2. Distribution: Hotspots share defined patterns of distributions that are not 

always observable in more traditional protein-protein interface features. 

It is known that hotspots tend to cluster into hotregions, within which, 

hotspots are suggested to be energetically cooperative (Keskin et al., 
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2005, Reichmann et al., 2005). It has also been shown that hotspots tend 

to occur more at the core regions as opposed to the rims; however, low 

solvent accessibility is not a sufficient property for a residue to be a 

hotspot (Bogan and Thorn, 1998). Even though these distributional 

patterns have been found at protein-protein interfaces, their effect on 

protein complex stability has not yet been investigated, nor exploited. 

Trying to uncover the advantage, if any, of these properties in complex 

stability is the aim of using some of the hotspot descriptors designed in 

this work. 

 

3. Simplicity: The description of an interface though hotspots is conceptually 

and visually straightforward. From a computational stand-point, the 

advantage is that one is able to represent an interface with a much 

smaller set of features without compromising accuracy, as the effects of 

several phenomena is still encompassed within the hotspots themselves. 

This reduction in feature set size is also particularly attractive in the 

context of machine learning algorithms. 

 

6.2 Methods 

6.2.1 Hotspot Descriptor Generation  

 

The use of hotspot predictions and subsequently hotspot descriptors for 

characterizing off-rates is depicted in Figure 6.1. First a pre-mutation alanine scan 

is performed; essentially this translates to using a hotspot predictor of choice on 

each residue at the interface. This generates a collection of single-point alanine 

ΔΔGs that are then employed differently depending on the hotspot descriptor in 

question (See Table 6.3 for a list of hotspot descriptors). For example if one uses 

Int_HS_Energy, then this hotspot descriptor will sum all the energies of only the 

hotspot residues. After all the hotspot descriptors for the wild-type complex are 

calculated, the mutation in question is applied using FoldX (Schymkowitz et al., 

2005), such as the Arg to Leu mutation in Figure 6.1. Then, using a hotspot 

predictor as in the wild-type scan, another computational alanine scan is 
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performed on the mutated interface. Again, all single-point alanine ΔΔGs are then 

fed into the hotspot descriptors. Continuing with the example of Int_HS_Energy 

as a hotspot descriptor, here the ΔΔGs of only the hotspot residues on the 

mutated interface are summed, and the final descriptor value will be the change 

in the sum of the single-point ΔΔGs to alanine of all hotspot residues pre- and 

post-mutation. This value is then correlated to Δkoff Leu->Arg.  

 

Figure 6.1:  Off-rate estimation using hotspot energies and organization.  

In this work a set of hotspot descriptors for characterizing off-rate changes upon 

mutation is generated. The hotspot descriptors use single-point alanine ΔΔGs 

from computational alanine-scans performed by hotspot prediction algorithms. 

The single-point alanine ΔΔGs are encapsulated in hotspot descriptors, which are 

then applied to the prediction of changes in off-rate upon single-point and multi-

point mutations to all residue types. To do so, for a given wild-type complex 

structure, the interface is scanned for hotspots using a hotspot prediction 

algorithm. The single-point alanine ΔΔGs from the scan are extracted and stored. 
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Next, the structural mutation in question is applied and the mutated interface re-

scanned for hotspots. This generates a new set of single-point alanine ΔΔGs for 

the mutated interface. Note that the mutation in question may also affect the 

hotspot energies of other neighbouring residues that are not mutated. The two 

sets of ΔΔGs are then used to generate a set of hotspot descriptors, where the 

final hotspot descriptor value is the change in the descriptor's value from mutant 

to wild-type. For example in the case of Int_HS_Energy, the final value is the 

change in the sum of the ΔΔGs, of all hotspot residues, pre- and post-mutation.  

6.3 Results 

6.3.1 Hypothesis Validation Part 1 - Explaining Off-Rate Changes Using ΔΔG 

Energies from Single-Point Alanine Mutations  

 

The hotspot descriptors map the effects of single-point and multipoint mutations 

to all residue types into energies of only single-point alanine mutations. 

Therefore, this enables off-the-shelf hotspot predictors to be used for a new 

application, the prediction of off-rate change upon mutation. To assess the 

proposition, a representative hotspot descriptor Int_HS_Energy is used as an 

example: 
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6.1 

where the difference of hotspot energies pre- and post-mutation is used as an 

estimate for the koff term,  Δlog10(koff).  Int_HS_Energy shows a PCC of R = -0.51 

with the 713 experimental Δlog10(koff) mutation values found in the SKEMPI 

database. This correlation (R=-0.51) is the average of six PCC values, as 

generated per each Int_HS_Energy descriptor of the six-hotspot predictors 

assessed in this work.  One should note that even through the hotspot predictors 

in this work employ different features and learning algorithms to build their 

hotspot models (See 5.2), all hotspot predictors except one (the worst 

performing hotspot predictor) show a consistent correlation of |R|>0.5 with 

Int_HS_Energy (See Table 6.1). The strength of observed correlations of 

Int_HS_Energy with Δlog10(koff) is in line with the hypothesis proposed and shows 

that when considering changes in off-rate, single-point and multi-point 

mutations to all residue types can be explained by energies of only single-point 

alanine mutations. In addition, the negative sign of the correlation confirms that 
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an increase in ‘anchor points’ – more precisely an increase in hotspot energies 

(from wild-type to mutant), results in a more stable interface and hence a lower 

off-rate. 

Table 6.1: Pearson's Correlation Coefficient (PCC) of hotspot descriptors 

with experimental Δlog10(koff). 

Correlations are shown for the 713 off-rate mutations in the SKEMPI database 

and for hotspot descriptors generated by each hotspot predictor.  

Hotspot Descriptor RFHotpoint1 RFHotpoint2 KFC2a KFC2b RFSpot RFSpot_KFC2 
Mean 

PCC 

Variance 

in PCC 

Int_Energy_1 -0.312 -0.312 -0.472 -0.432 -0.182 -0.289 -0.333 0.105 

No_HS -0.433 -0.266 -0.429 -0.496 -0.493 -0.496 -0.436 0.089 

Int_HS_Energy -0.568 -0.312 -0.546 -0.527 -0.532 -0.559 -0.508 0.097 

No_Clusters 0.101 -0.069 -0.075 -0.272 -0.284 -0.285 -0.147 0.159 

MaxClusterSize -0.225 0.022 0.094 0.052 -0.163 -0.292 -0.085 0.162 

AVG_HS_PathLength -0.152 -0.139 -0.031 -0.197 -0.110 -0.016 -0.108 0.071 

CoreHSEnergy -0.608 -0.365 -0.369 -0.427 -0.541 -0.560 -0.479 0.105 

RimHSEnergy -0.415 0.020 -0.100 0.000 -0.367 -0.329 -0.198 0.194 

SuppHSEnergy -0.153 -0.162 -0.617 -0.489 -0.385 -0.465 -0.379 0.187 

CoreHS -0.413 -0.281 -0.232 -0.476 -0.342 -0.440 -0.364 0.095 

RimHS -0.319 -0.071 -0.181 0.000 -0.128 -0.176 -0.146 0.109 

SuppHS -0.156 -0.153 -0.430 -0.344 -0.480 -0.441 -0.334 0.146 

HSEner_NegCoop -0.487 -0.282 -0.475 -0.260 -0.414 -0.514 -0.405 0.109 

HS_NegCoop -0.330 0.013 -0.049 -0.356 -0.415 -0.460 -0.266 0.198 

HSEner_PosCoop -0.278 -0.192 -0.218 -0.437 -0.573 -0.444 -0.357 0.150 

HS_PosCoop -0.013 -0.256 -0.138 -0.154 -0.494 -0.457 -0.252 0.190 

 

6.3.2 Hypothesis Validation Part 2 - Explaining Off-Rate Changes Using 

ΔΔG Energies from Single-Point Alanine Mutations  

 

In 4.3.1 it was shown how the change in the sum of ΔΔG energies of single-point 

mutations to alanine pre- and post-mutation shows a significant correlation to 

the change in off-rate. Though using experimental off-rates, this was found to be 

true; there are two confounding factors that need to be addressed. Firstly, ΔΔGs 

are used to estimate off-rates. Secondly, single-point ΔΔGs of alanine mutations 

are used to estimate the off-rate of mutations to non-alanine mutations, which 

also include multi-point mutations (along with single-point alanine mutations). 
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Starting first by addressing the second point; Let us assume we have a single-

point mutation at a specific residue position, from Leu to Arg, then the Δkoff  may 

be calculated as 

 

 ΔkoffLEU->ARG = koffLEU - koffARG 6.2 

 

If we assume that most of the change in binding free energy of the mutation ΔΔG, 

is a result of a change in koff  with minimal change in kon, then 

  

 ΔkoffLEU->ARG α ΔΔGLEU->ARG 

 

6.3 

Now,  

 ΔΔGLEU->ARG= ΔGARG – ΔGLEU 

 

6.4 

 = [GARGComplex- (GARGReceptor + GARGLigand)] 

 - [GLEUComplex- (GLEUReceptor + GLEULigand)] 

 

6.5 

 = GARGComplex- GARGReceptor -  GARGLigand 

 - GLEUComplex + GLEUReceptor + GLEULigand 

 

6.6 

Approaching this using only ALA mutations we have, 

 ΔΔGARG->ALA – ΔΔGLEU->ALA =  

[GALAComplex- GALAReceptor –  GALALigand – GARGComplex + GARGReceptor + 

GARGLigand]  

- [GALAComplex- GALAReceptor -  GALALigand - GLEUComplex + GLEUReceptor + 

GLEULigand] 

 

6.7 

 =  – GARGComplex + GARGReceptor + GARGLigand  +  GLEUComplex - GLEUReceptor - 

GLEULigand 

 

6.8 
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 = - ΔΔGLEU->ARG 

 

6.9 

Therefore, 

 – ( ΔΔGARG->ALA – ΔΔGLEU->ALA ) = ΔΔGLEU->ARG α ΔkoffLEU->ARG 

 

6.10 

Hence for the mutation Leu->Arg,  

where ΔΔGARG->ALA > ΔΔGLEU->ALA , the change in off-rate is negative (i.e. the off-rate 

of mutant is lower than the off-rate of the wild-type), and hence the mutation is 

stabilising. Conversely, if ΔΔGARG->ALA < ΔΔGLEU->ALA then this results in a positive 

Δkoff and hence the mutation is destabilizing. 

The key assumption here is that the change in binding free energy is mostly 

reflected through a change in the off-rate rather than the on-rate (See 6.3). To 

validate this, for the 713 off-rate mutations used in this work, the corresponding 

experimental values for ΔΔG are correlated to the Δlog10(kon) and Δlog10(koff)  

values for the same mutations. The respective PCCs between them are shown in 

Table 3A.  

Table 6.2: Relationship between experimental ΔΔG, Δlog10(koff), Δlog10(kon) 

and change in interface hotspot energy (Int_HS_Energy) for 713 mutations 

in the SKEMPI database.  

(A) PCC between experimental ΔΔG with the respective Δlog10(koff) and 

Δlog10(kon) for single-point alanine, single-point non-alanine, multi-point and all 

713 mutations. (B) PCC between Int_HS_Energy with the respective, ΔΔG 

withΔlog10(koff) and Δlog10(kon) for single-point, single-point non-alanine, 

multipoint and all 713 mutations. Experimental values for the 713 mutations 

used here are extracted from SKEMPI and detailed in Methods section 2.1.2. 

A ΔΔG Single-point alanine Single-point alanine Multi-point alanine All Types 

 
Δlog10(koff) 0.57 0.92 0.96 0.83 

 
Δlog10(kon) -0.56 -0.65 -0.65 -0.60 

B Int_HS_Energy Single-point alanine Single-point alanine Multi-point alanine All Types 

 
Δlog10(koff) -0.33 -0.34 -0.62 -0.51 

 
Δlog10(kon) 0.12 0.08 0.22 0.17 

 
ΔΔG -0.48 -0.29 -0.57 

-0.53 
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The correlations are calculated for single-point alanine mutations, single-point 

non-alanine, multi-point, and on all mutations. Namely, ΔΔG, shows a correlation 

of R=0.83 with Δlog10(koff) and R=-0.6 with Δlog10(kon). More notable is that the 

ΔΔG of multi-point and a non-alanine mutation is strongly reflected through a 

change in Δlog10(koff) (R=0.96, R=0.92 respectively). Other lines of evidence also 

show that the change in binding free energy is largely explained through a 

change in off-rate; For example, mutagenesis studies (Castro and Anderson, 

1996, Jin and Wells, 1994) have shown that increases in dissociation rate 

constants are the dominant cause for a decrease in binding affinity, and work on 

the related phenomenon of protein-DNA binding shows that 78% of the variance 

of log2(koff) is explained by the variance of information of the binding site 

sequence as opposed to 49% of the variance of log2(kon) (Shultzaberger et al., 

2007). Similarly, work on the enhancement of protein-protein association rate 

shows that mutations that affect binding free energy, as a result of affecting the 

on-rate with no change in the off-rate, are found at surface-exposed sites and 

located at the vicinity of, but outside, the binding site - as those within the 

binding site are generally off-rate modulating (Kiel et al., 2004).  Thus, for the 

713 off-rate mutation dataset, only 25% of the mutants are located at the edges 

(Rim) or outside the binding site (Surface), hence it may also be expect that the 

larger portion of mutants in the data used in this analysis, to predominantly 

affect the off-rate, as is also confirmed by the correlations in Table 3A. 

 

6.3.3 The Hotspot Descriptors and Hotspot Predictors 

 

Using Int_HS_Energy derived from our hypothesis which links hotspot energies to 

off-rates, an additional 15 hotspot descriptors were designed. The motivations 

and calculation for each of the 16-hotspot descriptors is detailed in 2.3.7. In 

summary (See Table 6.3); Int_HS_Energy, is the difference in the sum of hotspot 

residue energies pre- and post-mutation. HSEner_PosCoop and HSEner_NegCoop 

are identical to Int_HS_Energy except that, in order to account for positive and 

negative cooperativity effects between hotspots within a hotregion, the hotspot 
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energies are down-weighted and up-weighted accordingly to the size of 

hotregion they are in. CoreHSEnergy, RimHSEnergy and SuppHSEnergy, are 

 

Table 6.3: Summary of Hotspot Descriptors. 

The functional form of each hotspot descriptor and the motivations behind its 

design, are detailed in the methods sections of 2.3.7. 

Hotspot Descriptor Description 

Int_Energy_1 Change in Total Interface ΔΔGALA Energy  

Int_HS_Energy Change in Total Interface ΔΔGALA Energy of Hotspots  

No_HS Change in Number of Hotspots  

No_Clusters Change in Number of Unique Hotregions  

MaxClusterSize Change in Number of Hotspots in Largest Hotregion  

AVG_HS_PathLength Change in Hotspot Coverage  

CoreHSEnergy  Change in Total ΔΔGALA Energy of Hotspots in Core Region   

CoreHS Change in Number of Hotspots in Core Region  

RimHSEnergy Change in Total ΔΔGALA Energy of Hotspots in Rim Region  

RimHS Change in Number of Hotspots in Rim Region 

SuppHSEnergy Change in Total ΔΔGALA Energy of Hotspots in Support Region 

SuppHS Change in Number of Hotspots in Support Region 

HSEner_PosCoop Change in Total Hotspot ΔΔGALA Energy Accounting for Positive Cooperativity in 

Hotregions 

HS_PosCoop Change in Hotspot Counts Accounting for Positive Cooperativity in Hotregions 

HSEner_NegCoop Change in Total Hotspot ΔΔGALA Energy Accounting for Negative Cooperativity in 

Hotregions 

HS_NegCoop Change in Hotspot Counts Accounting for Negative Cooperativity in Hotregions 

 

similar to Int_HS_Energy, except that changes in hotspot energies are limited to 

the given region on the interface. Each of the six descriptors also have their 

coarse-grain counterparts (No_HS, HS_PosCoop, HSNegCoop, CoreHS, RimHS and 

SuppHS), where only hotspot counts instead of energies are used in the 

calculations. Other hotspot descriptors include the change in the size of the 

largest hotregion (MaxClusterSize), the number of hotregions (No_Clusters), the 

spread of the hotspots at the interface (AVG_HS_PathLength) and Int_Energy_1 

that sums the changes of all single-point alanine mutations at the interface. 

A number of hotspot predictors are investigated for the generation of hotspot 

descriptors, and in total, six sets of hotspot descriptors are generated. These 
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include hotspot descriptors generated from available hotspot prediction servers, 

KFC2a, KFC2b (Zhu and Mitchell, 2011), RFHotpoint1 and RFHotpoint2 (Tuncbag 

et al., 2010), along with the hotspot descriptors generated from hotspot 

prediction algorithms developed in this work (RFSpot, RFSpot_KFC2). 

Performance comparisons of the hotspot prediction algorithms can be found in 

5.2. The use of multiple hotspot predictors enables us to probe consistencies and 

anomalies in the predictive abilities of the hotspot descriptors. 

6.3.4 Comparison of Hotspot Descriptors with Molecular Descriptors 

 

The PCCs achieved by Int_HS_Energy and the rest of the hotspot descriptors with 

Δlog10(koff), is compared to those achieved by the benchmark set of molecular 

descriptors (See Table 2.1 in Methods section  2.2  for the full list). The molecular 

descriptor set consists of a complex and comprehensive set of 110 structure-

related descriptors characterizing various aspects of protein-protein interactions 

and their energetics. For the hotspot descriptors, 16 hotspot descriptors as 

generated by each of the six-hotspot predictors are assessed. With 713 

mutations in the dataset, all absolute correlations of |R|>0.1 are significant with 

p<0.001. Figure 6.2(A) shows all descriptors (Hotspot descriptors in green 

superimposed on the molecular descriptors in black) ranked according to their 

absolute PCCs. Consistently higher PCC values are observed for the hotspot 

descriptors. It should be noted that here one is comparing the raw predictive 

power of each descriptor in estimating Δlog10(koff); this is independent of any 

learning models trained on Δlog10(koff) data. 
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Figure 6.2: Hotspot and molecular descriptors for estimating change in off-

rate using PCC. 

 The hotspot descriptors designed in this work are benchmarked against a set of 

110 molecular descriptors; both in their ability to estimate Δlog10(koff) and in 

their ability to detect stabilizing mutations of Δlog10(koff)  < −1. The performance 

measures shown here enable us to assess the raw predictive power of the 

descriptors independent of any learning models. Green and black bars highlight 

descriptors from the hotspot and molecular descriptor sets respectively. (A) 

Comparison of the distribution of the absolute PCC values for the hotspot 

descriptors designed in this work against that for the molecular descriptors. (B) 

The top ten hotspot descriptors (green) followed by the top ten molecular 

descriptors (black), ranked according to the PCC. The highest ranked descriptors 

all relate to energetic changes in hotspots suggesting that changes in hotspot 

counts is not sufficient to characterise changes in off-rate. The most common of 

which are the Int_HS_Energy and CoreHSEnergy, where the latter only considers 

changes in hotspot energies in the core region of protein-protein interfaces. 

Apart from the DARS atomic potential, AP_MPS (Chuang et al., 2008), designed 

for protein-protein docking with |R|=0.46, the top 10 molecular descriptors are 

dominated by coarse-grain statistical potentials. The bias toward coarse-grain 

potentials is similar to that observed previously (Moal and Bates, 2012) where 
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models for wild-type off-rates were built. The correlation power of the molecular 

descriptors decreases markedly down to |R|=0.3 at just the 10th ranked 

molecular descriptor, in contrast to the hotspot descriptors where |R|=0.5.  

 

Figure 6.3: Scatter plots of best performing hotspot and molecular 

descriptors according to PCC.  

The relationship between experimental values for Δlog10(koff) and (A) hotspot 

descriptors showing highest correlation with Δlog10(koff) (SuppHSEnergyKFC2a - 

changes in hotspot energies in the support region as predicted by KFC2a (Zhu 

and Mitchell, 2011)) and (B) molecular descriptor showing highest correlation 

with Δlog10(koff) (AP_MPS - the DARS atomic potential (Chuang et al., 2008)).  

 

Scatter plots of the top performing (according to PCC) hotspot descriptor 

SuppHSEnergyKFC2a (R=-0.62) and the top performing molecular descriptor 

AP_MPS (R=0.46.) are shown in Figure 6.3. These descriptors are the best from 

their set at globally estimating the changes in off-rate, which as observed in 

Figure 6.3. Their accuracy mostly stems from their ability to model the 

destabilizing (off-rate increasing) portion of the dataset.  The underestimation of 

stabilising (off-rate decreasing) mutations and descriptors, which are better able 

to detect such mutations, is investigated in subsequent sections. 
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6.3.5 Detection of Complex Stabilizing Mutations 

 

To assess the discriminatory power of the hotspot and molecular descriptors, the 

dataset is partitioned into (Δlog10(koff)  < -1), representing the stabilizing portion 

of the dataset, and (Δlog10(koff)  > 0), representing the neutral to destabilizing 

portion of the dataset (referred to as CDS1 – Classification Dataset 1). Another 

dataset, which removes the neutral mutations as detailed in 2.1.3, is also used 

(referred to as CDS2). For an unbiased assessment of descriptor discrimination 

ability, two discrimination performance measures are calculated; the Mann 

Whitney U-Test (Figure 6.4 C,E), the MCC (Figure 6.4 D,F) – both of which are 

described in methods section 2.4. Similar to the correlations with Δlog10(koff) (i.e 

Figure 6.2 A,B), the changes in hotspot descriptors show better discrimination 

abilities than changes in molecular descriptors (Figure 6.4 C-F). This confirms 

that the hotspot descriptors, as well as possessing fine-grain predictive ability, 

also possess coarse-grain predictive ability. For example, the most 

discriminatory hotspot descriptor under the U-Test, achieves a 4-fold (CDS1) and 

5-fold (CDS2) increase in discriminatory power over the most discriminatory 

molecular descriptor. Once again, those hotspot descriptors that use the energies 

of hotspots, as opposed to counts, dominate. 
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Figure 6.4: Hotspot and molecular descriptors for estimating change in off-

rate using the MCC/U-Test.  

The hotspot descriptors designed in this work are benchmarked against a set of 

110 molecular descriptors; both in their ability to estimate Δlog10(koff) and in 

their ability to detect stabilizing mutations of Δlog10(koff)  < −1. The performance 

measures shown here enable assessment of the raw predictive power of the 

descriptors independent of any learning models. Green and black bars highlight 

descriptors from the hotspot and molecular descriptor sets respectively. (C) 

Mann Whitney U-Test rankings for all descriptors where values are ranked 

according to −log10 (pval) and represent the discrimination ability of the 

descriptors for the detection of stabilizing mutants (Δlog10(koff) < −1) from 

neutral to destabilizing mutants (Δlog10(koff) >0) (Referred to as CDS1). This 

dataset contains 31 stabilizing mutants and 503 neutral to destabilizing mutants. 

(D) Matthew's Correlation Coefficient (MCC) rankings for all descriptors on same 

dataset. (E) and (F) are identical to (C) and (D) except that results are for off-

rates that satisfy |Δlog10(koff)|  > 1. This dataset contains 31 stabilizing mutants 

and 213 destabilizing mutants (referred to as CDS2). 
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Figure 6.5: Scatter plots of best performing hotspot and molecular 

descriptors according to MCC.  

The relationship between experimental values for Δlog10(koff) and (A) top 

performing hotspot descriptor for the detection of stabilizing mutants 

(HSEner_PosCoopRFSpot – changes in hotspot energies on accounting for positive 

cooperativity in hotregions) and (B) top performing molecular descriptor for the 

detection of stabilizing mutants (CP_TB – coarse grained protein-protein docking 

potential). 

 

Scatter plots of a representative hotspot (HSEnerPosCoopRFspot) and molecular 

descriptor (CP_TB) (Tobi, 2010), are shown in Figure 6.5 C,D. These descriptors 

do well on both CDS1 and CDS2, though they still show a tendency to 

underestimate stabilizing mutations. For both CDS1 and CDS2, the positive 

cooperativity descriptors HSEner_PosCoop/HS_PosCoop dominate the ranked 

lists (Figure 6.4 C-F) and RimHSEnergy/RimHS for CDS1 (Figure 6.4 D). For 

example, HSEner_PosCoopRFSpot achieves a TPR/FPR/MCC of 0.58/0.05/0.62 for 

the detection of stabilizing mutants on CDS2. Given that HSEner_PosCoopRFSpot 

supersedes Int_HS_Energy (additivity within hotregions assumption) and 

HSEner_NegCoop (negative cooperativity within hotregions assumption), 

applying the general assumption of positive cooperativity between hotspots 

within a hotregion, and accounting for it, provides higher detection rates of 

stabilizing mutations (i.e. Δlog10(koff)  < -1). It should be noted however, that out 

of the three-hotspot predictors, which generate the most discriminatory hotspot 

descriptors (i.e. RFSpot, RFSpot_KFC2 and KFC2a), the positive cooperativity 

descriptors which show high discrimination abilities, are limited to those 

generated by RFSpot and RFSpot_KFC2. The relationship of Δlog10(koff) and 

A B 
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cooperative effects within hotregions is discussed further in the subsequent 

section 8.3 of Chapter 8. An interesting observation is that whereas for a good 

global correlation, the coarse-grain statistical potential are preferred to their 

atom-based counterparts, this is not the case for the detection of stabilizing 

mutations. Here, the physics-based energetic terms play a more important role. 

 

6.4 Discussion 
 

In this chapter, it is proposed that the energetics and architecture of hotspots on 

protein-protein interfaces can be used to estimate changes in off-rate. More 

specifically, the change in the sum of hotspot energies at an interface pre- and 

post-mutation correlates to a change in off-rate brought about by that mutation. 

Using a dataset of 713 mutations with experimental off-rates, correlations as a 

high as R=0.62 are observed for hotspot descriptors based on this proposition. 

More importantly, such hotspot descriptors perform consistently better than the 

more traditional molecular descriptors. 

This begs the question, why do hotspot descriptors dominate over molecular 

descriptors? To gain insight into why this is so, the key differences between 

hotspot descriptors and molecular descriptors are discussed. Essentially, a 

hotspot is the realisation of an optimal ‘state’ of several energetic factors. A state 

here represents the residue in question and its context i.e. surrounding residues, 

solvent accessibility etc. For an optimal state, a number of energetic contributors 

favourably combine. Naturally, one would expect that changes to these states (as 

represented by changes caused to hotspot residues) would have a more 

correlative effect to the off-rate than molecular descriptors, which consider a 

very specific energetic contribution. With this in mind, several of the molecular 

descriptors are statistical potentials, which themselves implicitly encompass a 

number of energetic contributions. Hence synergy alone is not sufficient to 

explain the better performance of hotspot descriptors over molecular 

descriptors.  



Chapter 6: Characterizing Changes in Off-Rate upon Mutation using Hotspot Descriptors 

150 
 

Another aspect of hotspot descriptors, which distinguished them from molecular 

descriptors, is the way they are calculated. Take for example the electrostatic 

interaction between all pairs of contacts;  

 

Figure 6.6: Distribution of energy across a protein-protein interface. 

Favourable interactions across a complex interface are not distributed 

homogenously.  

Molecular descriptors traditionally perform a summation over all favourable and 

unfavourable contributions that in turn result in an averaging out effect. 

Effectively, any positional of favourable interactions is lost. Hotspot descriptors, 

on the other hand, consider the contribution of only a subset of residues or those 

in specific regions of the interface. Hence the averaging out effect is less 

prominent. If distribution and not only the sum of favourable interactions 

contribute to complex stability, then hotspot descriptors may indeed capture 

effects critical for the stability of a complex that traditional molecular descriptors 

will miss. 

 

Once the summation is performed over all pairs, the resulting effect is essentially 

an averaging out effect of favourable and unfavourable interactions at the 

interface. Therefore, any positional information is lost. The cost of this loss of 

information, if any, is explained using a toy scenario, Figure 6.6. Let’s assume 

EnergyX is an enthalpic contributor, important for the stability of the complex. In 

this example, EnergyX’s total energetic contribution after summation is neutral at 

-2 kcal/mol 

-4 kcal/mol 

-5 kcal/mol 

+1 kcal/mol 

+1 kcal/mol 

-1 kcal/mol 

-1 kcal/mol 
+5 kcal/mol 

+4 kcal/mol 

+2 kcal/mol 
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0 kcal/mol. Before summation, one could appreciate a central core of favourable 

energy (-9 kcal/mol) surrounded by less favourable interactions distributed 

sparsely in the outer shell. Does this central core of favourable energy override 

the global neutrality of the total energetic sum? Whether or not this is so, the 

summation of energetic contribution across all contacts of an interface does not 

allow for this effect to be accounted for. In contrast, the hotspot descriptors are 

not a sum over all residues of the interface. Int_HS_Energy (mean PCC of R=-0.51 

with Δlog10(koff)) for example, only sums the energies of hotspots – hence 

ignoring the energetic contribution of the majority of the residues. Interestingly, 

when one considers the energetic contribution of all interface residues, and not 

only hotspots, the signal degrades, where Int_Energy has a mean PCC of R=-0.33. 

Therefore, any signal observed if one only considers the energies of hotspot 

residues, is lost after including the energies of the remaining non-hotspot 

interface residues. Hotspot descriptors, such as Core_HS_Energy, are even more 

selective concerning which residues they score. In this case, only the core region 

hotspots are considered yet a mean PCC of R=-0.48 and a maximum of R=-0.61 is 

achieved. Even though, on average some signal is lost when not considering 

hotspots outside the core region, one must keep in mind that its maximum R=-

0.61, is still significantly higher to that achieved by the best preforming 

molecular descriptor AP_MPS (R=0.46) with p<<0.001.  

 

  



 

152 
 

 

 

 

 

 

 

 

 

 

Chapter 7 

7  Prediction of Off-Rate Changes 

upon Mutation Using Machine 

Learning Models and Hotspot 

Descriptors 
 

In Chapter 6 it was described how changes in the hotspot energy 

landscape can be transformed into hotspot descriptors, which are able to 

estimate changes in the off-rate. Most importantly, the individual power of 

hotspots surpasses that of standard physics-based energetic terms statistical 

potentials. In this chapter, the aforementioned descriptors are combined using 

machine learning models to achieve even higher predictive performance in the 

prediction of off-rate change upon mutation.  In section 7.1 several regression 

models using both hotspot and molecular descriptors are built and the detection 

of rare residence-time increasing (off-rate decreasing) mutations is investigated 

using a number of classification models in 7.2. In section 7.3, the 713 mutations 
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in the off-rate dataset are categorized into what may be termed, data regions. 

Such data regions represent mutations that have a common physical property, or 

come from a similar type of complex or region at the interface. The effects of 

mutations within a particular data region might be more or less difficult to 

predict than mutations within another. Therefore, data region analysis enables 

us to identify current strengths in the prediction of off-rates and conversely, 

mutations, which are consistently harder to characterise. The effects of 

conformational changes and cross-validation routines are presented in the 

remaining sections. 

 

7.1 Off-Rate Prediction Using Machine Learning Models with 

Hotspot and Molecular Descriptors 
 

Confirming that energy estimates of single point-alanine mutations can be used 

to describe the effects of off-rate changes of single- and multi-point mutations 

not limited to alanine, it is next assessed whether the whole set of 16 hotspot 

descriptors, from each hotspot prediction algorithm, can be combined 

synergistically in a model for off-rate prediction to achieve even higher 

correlations. A separate Random Forest (RF) regression model is trained on the 

713 off-rate mutant dataset using the hotspot descriptors generated by each 

hotspot predictor (RFSpotOff-Rate, RFSpot_KFC2Off-Rate, RFHotpoint1Off-Rate, 

RFHotpoint2Off-Rate, KFC2aOff-Rate and KFC2bOff-Rate). In addition, models that add the 

set of 110 molecular descriptors to the hotspot descriptors (RFSpot+MolOff-Rate, 

RFSpot_KFC2+MolOff-Rate, RFHotpoint1+MolOff-Rate, RFHotpoint2+MolOff-Rate, 

KFC2a+MolOff-Rate and KFC2b+MolOff-Rate) are also built for comparison. Note that 

the Off-Rate subscript is used to distinguish the off-rate predictor trained on 

hotspots, from the actual hotspot predictor generating the hotspot descriptors in 

question. The 20-fold cross-validation (CV) results are concatenated to form of a 

set of 713 test predictions and their PCC with Δlog10(koff) calculated and 

presented in Table 7.1. 
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Table 7.1 PCC values of off-rate regression models.  

PCC values are generated using the experimental values for Δlog10(koff) from 

713 off-rate mutations in the SKEMPI database and the predicted values for 

Δlog10(koff) from the regression models using 20-Fold CV. CP – Coarse-Grain 

Potentials, AP – Atomic-Based Potentials, CP-AP, All statistical Potentials, PB – 

Physics based Energy Terms.  

 

Figure 7.1: Scatter plots of best performing off-rate regression models.  

The relationship between experimental values for Δlog10(koff) and predicted 

values for  Δlog10(koff) with (A) RFSpot_KFC2Off-Rate+Mol, the best performing off-

rate prediction model combining hotspot and molecular descriptors. Hotspot 

descriptors for this model are generated using the RFSpot_KFC2 hotspot 

prediction algorithm. (B) RFSpot_KFC2Off-Rate+Mol, the best performing off-rate 

Hotspot Descriptor + Molecular Descriptor Models 

Model PCC 

RFSpotOff-Rate, + MOL 0.78 

RFSpot_KFC2Off-Rate + MOL 0.79 

RFHotpoint1Off-Rate + MOL 0.77 

RFHotpoint2Off-Rate + MOL 0.75 

KFC2aOff-Rate + MOL 0.74 

KFC2bOff-Rate + MOL 0.75 

Hotspot Descriptor Models 

Model PCC 

RFSpotOff-Rate, 0.74 

RFSpot_KFC2Off-Rate 0.77 

RFHotpoint1Off-Rate 0.73 

RFHotpoint2Off-Rate 0.7 

KFC2aOff-Rate 0.7 

KFC2bOff-Rate 0.71 

Molecular Descriptor Models 

Model PCC 

CPOff-Rate 0.68 

APOff-Rate 0.61 

CP_APOff-Rate 0.69 

PBOff-Rate 0.72 

MolecularOff-Rate 0.73 
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prediction model using only hotspot descriptors. Hotspot descriptors for this 

model are again generated using the RFSpot_KFC2 hotspot prediction algorithm. 

(C) MolecularOff-Rate, off-rate prediction model using molecular descriptors. The 

addition of hotspot descriptors as observed in (A) compared to the molecular 

descriptor model only as shown in (B) notably improves the prediction of 

stabilizing mutants, which are all found in the lower left quadrant for 

RFSpotKFC2Off-Rate+Mol. 

Figure 7.1, shows the best performing off-rate models from each class. The class 

here refers to the type of features used for off-rate prediction – molecular 

descriptors only (Figure 7.1c R=0.73), hotspot descriptors only (Figure 7.1b 

R=0.77 and p<0.05 to R=0.73), hotspot and molecular descriptors (Figure 7.1a 

R=0.79 and p<0.005 to R=0.73). Besides exhibiting higher correlations, off-rate 

models using hotspot descriptors (Figure 7.1a and Figure 7.1b), show fewer 

mutations in the lower right quadrant, and hence better at identifying off-rate 

decreasing mutations than a model using molecular descriptors (Figure 7.1c). 

This is investigated more specifically in 7.2 using classification models and 

performance measures. The performance of models created from different 

categories of molecular descriptors is also investigated (See Table 7.1 ). These 

include Atomic Potentials (AP), Coarse-grain Potentials (CP) and Physics-Based 

energy terms (PB). The physics-based descriptors model (PBOff-Rate, R=0.72) 

which include CHARMM (Brooks et al., 2009), FoldX (Schymkowitz et al., 2005) 

and PyRosetta (Chaudhury et al., 2010) energy terms performs better than the 

coarse-grain (CPOff-Rate, R=0.68) and atomic (APOff-Rate, R=0.61) statistical 

potentials alone or combined (CP_APOff-Rate, R=0.69). RFSpot_KFC2Off-Rate (R=0.77) 

built on hotspot descriptors only, achieves higher PCC than a model with all 

molecular descriptors combined (CP_AP_PBOff-Rate, R=0.72), whereas the highest 

correlation is still achieved when combining both molecular and hotspot 

descriptors (RFSpot_KFC2+MolOff-Rate, R=0.79), as previously highlighted.  
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7.2 Prediction of Stabilizing Mutations 
 

Similar to the regression Random Forest models, several Random Forest 

classification models are also built for the detection of stabilizing (i.e. Δlog10(koff)  

< -1) mutants and models trained and tested on both Classifier Dataset 1 (CDS1) 

and Classifier Dataset 2  (CDS2) using 20-Fold CV. Comparison of the MCCs 

achieved on CDS1 and CDS2 shows that the ability to detect stabilizing mutants is 

diminished when neutral mutations are present. The highest MCC achieved for 

CDS1 is achieved by RFSpot_KFC2Off-RateC (MCC=0.60, TPR=0.45, FPR=0.01) and 

RFSpot+MolOff-RateC for CDS2 (MCC=0.82, TPR=0.84, FPR=0.02). 
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Table 7.2: MCC values of off-rate classification models.  

MCC values for off-rate classifier model predictions for classification data sets 

CDS1 and CDS2. CDS1 includes neutral mutations whereas CDS2 excludes neutral 

mutations; hence the detection of stabilizing mutants is enhanced in the latter, 

though results for CDS1 are more relevant for interface design scenarios. All 

results are based on 20-fold CV. CP – Coarse-Grain Potentials, AP – Atomic-Based 

Potentials, CP-AP, All statistical Potentials, PB – Physics based Energy Terms. 

Hotspot + Molecular Descriptor Models 

Model MCC CDS1 MCC CDS2 

RFSpotOff-RateC, + MOL 0.56 0.82 

RFSpot_KFC2Off-RateC + MOL 0.58 0.72 

RFHotpoint1Off-RateC + MOL 0.53 0.55 

RFHotpoint2Off-RateC + MOL 0.56 0.63 

KFC2aOff-RateC + MOL 0.44 0.6 

KFC2bOff-RateC + MOL 0.5 0.63 

Hotspot Descriptor Models 

Model MCC CDS1 MCC CDS2 

RFSpotOff-RateC 0.53 0.73 

RFSpot_KFC2Off-RateC 0.6 0.79 

RFHotpoint1Off-RateC 0.3 0.5 

RFHotpoint2Off-RateC 0.53 0.62 

KFC2aOff-RateC 0.4 0.66 

KFC2bOff-RateC 0.43 0.55 

Molecular Descriptor Models 

Model MCC CDS1 MCC CDS2 

CPOff-RateC 0.43 0.54 

APOff-RateC 0.35 0.43 

CP_APOff-RateC 0.5 0.51 

PBOff-RateC 0.4 0.53 

MolecularOff-RateC 0.53 0.68 
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Figure 7.2: Detection of rare complex stabilizing mutations using off-rate 

classification models.  

(A) Ranked list of 31 stabilizing mutations (Δlog10(koff) <-1) in the SKEMPI off-

rate dataset. The list is ranked according to the number of off-rate prediction 

classification models that detect the mutation in question as stabilizing. 

Detections per model (B) are highlighted with white cross in a blue box, and non-

detections highlighted with a white box.  The lower portion of (A) is dominated 

by single-point mutations to alanine residues, which suggests that the stabilizing 

effects of these mutations, as opposed to their more common 

neutralizing/destabilizing effects, are much harder to characterise. 

Figure 7.2 shows the list of 31 stabilizing mutants (Δlog10(koff)  < -1) sorted 

according to the number of classifiers that detect the given mutation as 

stabilizing.  Of particular interest are those stabilizing mutations that go 

undetected, and therefore only data from CDS2 is used as all mutations 

undetected in CDS2 were also undetected in CDS1 (though not the contrary). 

Two stabilizing mutants go undetected by of the all the predictors, namely the 

double alanine mutant VA216A-YB50A for protein complex 1JTG (RSCB protein 

data bank code) and the 4-point mutant CB161L-CB299F-KB287C-KB294C for 

protein complex 1MQ8. The mutations, which tend to be undetected by most of 
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the classifiers, generally involve a mutation to an alanine residue. Alanine 

mutations are generally neutral in their ability to destabilize a complex. For the 

rare situation in which an alanine mutation actually stabilizes a complex 

interface the likely interpretation is that several side-chains may sometimes 

hinder binding (Clackson et al., 1998, Cunningham and Wells, 1989). For 

example several alanine-shaving experiments show an increase in the binding 

affinity and an octa-alanine mutant of hGH, binding hGHbp 50-fold times tighter 

than the wild-type (Clackson et al., 1998, Cunningham and Wells, 1989).  

7.3 Prediction Patterns and Data Region Analysis 
 

So far it is observed that an off-rate prediction model with hotspot descriptors 

does better than one with molecular descriptors and the highest performance is 

achieved when combining both sets of descriptors. As a consequence, several 

questions come to mind; for which mutation types are the hotspot descriptor off-

rate models achieving an enhanced performance compared with molecular 

descriptor off rate models? What information is gained by adding the molecular 

descriptors to the hotspot descriptor off-rate models? Is there any orthogonal 

information that the hotspot and molecular descriptors are capturing?  

To address these questions, the performance of the off-rate models is assessed at 

subsets of the dataset, termed ‘Data Regions’. The data regions include mutations 

at the core/rim/support (CORE/RIM/SUPP) regions; mutations on complexes 

with large/small interface areas (LIA/SIA); mutations to alanine (ALA) and non-

alanine (N_ALA); mutations to polar/hydrophobic/charged (POL/HYD/CHARG) 

residues and finally single-point (SP) mutations as well as multi-point (MP) 

mutations. 
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7.3.1 Orthogonal Information Content in Hotspot and Molecular Descriptor 

Models 

 

 

Figure 7.3: Orthogonal information content in hotspot and molecular 

descriptor models.  

The 713 off-rate data set is divided into data regions where the performance of 

the off-rate regression models can be assessed on the subset of mutations that 

are in the given region. The data regions include mutations at the 

core/rim/support (CORE/RIM/SUPP) regions; mutations on complexes with 

large/small interface areas (LIA/SIA); mutations to alanine (ALA) and non-

alanine (N_ALA); mutations to polar/hydrophobic/charged (POL/HYD/CHARG) 

residues and finally single-point (SP) mutations as well as multi-point (MP) 

mutations. Black bars indicate the change in PCC for the given data region when 

adding hotspot descriptors to a molecular descriptor off-rate model. Conversely, 

blue bars represent the change in PCC for the given data region when adding 

molecular descriptors to a hotspot descriptor an off-rate model. 

Keeping in mind that MolecularOff-Rate is a model trained only using molecular 

descriptors, and RFSpot_KFC2Off-Rate is one trained using only hotspot 

descriptors, the model which combines both hotspot descriptors and molecular 

descriptors (RFSpot_KFC2Off-Rate+Mol) can be assessed in two ways – the 

improvement in correlation achieved by adding hotspot descriptors to 

MolecularOff-Rate (Figure 7.3 black bars) or vice-verse, the improvement in 

correlation achieved by adding molecular descriptors to RFSpot_KFC2Off-Rate 

(Figure 7.3 blue bars). The magnitude of each positive change indicates the 

extent that the addition of the descriptor adds new (or rather orthogonal) 
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information to the model, which is then exploited by the learning model. This is 

what is observed for ten of the twelve data regions when hotspot descriptors are 

added to MolecularOff-Rate (as shown by the positive black bars in Figure 7.3). On 

the other hand, no and minimal change (characteristic of the blue bars), suggest 

that the addition of the molecular descriptors does not provide any new 

information that was not available in the existing hotspot descriptor model, or in 

some situations, even compromise the accuracy of the hotspot descriptor model 

by contributing to noise in model output as a consequence of being a weak 

descriptor.  

7.3.2 Accurate and Weak Regions of Accuracy in the Prediction of Off-Rates 

Using Data Regions  

 

The performance of regression models trained on the whole 713 off-rate dataset 

is assessed by calculating the PCC on the mutations of each data-region. Figure 

7.4 shows, for each data region, a heatmap with these PCCs. From this it can be 

observed:  

1. Rim regions are poorly characterised: All off-rate predictors obtain good 

correlation for core mutations, less so for support region mutations, and the 

weakest correlations are found for rim region mutations. The addition of 

molecular descriptors to the models, as presented in the lower half of the 

heatmap, increases the accuracy of the predictors both at the core and support 

regions, though rim regions are still inadequately characterised. One should note 

that there are 355 mutations, which affect the core region in the dataset to only 

148 and 182 affecting the rim and support regions. This imbalance in the dataset 

may attribute to a weaker performance in the rim region mutations. The lowest 

correlations are for the rim regions, and found for the models derived from 

statistical potentials (CPOff-Rate, APOff-Rate, CP_APOff-Rate). The lack of predictive 

power here may lie in their inability to model solvation effects, which are more 

prominent at the rim. Off-rate models using the physics-based descriptors show 

a higher correlation of R=0.4 at the rim regions. Models with only hotspot 

descriptors, on the other hand, generally achieve correlations of R>0.5 with 

RMAX=0.5. 
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Figure 7.4: Correlation heatmap of off-rate regression algorithms on data 

regions. 

(A) Off-Rate regression models that use hotspot descriptors, or a combination of 

hotspot and molecular descriptors. The different methods indicate the hotspot 

prediction method by which the hotspot descriptors where generated from. The 

respective data regions are shown on the x-axis and values in matrix show the 

PCC achieved by the given model for the given data region. (B) is similar to (A) 

except that off-rate prediction models using subsets of molecular descriptors are 

investigated. CP – Coarse-Grain Potentials; AP – Atomic-Based Potentials; CP-AP 

– All Statistical Potentials; PB – Physics Based Energy Terms. As a benchmark 

comparison, results for RFSpot_KFC2Off-Rate (best performing off-rate predictor 

A 

B 
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using hotspot descriptors) and RF_Spot_KFC2Off-Rate+MOL (best performing off-

rate predictor using hotspot and molecular descriptors) are also included. 

2. Predictions on Large-Interface-Area Complexes, for Non-Alanine Mutations, 

improved with molecular descriptors: The hotspot descriptor predictors are 

better at capturing effects of mutants on Small-Interface-Area (SIA) than Large-

Interface-Area (LIA) complexes. This discrepancy is alleviated with the addition 

of molecular descriptors to the models. Single-point mutations to alanine are 

generally better characterised than single-point mutations to non-alanine. This 

discrepancy is most accentuated for the less accurate hotspot predictor models 

and less so for the molecular descriptor models.  

3. The hotspot descriptor model outperforms the molecular descriptor model for 

mutations to polar, hydrophobic and charged residues: The all-molecular 

descriptor off-rate model achieves PCCs of R=0.6, R=0.53, R=0.42 on polar, 

hydrophobic and charged residues respectively. Even though certain molecular 

descriptors are designed specifically for addressing electrostatics, degradation in 

performance is observed for charged residues. Interestingly, an accurate hotspot 

descriptor off-rate model, such as RFSpotOff-Rate, achieves PCCs of R=0.67 

(p=0.12), R=0.61 (p=0.28) and R=0.62 (p<0.001) for the same data regions, and 

shows significant increases in correlation to its molecular model counterpart on 

the prediction of charged residues; here p-values show the significance of the 

difference in PCC when compared to the molecular descriptor models. 

4. Multi-point mutations are notably better characterised than single-point 

mutations: Correlations for multi-point (MP) mutations have an average PCC of 

RMEAN=0.85 and are as high as RMAX=0.9 for certain models. This is in contrast to 

the PCCs achieved for single-point (SP) mutations (RMEAN=0.55) and indicates 

that the subtleties of SP mutations are harder to characterise than the collective 

effect of multi-point mutations. Note that, though theoretically, MP mutations 

have the potential to cause off-rate changes of larger magnitudes, this is not so in 

the present dataset, where the mean and standard deviation of |Δlog10(koff)| for 

MP mutations is 0.96 and 1.4 compared to 1.17 and 1.48 for SP mutations. 

Therefore, one cannot conclude that the reason for better prediction of multi-
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point mutations is related to being able to predict extreme changes in Δlog10(koff) 

better than subtle changes in Δlog10(koff).  

 

7.3.3 Specialized Feature Selection Models for Off-Rate Prediction 

 

The above analysis was performed using models trained on all the 713 off-rate 

mutations in the dataset, of which the predictions were then subset into data 

regions for separate analysis. Here, off-rate models, which are only trained on 

subsets of mutations, as defined by the data regions, are investigated. Separate 

models are built for the different data regions of the dataset using a Genetic 

Algorithm for Feature Selection (GA-FS). All 110 molecular descriptors and 16 

hotspot descriptors generated from the RFSpot_KFC2 hotspot predictor were 

made available for feature selection. The feature set size was set to five features 

to avoid over-fitting and both non-linear (using Support Vector Machines, SVM) 

and linear (using Linear Regression, LR) models were investigated. For every 

data region, 50 separate GA-FS runs were performed; an inner-cross validation 

loop was used for FS (and SVM parameter optimization), whereas an outer-cross 

validation loop was used for testing the final model. The results of specialized 

models for the data regions are shown in Figure 7.5 (GS-FS LR in Red and GA-FS 

SVM in blue). The performance of the specialized models on the data regions is 

compared to that of the best performing global off-rate prediction model (i.e. 

RFSpot_KFC2+MolOff-Rate). For most of the data regions, there is no advantage in 

having such specialized models, as having a global one-fits-all model suffices. 

However, for mutations in the rim region, and mutations to charged residues, 

having a specialized model significantly increases the correlation of off-rates in 

these data regions (p=0.04 and p<<0.001 respectively).  
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Figure 7.5: Performance comparison of specialized models against one-fits 

all model.  

GA-FS Feature Selection Models using Genetic Algorithm are run for different 

data regions of the off-rate dataset for which both linear (using Linear 

Regression  - GA-FS (LR) ) and non-linear (using SVM Regression GA-FS (SVM)) 

models are investigated. The figure shows the mean PCC of the optimal models 

found by the GA-FS runs for each data region. For comparison, PCC results on the 

data regions results are also shown for RFSpot_KFC2Off-Rate+Mol. Note that the 

latter model is trained on all 713 off-rate mutations, and the predictions are 

separated post prediction into data regions and analysed for their PCC. This 

effectively compares the predictions of specialized models vs. one-fits-all model. 

Though there is no overall evidence that specialized models perform better than 

a one-fits-all model, certain subsets of mutations, such as those at the rim 

regions, show notable improvements when a specialized model is employed. 
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7.3.3.1 Broadly Predictive and Highly Specific Descriptors for Off-Rate Data 

Regions 

 

Figure 7.6: Dataset heterogeneity in the 713 off-rate dataset.  

(A) and (B) shows the importance of the most selected features for each data 

region. The features shown are those that are part of the final model, for any data 

region for more than 50% of the GA-FS runs; colour bar displays this percentage. 

The features on the y-axis are ranked starting from (Coarse-grain Potentials, 

Atomic-based Potentials, Physics-Based Energy Terms and Hotspot Descriptors). 

The heat maps show how different descriptors are needed to accurately predict 

the mutations on different data regions. 

 

Here, the relationship between the descriptors and data regions is investigated 

using the final features selected in the GA-FS runs. Initially available for the GA-

FS algorithms are a set of 16 hotspot descriptors (generated from the hotspot 

predictor RFSpot_KFC2) and 110 molecular descriptors. For each region, the 

descriptors which are part of the final model, in at least half of the total number 

of runs, are singled out for analysis and presented in heat maps which indicate 

their importance to the given data region (Figure 7.6a: GS-FS (LR) and Figure 7.6b 

GS-FS (SVM)). On the y-axis, the singled out descriptors are listed and sorted 

according to descriptor type (CP, AP, PB, and hotspot descriptors from top to 

bottom), with each data region shown on the x-axis. Globally, it is observed that 

whereas for LR models, top features are distributed throughout the four main 

feature categories, for the non-linear SVM models, 61% of the features are 

hotspot descriptors, suggesting that non-linear relationships between hotspot 
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descriptors can be better exploited for the predictions of off-rates. Note that, if 

hotspot descriptors were equally important to molecular descriptors, only 12% 

of the final features would be expected to be hotspot descriptors. 

 

Figure 7.7: Descriptor – data region networks. 

 (C) and (D) are descriptor-data region networks for Figure 7.6a and Figure 7.6b 

respectively. Circled nodes represent data regions and square nodes represent 

features; therefore, only edges between circle and square nodes are present. An 

edge is present if the feature is in the final model for the given data region in 

more than 50% of the GA-FS runs (dotted edge), between 70-90% of the GA-FS 

runs (normal edge), more than 90% of the GA-FS runs (bold edge). Coarse-grain 

Potentials (blue), Atomic-based Potentials (yellow), Physics-Based Energy Terms 

(green), Hotspot descriptors (pink) and data regions (gray). From the descriptor-

data region networks, descriptors highly specific to certain classes of off-rate 

mutations can be observed. Conversely, as in the case of the GA-FS (SVM) data 

region network, a cluster of broadly predictive hotspot descriptors is also shown. 

 

To visualize the interconnections between descriptors and data regions, 

descriptor-data region networks are generated for both the LR (Figure 7.7 C) and 

SVM (Figure 7.7 D) GA-FS runs. An edge between a descriptor and a data region is 

shown if the given descriptor is part of the final GA-FS model in at least 50% of 

the GA-FS runs for the given data region (with increasing edge weight for > 

50%). Several descriptors are highly specific to certain data regions. For instance 

in the LR model (Figure 7.7 D), two statistical potentials, (AP_T1 (Tobi, 2010)  and 

CP_MJ2 (Miyazawa and Jernigan, 1996)), are specific to rim region mutations. 

Whereas others, such as HS_PosCoop, as highlighted by their high degree, are 
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broader in their predictive value and can explain off-rate changes in a number of 

data regions collectively. Interestingly, for the support regions, MaxClusterSize is 

invoked which suggests that larger hotregions in the support regions may be 

important for complex stabilization. Certain descriptor-data region relationships 

hold for both LR and SVM models, such as the electrostatic contributions 

(CHARMM_elec (Brooks et al., 2009)) from mutations on complexes of large-

interface-area (LIA). The ability to model nonlinearities between features, 

invokes some different descriptors. Most notably, a key observation specific to 

the SVM descriptor-data region network is a central cluster of highly 

interconnected hotspot descriptors and data regions, which involve HS_PosCoop, 

HSEner_PosCoop, Int_HS_Energy and RimHSEnergy. 

 

7.4 Off-rate Prediction and Conformational Changes 
 

Predictions of all off-rate regression models are analysed separately for 

mutations on complexes that show significant backbone conformational changes 

for, either or both, binding partners upon complex formation. The subset of 

complexes for which the unbound crystal structures of the wild-type complex are 

available, were singled-out and their I_RMSD values for backbone 

conformational rearrangements were extracted from the work of Kastritis et al. 

(2011). This subset of complexes for which unbound crystal structures are 

available, amounts to 17 complexes and 332 mutations. A total of 67 mutations 

on four complexes show significant conformational changes with (I_RMSD  >1.5 

Å), and if the threshold is lowered to (I_RMSD  >1 Å), this results in 119 

mutations on six complexes. 



Chapter 7. Prediction of Off-Rate Changes upon Mutation using Machine Learning Models 
and Hotspot Descriptors 

169 
 

 

Figure 7.8: Effects of conformational changes on off-rate prediction.  

From the predictions of the original 13 regression models developed for off-rate 

prediction. The predictions are assessed separately (PCC with Δlog10(koff)) for 

mutations on complexes which undergo significant backbone conformational 

changes of I_RMSD > 1.5 Å (dark green), notable conformational changes of  

I_RMSD > 1 Å (light green) and little to no conformational changes I_RMSD < 1 Å 

(dark blue). Predicted accuracy is directly related to the magnitude of 

conformational change and becomes highly dependent on the model at high 

conformational changes. I_RMSD values extracted from (Kastritis et al., 2011). 

 The PCCs for the off-rate model predictions with Δlog10(koff) are shown under 

three conformational change categories (Figure 7.8). The PCC, for complexes 

which show little to no conformational change (I_RMSD < 1.5 Å), averaged over 

all prediction models, shows a correlation of R=0.86, which decreases to R=0.58 

at (I_RMSD >1 Å) and R= 0.28 at (I_RMSD > 1.5 Å). Though for the latter category, 

RFSpotOff-Rate achieves a correlation of R=0.43. Changes in the different models 

are more apparent for complexes with higher conformational changes, most 

notably is the discrepancy in PCC between Molecular and RFSpotOFF-Rate Off-Rate 

prediction models. This discrepancy is minimal at complexes with little 

conformational changes, ΔR= 0.01I_RMSD <1.5 Å and increases to ΔRI_RMSD >1 Å =0.11 

and ΔRI_RMSD >1.5 Å= 0.24 for complexes with significant conformational changes.  
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7.5 Effects of Cross-Validation Routine on Off-Rate Prediction 

Performance 

 

 

Figure 7.9: PCCs for off-rate prediction models using the 713 off-rate 

mutant dataset from SKEMPI.  

Leave-Complex-Out CV(LCO-CV), Leave-Homology-Out CV (LHO-CV) and LCO-CV 

for complex which undergo minimal to no conformational changes with I_RMSD 

< 1.5 Å as defined in (Kastritis et al., 2011). The models differ by their features 

sets. First six use hotspot descriptor sets, followed by a molecular descriptor set 

model (Molecular), and models that combine both (+Mol). Degradation in 

performance is observed when using both LHO (blue bars) and LCO-CV (beige 

bars) routines. This degradation is less evident once controlled for 

conformational changes (green bars). 

 

The results presented in previous sections which use 20-fold cross validation for 

the generation of test predictions, are an estimate of predictive power given one 

already has some mutant information on the complex in question to train upon. 

This type of cross validation is not a valid estimate of a model’s general ability to 

predict on an unseen complex. Therefore, two additional cross-validation 

mechanisms were also applied; Leave-Complex-Out CV (LCO-CV), where all 

mutations of a complex are left out as a test set and Leave-Homology-Out CV  
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(LHO-CV); a more stringent form of cross-validation which accounts for 

homology and interface similarity as devised in the work of (Moal and 

Fernandez-Recio, 2012). The proteins held out in each LHO-CV fold are listed in 

the appendices Table 10.1. The PCCs of the test predictions with Δlog10(koff), of 

the two CV routines, are shown Figure 7.9. Given that for 20-Fold CV, R > 0.7, for 

LCO-CV and LHO-CV, the models severely over-fit. In essence, the predictive 

ability of the hotspot descriptors such as HSEner_PosCoopRFSpot (|R|=0.57), 

Int_HS_EnergyHotpoint1 (|R|=0.57) and SuppHSEnergyKFC2a (|R|=0.62) is being 

impeded by the learning model and noise from other features.  It is important to 

note that the LHO-CV might not be well suited for certain practical purposes. For 

example, if one wishes to be able to predict mutations on an enzyme inhibitor 

complex, it would be natural to have such complexes in the training set, unlike 

what is actually done here for LHO-CV. The largest amount of over-fitting is 

observed for the molecular descriptor model, which is alleviated with the 

hotspot descriptor models and in both CV mechanisms, the correlations achieved 

by the hotspot descriptor models, is higher than that achieved by the molecular 

descriptor set model. LCO-CV was also performed on the subset of 14 complexes 

and 265 mutations, which show little to no conformational change. It is observed 

that the reduction in ability to model the effects of mutations on 

unseen/unrelated is largely affected by conformational changes. For example, for 

RFSpot_KFC2Off-Rate, the correlation achieved is as high as 0.8 when limited to 

rigid complexes, even when LCO-CV is being performed.  

 

7.6 Discrepancy in Prominent Features Across LHO Folds 
 

The low prediction accuracy across LHO folds suggests that descriptors 

responsible for one fold are not generalizable to others. To investigate this, 

models are built for mutations only within a fold and the most important 

features are highlighted and compared to the features from models built on 

other LHO folds. Genetic Algorithm Feature Selection (GA-FS) is used to build 

such specialized off-rate prediction models and both linear and non-linear 

models are investigated. 
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Figure 7.10: Heterogeneity across different protein families.  

Left: GA-FS (LR), Right: GA-FS (SVM). The colour bar indicates the percentage 

number of times the given feature made it to the feature set of the final model 

after a GA-FS run. Features shown are those which make it to the final model 

more than 50% of the time for at least one set on the x-axis. As observed in both 

heat maps, different protein-families need to employ different descriptors in 

order to be accurately predicted.  

 

The Features that make it to the final models (Figure 7.10 left for LR and Figure 

7.10 right for SVM) indicate heterogeneity in the features selected across folds, 

and no one-feature-fits-all may be identified. This again may contribute to the 

reduction in PCCs when using LHO-CV mechanisms, as mutations on unseen 

complexes may be better predicted using features that were not prominent in 

the training set mutations. Biases related to different experimental methods 

from which the Δlog10(koff) of the mutations where calculated are also known to 

have significant effects on the prediction of binding free energies (Kastritis and 

Bonvin, 2010, Moal et al., 2011) and may also play a role in the reduction of 

accuracy when using LHO- and LCO-CV mechanisms. 
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7.7 Dicussion 
 

To assess the predictive abilities of hotspot descriptors when combined in 

learning models, several machine learning models trained on Δlog10(koff) are 

investigated in this chapter. Hotspot descriptor models provide more accurate 

predictions for  Δlog10(koff)  than molecular descriptor models and the best 

regression model, which combines both molecular and hotspot descriptors, 

RFSpot_KFC2Off-Rate+Mol, achieves a PCC of R=0.79 with experimental off-rates.  

 

7.7.1 Dataset Heterogeneity, Descriptors and Learning Models 

 

The assessment of predictor performance on different subsets of the dataset 

termed as ‘data regions’ and the subsequent generation of ‘descriptor-data 

region networks’, proved to be an insightful exercise. Firstly, it puts to light the 

interconnected relationship between, dataset heterogeneity, descriptors and 

learning models and secondly it highlights regions that still require attention.  

An example, which is representative of both these points, is the prediction of 

mutations in rim regions. When using a global off-rate model, there is a striking 

discrepancy in our ability to model off-rate changes for mutations in rim regions 

as opposed to the core regions. What is special about rim mutations that render 

them to act differently than other mutations? What makes them harder to 

predict? There are several mechanisms at play that must be considered. Firstly, 

what has been uncovered is that the features, which are able to characterise 

changes in off-rate for the majority of mutations, fail to do so for the subset of 

mutations at the rim regions. This does not necessarily mean that there are not 

descriptors that are able to characterise the rim region mutations well. Rather, it 

may very well be that there are very specific descriptors which are able to 

characterise mutations at the rim regions, but the learning model has no way to 

distinguish between rim mutations and core mutations. Therefore, the learning 

model cannot apply different descriptors to such regions separately.  To assess if 

the latter is true, models specific to (trained and tested on) rim region mutations 

only, were built using the (GA-FS SVM/LR) models. Here the GA-FS SVM model 
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achieves R=0.58. This in comparison to R=0.38 (p=0.04) achieved on the rim 

region mutations using a global off-rate model. This shows that indeed, there are 

descriptors within the feature set, which are able to characterise rim regions 

better, and such descriptors are highly specific to mutations occurring at the rim. 

However, it is important to note that the increase in correlation to R=0.58 for rim 

region mutations is only achieved using the non-linear model (SVM). This is not 

the case with the linear LR model, even though the LR model is also specific to 

(i.e. trained and tested on) rim region mutations. One can therefore appreciate 

that in datasets which are heterogeneous, any generalizations about the 

importance of descriptors, are highly dependent on not only the data-region in 

question but also on the learning model used.  

 

Figure 7.11: Ways in which different learning algorithms link descriptors 

to a dataset. 

 Datasets of protein-protein interactions and mutations at protein interfaces are 

intrinsically heterogeneous. This renders the ‘one-fits-all’ assumption of Linear 

Regression (A) very limiting, even if not considering the limitations brought 

about by the linear assumption. (B) Learners which are able to distinguish 

between different ‘data regions’ within a dataset may apply descriptors which 

are specific to that region only. These include Look-Ahead Regression Trees and 

Hierarchical Mixture Models. (C) Certain descriptors might not be only accurate 

within certain ranges, hence models such as Multi-Adaptive-Regression-Splines 

(MARS), which are selective on which regions of the descriptor are used in the 

final model, maybe be used. 

Understanding this 3-way relationship between descriptors, data-regions and 

the learning models used, is an important consideration for the prediction of off-

rates on similar datasets to that used in this work. Effectively, the learning model 

is nothing but a linker of descriptors to data. The various scenarios differing by 

    Data Region 

Descriptor 
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Descriptor Descriptor 

           Data Set 
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the way learning models link descriptors to data are summarized in Figure 7.11. 

If the dataset is heterogeneous, and data-regions for which certain descriptors 

are specific to do exist, then the data-regions should be made visible to the 

model. Introducing categorical features as an indicator to a data region, for 

example, may do this. In addition, the learning model chosen should be able 

exploit these categorical features and selectively apply descriptors specifically to 

the data regions indicated by them. Examples of which are; non-greedy decision 

trees and hierarchical-mixtures-models, as these models do not necessarily 

assume features to be ordinal. Effectively, the use of such models has the 

advantage of still having just one learning model for the whole dataset, but also 

the added flexibility of having specialized models for different data-regions.  

7.7.2 Future Endeavors – Conformational Changes 

 

Predicting the effects of mutations of complexes, which undergo significant 

backbone conformational change, remains a challenge. This is shown to be true 

both when predicting wild-type binding free energies described in Chapter 2, and 

here in the prediction of off-rate changes upon mutations. Reasons for the 

reduction in performance can be several-fold, but more than likely stem from the 

fact that all calculations use only the bound conformations of the receptor-ligand 

complex. This effectively translates itself into a one-step binding process, 

 1

2

k

k
R L RL 

 

7.1 

For complexes which undergo minimal conformational changes, this is indeed a 

sufficient approximation, as confirmed by the mean correlation of RAVG=0.86 for 

complexes with <1.5A backbone rearrangement. Once conformational changes 

come into play, then binding is better approximated using a 2-step binding 

process. 
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where, 
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7.3 

Here, the koff can be decreased even if mutations destabilize the bound-state RL*. 

Rather, the decrease in off-rate is brought about by an increased stability of the 

transition state RL (Lu and Tonge, 2010). Therefore, the accurate characterization 

of the transition state RL, which is not trivial, becomes as important as that of the 

final bound state RL*.  With conformational changes, different binding 

mechanisms also come in to play. For example Weikl and von Deuster (2009) 

show that depending on the binding mechanism (conformational selection or 

induced-fit), mutations that do not affect the stability of the interface, but affect 

the conformational equilibrium of the receptor R, also affect the off-rate. Last but 

not least, complexes are not static structures, and ideally, a similar 

conformational sampling mechanism to the one used in Chapter 2 is also 

employed to the off-rate scenario. This might be particularly important for 

complexes, which are natively unstructured/disordered in local regions, as these 

regions may still remain disordered even in the bound state (Xia et al., 2004, Zeth 

et al., 2002). Binding site variability has also been observed in certain complexes 

where the variability is not explained by experimental or procedural 

inaccuracies (Hamp and Rost, 2012).  
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Chapter 8 

8 Distribution of Stability in Protein-

Protein Interfaces 
 

Chapters 6 and 7 show how counting the energies of hotspot energies, pre- and 

post-mutation provides an accurate description of changes in Δlog10(koff). Here, 

the focus shifts on understanding to which extent, the off-rate of a complex is 

affected by the distribution of hotspots. Given that protein-protein interfaces 

contain a number of hotspots, which may occur in disjointed regions, the central 

question addressed here is the following; Are certain hotspot regions of the 

interface more susceptible to destabilizing/stabilizing the interaction upon 

mutation? For example, are hotspots at the core sufficient for high complex 

stability? Can rim hotspot residues share a role as important as that of core 

hotspot residues? Given an interface with a number of hotpots, do hotregions 

provide an added level of stability which hotspots on their own do not? Knowing 
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which hotspot regions are more important to the stability of the interaction is 

critical for inhibiting protein-protein interactions (see section 

1.4.1) and designing better protein drugs (see section 1.4.2) and to date, there is 

no study investigating this. As a basis on which the computational experiments 

are designed, results from previous work related to the distributional patterns of 

hotspots are used as initial hypotheses. 

In the first part of this work (section 8.1), the role of the core and rim hotspot 

residues is revisited in the context of the dissociation rate. To do so, the initial 

assumption taken is that the critical region of stability of a protein-protein 

interaction emanates from the core hotspots, as evidenced in the work of Bogan 

and Thorn (1998). With a number of additional computational experiments, our 

observations suggest that, for off-rates, the above only holds for large complexes. 

As for small complexes, all regions of the interface are critical for the stability of 

the interaction i.e. rim hotspot residues are as equally responsible for low 

dissociation rates. A second property of hotspots related to their distribution, is 

that hotspots tend to cluster into tightly packed regions known has hotregions 

(Keskin et al., 2005). The authors report that the conservation of this type of 

organization suggests that they are important for protein-protein association. 

However, the aforementioned analysis is not performed in relation to binding 

free energies or off-rates for protein-protein interactions and the suggestion is 

somewhat speculative in nature. In section 8.2, the extent to which the presence, 

number and size of hotregions is advantageous to complex stability, is therefore 

investigated. In the same work of (Keskin et al., 2005), it is suggested that 

hotregions are cooperative in nature and future scoring functions should account 

for this effect so as not to overestimate/underestimate the contribution of 

hotregions. In the latter sections of this work, when hotregions are tested for 

potential cooperative effects (section 8.3), no prevalent form of cooperativity is 

observed. In addition the contribution of hotregions of different sizes towards 

stability is determined under different cooperativity assumptions (section 8.4).  

 

 



Chapter 8. Distribution of Stability in Protein-Protein Interfaces 

179 
 

8.1 Critical Regions of Stability in Protein-Protein Complexes 
 

In the previous chapters 6 and 7, it was shown how the change in the off-rate of a 

complex is directly related to a change in the sum of its hotspot energies. 

Therefore no distinction is made on which hotspot energies the mutation is 

modulating. Using the hotspot energies at the core, rim and support regions, it is 

assessed whether complex stability can be effectively disrupted homogenously 

across the interface (equally across the three regions) or preferentially in a 

particular region. CoreHSEnergy, RimHSEnergy and SuppHSEnergy represent the 

change in total hotspot energies limited to each region upon mutation. 

Effectively, the PCC of these descriptors with the off-rate expresses how well 

changes in the given region show themselves as changes in log10(koff) - 

irrespective of changes in hotspot energies in any other region. Therefore, by 

assessing the relative PCCs of the three regions we can gauge whether a given 

region acts independently and dominates in its contribution to complex stability 

compared to other regions. Given that there are 6 instances of each hotspot 

descriptor, as generated per each hotspot predictor, the correlations for each 

descriptor shown are the mean of each descriptor’s correlation under the six-

hotspot predictors. Hence results can be considered to be independent of the 

hotspot predictor generating the hotspot descriptors.  

From the PCCs of the three-hotspot region specific descriptors (CoreHSEnergy 

|R| = 0.48, RimHSEnergy |R|= 0.20 and SuppHSEnergy |R| = 0.38), it is observed 

that changes in the hotspot energies at the core affect the off-rate more 

significantly than the rim (p<<0.01) and support region (p<0.01). Given that 355 

mutations affect hotspot energies in the core region compared to 148 and 182 

for rim and support regions respectively, results may however be biased. For 

example, if fewer events are observed at the rim region, there is less chance of 

the rim region playing a significant role in off-rate changes, when looking at it 

globally over a population of complexes as is done presently. To remove this 

potential bias, the subset of mutations, which affect all three regions 

simultaneously, is extracted and PCC recalculated. The PCCs still suggest 
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dominance from the core region (|R|= 0.53), more significantly than the rim 

region (|R| = 0.22 p<<0.01).  

8.1.1 Stability Regions in Small and Large Interfaces 

 

To investigate whether the relative importance of these three regions of stability 

changes when considering complexes of different interface areas, the dataset is 

divided into small interface area (SIA) complexes (< 1600 Å2 buried surface area) 

and large interface area (LIA) complexes (> 1600 Å2 buried surface area). The 

threshold of 1600 Å2 is such that both subsets are of similar number of examples. 

The mean PCC for the CoreHSEnergy, SuppHSEnergy and RimHSEnergy for LIA 

and SIA complexes is calculated and shown in Figure 8.1a and Figure 8.1b 

respectively. 

 

 

Figure 8.1: Critical Regions of Stability as a function of Complex Interface 

Area.  

(A) The absolute PCC of the sum of changes in hotspot energies at the Core, Rim 

and Support Interface Regions with experimental log10(koff) - for complexes with 

large interface areas. (B) Similar to (A) but for complexes with small interface 

areas. The threshold for large / small interface area of 1600 Å2 is chosen in such 

a way that divides the dataset into samples of similar size. 
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For the LIA complexes, a dominant contribution from the changes in core hotspot 

energies (CoreHSEnergy |R|=0.48) and minimal contribution from SuppHSEnergy 

(|R|=0.37) and RimHSEnergy (|R|=0.20) is observed (Figure 9A). Therefore, even 

though a given set of mutations might be affecting support or rim regions, it is 

the changes in hotspot energies at the core region which show up as the 

dominant changes in the off-rate |R|=0.48). For SIA complexes (Figure 9B), 

changes in hotspot energies at the rim regions, show a highly significant 2-fold 

increase in correlation (p<<0.01). This renders all three regions with somewhat 

similar contributions to complex stability (CoreHSEnergy |R|=0.56, 

SuppHSEnergy |R|=0.46, RimHSEnergy |R|=0.40). For LIA complexes, mutations 

applied in positions that affect the core to those that affect the rim is 2:1. On 

considering SIA complexes the ratios increase to 3:1. Therefore the increase in 

importance of the rim hotspot energies occurs in spite of a decreasing ratio. As 

an additional test, which accounts for biases in the number of examples affecting 

each region, the correlations are calculated for only the mutations, which make 

changes in the respective region, again taking an average over all 6 hotspot 

predictors’ descriptors. Here no significant changes in correlation are observed 

in LIA and SIA complexes for the core and support region. For LIA complexes, 

changes in rim hotspot energies have minimal effect on the off-rate with 

|R|=0.29, whereas for SIA complexes, a 1.75-fold increase (p<0.01) in correlation 

is observed (|R|=0.51). This confirms that hotspots at the rim of the interface can 

have a role as dominant to that of core region hotspots. 

8.1.2 Stability Regions in Small and Large Complexes 

 

The dataset is divided into the mutations, which are found on Large-Complex-

Size (LCS) (with 231 mutations), and Small-Complex-Size (SCS) complexes (with 

482 mutations). The PCC for CoreHSEnergy, RimHSEnergy, SuppHSEnergy 

averaged over the descriptors from all hotspot predictors is calculated for both 

LCS and SCS Figure 8.2a and Figure 8.2b respectively.  
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Figure 8.2: Critical Regions of Stability as a function of Complex Size.  

(A) The absolute PCC of the sum of changes in hotspot energies at the Core, Rim 

and Support Interface Regions with experimental log10(koff) – for large 

complexes. (B) Similar to (A) but for small complexes. The threshold for large / 

small complex size of 500 residues is chosen in such a way that divides the 

dataset into samples of similar size. 

 

Core hotspots are critical to the stability of LCS complexes whereas for SCS 

complexes, all three regions are important. This effect is synonymous with what 

is observed in LIA and SIA complexes, though the increase in correlation for 

RimHSEnergy (R=0.07 to R=-0.36 p<<0.001) is more pronounced for complex 

size rather than interface area. Even though fewer mutations are on LCS 

complexes (231), the percentage of mutants affecting each region in LCS, 

compared to that for SCS, is similar across the three regions (61%, 52% and 46% 

for core, rim and support regions respectively) and therefore shows no 

relationship to the changes seen in the PCC of the three regions from LCS to SCS.  

8.1.3 The Role of Rim Regions in Small Complex Sizes 

 

On the 50 complexes considered in the 713 off-rate mutant dataset, complex size 

and interface size show a correlation of R=0.55 (Figure 8.3i). The correlation is 

higher (R=0.74) for complexes sizes of less than 500 residues, and becomes 

insignificant (R=0.18) beyond complex sizes of 500 residues and above. The 

dataset is therefore further divided into four regions (Figure 8.3i), which include: 

SIA-SCS (191 mutations), SIA-LCS (67 mutations), LIA-SCS (191 mutations), LIA-

LCS (164 mutations) and again the PCC for CoreHSEnergy, RimHSEnergy, 

A B 
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SuppHSEnergy averaged over the descriptors of all hotspot predicators is 

calculated and shown in Figure 8.3g: SIA-SCS, Figure 8.3h: SIA-LCS, Figure 8.3e: 

LIA-SCS and Figure 8.3f: LIA-LCS.  

 

Figure 8.3: Stability regions, interface-area and complex-size.  

The changes in hotspot energies upon mutation are assessed at three interface 

regions. This enables exploration of changes in the distribution of stability for 

complexes of different size and interface-area. CORE, RIM and SUPP represent 

the PCCs of CoreHSEnergy/RimHSEnergy/SuppHSEnergy averaged for the 6 

hotspot prediction algorithms with Δlog10(koff).(A) PCCs for mutants on 

Complexes with interface-area >1600 Å2 (LIA). (B) PCCs for mutants on 

complexes with interface-area <1600 Å2 (SIA). (C) PCCs for mutants on 

complexes with size <500 residues (SCS). (D) PCCs for mutants on complexes 

with size >500 residues (LCS). (E) LIA-SCS, (F) LIA-LCS, (G) SIA-SCS, (H) SIA-LCS. 

(I) Scatter plot of complex size vs. interface area for all complexes in off-rate 

mutant dataset. Here it is observed that complex stability is distributed across all 

three regions for small-size complexes (C, E and G), whereas the core becomes a 

localized region of stability for large-complex sizes (D, F, H). On analysis of the 

interface-area vs. complex-size subsets (E–H), the distribution of stability 

regions is affected primarily through complex-size irrespective of interface-area. 
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Here it is observed that given a fixed complex size (SCS or LCS), moving from 

small interface areas to larger interface areas, the landscape for the 

contributions of the Core, Rim and Support regions is unchanging. Therefore, 

independent of the interface area size, for low complex sizes off-rate has the 

propensity to be affected equally from all regions of the interface, whereas for 

high-complex sizes, stability is primarily emanating from core hotspots. More so, 

when moving from LCS to SCS, rim regions transition from having to an 

insignificant role to a more primary one – equal to that of core and support 

regions. 

Further analysis of SCS and LCS complexes shows a greater sensitivity in off-rate 

changes upon mutations for SCS complexes; the mean |Δlog10(koff)| is 1.4 and 

0.69 for SCS and LCS complexes respectively. Though the latter result is intuitive, 

in that changes on large complexes are less likely to have effects as significant as 

those on small complexes, the key finding here is that on dissection of the three 

interface regions, the reduction in the ability to make significant changes in LCS 

is not equally shared equally on the three regions. Rather, mutations at the core 

can still have notable effects on the stability of large complexes as in the case of 

smaller complexes. Conversely, the higher sensitivity of SCS complexes to 

mutations is due to the increase in importance of role of the rim regions and also 

possibly the support regions. 

 

8.2 Effect of Hotregion Size, Count and Complex Dissociation Rate. 
 

Analysis of the mean PCCs for No_Clusters (the change in the number of 

hotregions upon mutation, R = −0.15) and MaxClusterSize (the change in size of 

the largest hotregion R = −0.09), show no notable contribution to changes in the 

off-rate (See Table 6.1). Both the change in interface hotspot energy, and change 

in the number of hotspots show higher correlations (R = −0.51 and R = −0.44 

respectively). For the hotspot predictor RFSpotKFC2, both No_Clusters and 

MaxClusterSize show higher correlations than the average (R = −0.29, for both), 
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and the combination of the two descriptors into one using multiplication 

increases the PCC with Δlog10(koff) to R = −0.48. Though this may suggest that, 

larger and more hotregions in a complex result in a higher dissociation rate, its 

correlation of R = 0.6 with the change in hotspot energies (Int_HS_Energy), 

suggests that the underlying mechanism might still be the change in hotspot 

energies, irrespective of hotregion size and count. From this analysis, though it 

cannot be concluded that larger hotregions do not provide added stability to the 

complex, it is shown that the disruption of the largest hotregions, is not critical to 

complex stability.  

 

8.3 Hotregion Cooperativity and Complex stability. 
 

Probing the importance of the tendency for hotspots to cluster into hotregions, 

and for that matter, the importance of both size and number of hotregions for 

complex stability, has also to be done in the light of hotspot cooperativity. 

Cooperativity within hotregions has been suggested to be a natural consequence 

of the tight packing ratios found for hotspot residues in hotregions (Keskin et al., 

2005). This adds another layer of complexity in validating the role of hotregions, 

as under cooperativity, larger hotregions do not necessarily contribute more to 

complex stability. In turn, this knowledge is critical in order not to overestimate 

or underestimate the contribution of hotspot energies within hotregions. There 

are two caveats to this, firstly it is not obvious what type of cooperativity exists 

within the hotregions and complexes in the dataset, and secondly, if present, this 

cooperativity has to be accounted for with a function. To our knowledge, this is 

the first work to include energetic descriptors which account for potential 

cooperative effects in an empirical scoring function. 

The approach taken here is that no assumption is made before hand for any type 

of cooperativity prevalent in the complexes and hotregions within our dataset. 

Rather the two hypotheses of positive cooperativity (HSEner_PosCoop) and 

negative cooperativity (HSEner_NegCoop) are investigated and compared to the 

baseline hypothesis of additive hotspot energies (Int_HS_Energy). For ease of 
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reference, these three descriptors are referred to as the cooperativity 

descriptors and the motivation behind their functional forms are detailed in the 

methods section 2.3.7.3. Effectively, the higher the PCC of these descriptors with 

the off-rate, the more likely it is that hotregions on the complexes of the 713 off-

rate mutant dataset, show the given type of cooperative/additive effect. 

 

Figure 8.4: PCCs of Hotspot Cooperativity Descriptors with experimental 

Δlog10(koff).  

Int_HS_Energy assumes no cooperativity within hotregions and therefore all 

hotspot energies are additive within a hotregion. HSEner_PosCoop assumes 

positive cooperativity within hotregions, where its total energy is greater than 

the sum of its parts. HSEner_PosCoop assumes negative cooperativity within 

hotregions and therefore the total energy of a hotregion is less than the sum of 

its parts. The design and functional forms of each descriptor are detailed in 

methods section 2.3.7.3. From the correlations of the descriptors generated by 

the predictions of different hotspot predictor algorithms, there is no prevalent 

form of cooperativity observed within hotregions. Rather, the data suggests that 

the additivity assumption is the safest one to take. 

 

 In Figure 8.4, the PCCs of cooperativity descriptors with Δlog10(koff) are 

highlighted for every hotspot predictor investigated. From these results, no 

evidence is found for a prevalent form of cooperativity in hotregions, as the 

additivity assumption works generally better than positive or negative 

cooperativity assumption. Several alanine scanning experiments on protein-

protein interactions indicate that mutations are, to a large extent, naturally 

additive (Pal et al., 2005, Horovitz, 1996, Gregoret and Sauer, 1993). Eleven 

residues in the helix-turn-helix motif of the N-terminal domain of Gamma 
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repressor, found in a region important for DNA binding, were substituted to 

alanine using binomial mutagenesis (Gregoret and Sauer, 1993). The authors 

confirmed their nature to be additive and a model assuming additive interactions 

was able to predict the activity class of mutants with 90% accuracy (Gregoret 

and Sauer, 1993). In similar fashion, nineteen residues within the hGH site 1 for 

binding to the hGHR were randomized using a combinatorial, shotgun alanine-

scanning library (Pal et al., 2005). On comparison of the counts of double 

alanine-mutations in hGH site 1 variants selected for binding to the hGHR , from 

the 144 pairwise combinations, only 15 pairs (10%) behave in a cooperative 

manner. Still, the experiments mentioned above are not specific to only hotspot 

residues, and therefore their results are not directly comparable to ours which 

are specific to hotregions; for example combinatorial mutant analysis of the 

TEM1-BLIP complex which is performed on residues in tight packed modules, 

and hence more akin to hotregions, shows that residues within a cluster tend to 

show strong positive cooperativity (Reichmann et al., 2005). The inclusivity of 

these results are discussed further in section 8.5. 

 

8.4 Effects of Cooperativity on the Effective Energetic Contribution 

of Hotregions. 

 

As highlighted in the previous section, understanding hotspot cooperativity 

within hotregions is necessary so as not to overestimate or underestimate the 

importance of the given hotregion. In order to understand better the effects of 

the cooperativity descriptors, the average hotspot and hotregion energies of 

different hotregions sizes is plotted for each of the three cooperativity 

assumptions.  
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Figure 8.5: The summation of single-point alanine ΔΔGs of a hotregion may 

underestimate/overestimate its contribution if negative/positive 

cooperative effects are at play respectively.  

Here, the effects of accounting for cooperative/additive effects on the predicted 

hotspot and hotregions energies on all mutated complexes used in this work, is 

shown. (A) The mean hotspot energies for hotregion sizes of 1 to 8 hotspot 

residues. Each column shows the predictions of different hotspot predictors. (A) 

First row (blue), shows the raw mean hotspot energies, which essentially 

assumes all hotspots are additive within a hotregion. (A) Second row (red), 

assumes negative cooperativity within hotregions. To account for negative 

cooperativity, a linearly increasing weight is applied to the hotspot energies 

according to the size of the hotregion they are in (see methods section 2.3.7.3). 

(A) Third row (green), assumes positive cooperativity within hotregions and a 

linearly decreasing weight is applied to the hotspot energies according to the 

size of hotregion (see methods section 2.3.7.3). (B) is similar to (A) but values 

are now the mean of the total hotregion energy of the given size. Effectively, the 

additive hotspot energy assumption results in hotregions contributing in a 

linearly increasing manner according to their size, the negative cooperativity 

assumption results in hotregions contributing in an increasing exponential-like 

manner as the hotregions increase in size, and the positive cooperativity 

assumption results in hotregions reaching a maximum contribution at around a 

hotregion size of 5, with their contribution decreasing beyond. 
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Analysis of the mean hotspot energies predicted by each hotspot predictor (first 

row in Figure 8.5a) shows a constant mean energy profile of hotspot energies 

within different hotregions. For the additive energy assumption (first row 

in Figure 8.5b) and the negative cooperativity assumption (second row in Figure 

8.5b), a linear and exponential-like increase of energetic contribution from larger 

hotregions is shown respectively. For the positive cooperativity assumption, 

application of a linearly decreasing function on increasing hotregion sizes which 

have constant hotspot energies to start off with, results in a bell-shape 

contribution from hotregions. This suggests that maximum stability is provided 

by hotregion sizes of around 5; therefore, a saturation of hotregion contribution 

is achieved, beyond which larger hotregions do not necessarily increase complex 

stability. 

 

8.5 Discussion 

 

After confirming in the previous chapters of 6 and 7 that the change in the sum of 

the hotspot energies across an interface correlates to a change in off-rate, in this 

chapter, several aspects of hotspot distribution were studied in relation to the 

off-rate of a complex. Two previously reported properties of hotspots motivated 

this work; their tendency to occur at core interface regions (Bogan and Thorn, 

1998), and their tendency to cluster into hotregions (Keskin et al., 2005). The 

advantage, if any, of these distributional properties to complex stability is 

therefore examined.  

The off-rate of small complexes is more sensitive to mutations than that in large 

complexes. In section 8.1.3 it is shown that the higher sensitivity observed in 

small complexes, is a result of the increased importance of hotspots at the rim 

regions. Namely, mutations affecting these regions can have effects on the off-

rate as significant as those in the core region. From the data available, in section 

8.2, no evidence is found that complexes with more or larger hotregions have 

lower dissociation rates. In order to understand better the role of hotregions, the 

effects of cooperativity between hotspots in a hotregion are considered in 
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section 8.3. No prevalent form of cooperativity, positive or negative, is observed. 

Rather, interactions in hotregions are best described by the additivity rule. 

Finally in section 8.4, the contribution towards stability of hotregions of different 

sizes, is presented. Under a negative cooperativity assumption, hotregion 

contribution increases exponentially with its size. Under a positive cooperativity 

assumption, a bell-like contribution towards stability is observed. In this case, 

maximal stability is reached with hotregions of size five and reduces with sizes 

larger or smaller than this optimal size. 

Our results in section 8.1 are best discussed in the light of the ‘O-Ring’ 

hypothesis. Hotspots are preferentially found in regions at the interface of low 

solvent accessibility (Bogan and Thorn, 1998). With this in mind, low solvent 

accessibility is necessary but not sufficient for high energy hotspots, as a number 

of residues with low to zero solvent accessibility may still not contribute 

significantly to binding. The O-Ring hypothesis, describes the protein interface as 

one where the stability critical residues are found at the core and are surrounded 

by a ring of energetically unimportant rim residues. The role of the ring is 

suggested to be secondary one; namely its purpose is to occlude the bulk solvent 

from the interactions at the core. This provides a lower effective dielectric 

constant for stronger electrostatic and hydrogen bonding interactions at the 

core. In our analysis presented in section 8.1, in line with this hypothesis, it is 

observed that mutations effecting hotspot at the core region have a significant 

correlative effect on the off-rate. This is in contrast to the other regions of the 

interface i.e. the rim and support regions. Under the O-ring hypothesis, it might 

be natural to think that if the distance between solvent and the core hotspots 

becomes smaller, then hotspot residues at the rim might have an increased role. 

Therefore, additional investigations were performed on small vs. large interfaces 

and on small vs. large interfaces. As shown in Figure 8.3, irrespective of interface 

area, mutations affecting hotspot regions at the rim are able to modulate the off-

rate equally as those affecting core hotspot regions. This is in contrast to what is 

observed in large complexes, where mutations affecting rim hotspot energies are 

inconsequential to the off-rate. Therefore as it seems, rim residues do have a 

significant role for small complexes.  Rim region residues are generally exposed 
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both in the unbound and bound states, but form inter-protein contacts in the 

complex state. Therefore it is unclear, through which underlying mechanism; 

mutations affecting rim hotspot energies are affecting the off-rate significantly. 

One mechanism might simply be the disruption of a strong inter-protein contact 

as a result of the mutation, irrespective of any effect on solvent shielding. The 

other might be that the inter-protein disruption increases the susceptibility to 

solvent entry. For additional validation, analysis of the rim regions using MD 

simulations simulating complex unbinding, for large and small complexes both 

with small-interface-areas may give further insights. 

In section 8.2, no evidence is found that the disruption of large hotregions is 

critical to complex stability. Nor is it observed that having more hotregions 

increase complex stability.  In the context of protein drug design such as the one 

presented in Chapter 4, finding mutations which are able to increase further the 

stability of the interaction is a daunting task. The hotspot representation may 

facilitate this process if hotspot distribution is completely understood. For 

example given a hotregion at an interface is it best to make mutations such that 

the existing hotregion grows larger in size, or is it more advantageous to create a 

new hotregion. Understanding if there is any advantage, when attempting to 

increase complex stability, in having larger hotregions, or more hotregions, 

would ultimately require analysis which controls for the number of hotspots, 

varies the number of hotregions or their size and assesses changes in the off-

rate. However, current experimental data is limited in size and diversity for this 

to be performed comprehensively. 

Counting of the ΔΔGs of all hotspots in hotregion may overestimate or 

underestimate the hotregions contribution if cooperativity between the hotspots 

exists. By designing functions which account for potential positive or negative 

cooperative effect, in section 8.3 no prevalent form of cooperativity is observed. 

No conclusion could be made as the results are highly dependent on the hotspot 

predictor generating the hotspots. With this in mind, the additivity assumption 

showed consistently higher correlations across different hotspot predictors, 

suggesting that hotregions are most additive in nature. This result, contrasts to 

that of Keskin et al. (2005), where it is proposed that hotregions are cooperative 
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in nature. One should note that this proposition is only based on the high-

packing ratios of residues in a hotregion to those that are not. With this in mind, 

the results in of Figure 8.4 in section 8.3 are dependent on both the definition of 

a contact and that of a hotregion. There is no rule of thumb on how to define a 

contact or hotregion; in the work of Keskin et al. (2005), the distance between 

radii balls, with origins set on each C-α atom of the residues in question, is used 

to define a contact between two hotspot residues. A hotspot residue is added to a 

hotregion cluster if it is in contact with at least two existing hotspot residues. In 

this work, the definition uses a more fine-grain approach as a contact between 

two hotspot residues is created if any of their atoms are at a distance less than 

their van der Waals radii +0.5 Å (see methods section 2.3.7.5). Though for 

hotspot residues to be added in an existing hotregion, it only needs to be in 

contact with any other of the hotspot residues, and therefore might be a more 

lenient way of adding hotspot residues to a hotregion cluster, which in turn may 

render less packed hotregions. Other contact methods also include weighted 

contacts according to whether side-chain or backbone atoms are in 

contact (Reichmann et al., 2005). Most importantly, these different definitions 

generate different clusters of different packing ratios depending on their 

leniency and stringency, and therefore may affect the levels of cooperativity 

observed. Another factor which may account for the inconclusiveness regarding 

the more prevalent form of cooperativity is the modelling of cooperativity 

functions itself. Finding the right weights to apply to hotregions to account for 

cooperativity is not trivial, as experimental data (such as that found in 

Reichmann et al. (2005)) is not common enough to be able to learn cooperativity 

functions from experimental data. Last but not least, the diversity of interactions 

within the dataset may be better characterised with different cooperativity 

functions. Interestingly, this diversity of cooperative effects is also observed in 

the GA-FS runs performed on subsets of related complexes in Figure 7.6 of 

Chapter 7. Namely we observe that HSEner_PosCoop, HSEner_NegCoop and 

Int_HS_Energy tend to be important for different sets of related complexes in a 

mutually exclusive manner. This re-stresses the importance of detecting when a 

given type of cooperativity is present as much as it is important to model or 

account for it accurately. 
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Chapter 9 

9 Epilogue 
 

In this thesis, the stability of protein-protein interactions is studied at different 

levels. Predictive models for the binding free energy and dissociation rate are 

built and the effect of mutations on both, characterised.  

A number of themes reverberate throughout this thesis; firstly, that of 

conformational changes upon complex formation. Modelling the stability of such 

complexes remains a major challenge, as is that of characterizing mutations on 

such complexes. Hopefully the research presented in this thesis, sets a precedent 

for future models to come. For example, energetics calculated on a single ‘snap-

shot’ of a bound complex can neither account for the conformational changes 

upon complex formation, nor for the delicate balance between enthalpic and 

entropic contributions involved. Unappreciated still in modelling stability, and 

somewhat related to conformational changes, is the binding and unbinding 

mechanisms at play. Transition states or encounter complexes play a critical role 
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in the stability of a complex. For example, mutations which stabilize an 

interaction might be doing so through increasing the stability of the transition 

state rather than the final bound state. Therefore characterization of binding and 

unbinding funnels, and the dynamics involved, will undoubtedly play a critical 

role in predicting the effects of mutations on protein-protein stability. 

The machine learning framework is one which is consistently used throughout 

this work. The ease with which certain machine learning models can be used in 

‘black-box’ fashion has unfortunately sometimes resulted in very dubious 

procedures and results throughout the years – some of which are mentioned in 

section 3.5. With powerful tools, comes greater responsibility and the hope is 

that this work highlights clearly these potential pitfalls, and responsibly avoids 

them. Be it with adapting cross-validation routines with domain knowledge, for 

example by using leave-complex-out validation routines; or by making sure the 

data on which predictor performance is stated, is not at any moment seen during 

any parameter optimization or feature selection routines. One aspect of machine 

learning modelling which is still unappreciated is their potential for 

understanding the mechanisms at play. This is not limited to just global feature 

importance measures. For example, the random forest algorithm may output 

descriptors which work hand-in-hand in the prediction. The use of such routines 

can help us understand the interplay between different determinants of stability. 

As attractive as linear models remain to the community, the inaccuracies and 

approximations in stability descriptors, the non-additivity of the physical 

determinants of affinity, and the diversity of protein-protein interactions, cannot 

be accounted for using linear modelling. Therefore, I believe that future efforts 

should shift towards exploiting the advantages of machine learning modelling, 

where learner choice is made with respect to the descriptors and data at hand 

and where visibility and interpretability share equal priority to that of predictive 

power. 

I do hope that the work presented in this thesis, at the least improves upon the 

inaccuracies of previous methods, and at the most makes clear where the current 

limitations are, and which challenges must be addressed for further advances to 

be made. I always like to think of this work in the context of developments being 
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made in other important topics related to structural computational biology; 

including, protein structure prediction, docking and binding partner prediction. 

All of these share many similarities both in the underlying physical processes, 

and sometimes, in where we fail. Nevertheless, what is certain is that as these 

methods become more precise and efficient, their potential is nothing short of 

becoming an enabling technology for interpreting disease mutations, designing 

better drugs and uncovering further the nodes and links of the molecular 

networks governing our life processes. 
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10 Appendices 
 

Table 10.1. Hold out Proteins in Leave-Homology-OUT (LHO) Cross Validtion.  

For more stringent cross-validation mechanism, proteins which are from the same complex category (enzyme-inhibitor/antibody-

antigen) or which share a common binding site, are put in the same test fold. Categories taken according to Moal and Fernandez-Recio 

(2012). 

LHO Cross 
Validation 

Folds 
1 2 3 4 5 6 7 8 9 10 11 

Fold 
Category  

Share binding 
site on 

same/homolo
gous protein 

Share binding 
site on 

same/homol
ogous protein 

Enzyme-
Inhibitor  

Share binding 
site on 

same/homolo
gous protein 

Share binding 
site on 

same/homolo
gous protein 

 
Antibody-

Antigen  

Share binding 
site on 

same/homologo
us protein 

            
Mutation 

Count 
58 62 79 39 74 87 63 36 84 100 31 

PDB_IDs 1A22_A_B 1A4Y_A_B 1B2S_A_D 
1CBW_F

GH_I 
1DAN_HL

_UT 
1EMV_A_B 1FC2_C_D 1IAR_A_B 1JRH_LH_I 1JTG_A_B 1KTZ_A_B 

  
1Z7X_W_X 1B2U_A_D 1GL0_E_I 

 
1FR2_A_B 1LFD_A_B 

 
1NMB_N_LH 

 
1REW_AB_C 

   
1B3S_A_D 1GL1_A_I 

 
2GYK_A_B 1MAH_A_F 

 
2I26_N_L 

 
2QJ9_AB_C 

   
1BRS_A_D 1TM1_E_I 

 
2VLN_A_B 1MQ8_A_B 

 
2VIR_AB_C 

 
2QJA_AB_C 

   
1X1W_A_D 2FTL_E_I 

 
2VLO_A_B 2AJF_A_E 

 
2VIS_AB_C 

 
2QJB_AB_C 

   
1X1X_A_D 2SIC_E_I 

 
2VLP_A_B 2B42_A_B 

 
2VLJ_ABC_D

E   

      
2VLQ_A_B 2GOX_A_B 

 
2VLR_ABC_D

E   

      
2WPT_A_B 3D5R_A_C 

 
3HFM_HL_Y 

  
       

3D5S_A_C 
    

       
3BP8_A_C 

    
       

3BK3_A_C 
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Table 10.2. ΔG Dataset 

Complex 
PDB / 
Chains Type 

Unbound 
PDB 

Protein  
1 

Unbound 
PDB 

Protein 
 2 

Pubmed 
ID -ΔG I-RMSD Method 

          

1A2K_C:AB OG 1QG4_A Ran GTPase-GDP 1OUN_AB Nuclear transport factor 2 10681579 9.31 1.11 ITC 

1ACB_E:I EI 4CHA_ABC Chymotrypsin 1EGL_A Eglin C 3071573 13.05 1.08 
Spectrophotometric 
inhibition assay 

1AHW_AB:C A 1FGN_LH Fab 5g9 1TFH_A Tissue factor 9480775 11.55 0.69 Competitive Inhibition assay 

1AK4_A:D OX 2CPL_A Cyclophilin 1E6J_P HIV capsid 9223641 6.43 1.33 ITC 

1AKJ_AB:DE OX 2CLR_DE MHC class 1 HLA-A2 1CD8_AB T-cell CD8 coreceptor 10072074 5.32 1.14 SPR 

1ATN_A:D OX 1IJJ_B Actin 3DNI_A Dnase I 6244947 12.07 3.28 
Spectrophotometric 
inhibition assay 

1AVX_A:B EI 1QQU_A Porcine trypsin 1BA7_B Soybean trypsin inhibitor 
 

12.5 0.47 Potentiometric 

1AVZ_B:C OX 1AVV_A HIV-1-NEF protein 1FYN_A Fyn kinase SH3 domain 9778343 6.55 0.73 ITC 

1AY7_A:B EI 1RGH_B Rnase SA 1A19_B Barstar 
 

13.23 0.54 
Fluorescence inhibition 
assay 

1B6C_A:B OX 1D6O_A FKBP binding protein 1IAS_A TGFbeta receptor 11583628 8.94 1.96 SPR 

1BJ1_HL:VW AB 1BJ1_HL Fab - vEGF 2VPF_GH vEGF 9753694 11.55 0.5 SPR 

1BRS_A:D EI 1A2P_A Barnase 1A19_B Barstar 8507637 17.32 0.42 
Fluorescence inhibition 
assay 

1BUH_A:B EI 1HCL_A CDK2 kinase 1DKS_A Ckshs1 8601310 9.7 0.75 SPR 

1BVK_DE:F A 1BVL_BA Fv Hulys11 3LZT_A HEW lysozyme 1560463 10.53 1.24 Stopped-flow inhibition 

1BVN_P:T EI 1PIG_A Alpha-amylase 1HOE_A Tendamistat 14715318 15.06 0.87 SPR 

1CBW_ABC:D EI 4CHA_ABC Chymotrypsin 9PTI_A BPTI 8784199 10.75 0.74 
Spectrophotometric 
inhibition assay 

1DE4_AB:CF OX 1A6Z_AB 
Hemochromatosis protein 
HFE 1CX8_AB 

Transferrin receptor 
ectodom. 11800564 9.78 2.59 SPR 

1DFJ_E:I EI 9RSA_B Ribonuclease A 2BNH_A Rnase inhibitor 2271559 18.05 1.02 
Inhibition assay (indirect-
Upa Hydrolysis) 

1DQJ_AB:C A 1DQQ_CD Fab Hyhel63 3LZT_A HEW lysozyme 10828942 11.67 0.75 SPR 

1E4K_AB:C OR 2DTQ_AB FC fragment of human IgG 1 1FNL_A Human FCGR III 11544262 7.87 2.59 SPR 

1E6E_A:B ES 1E1N_A Adrenoxin reductase 1CJE_D Adrenoxin 15181009 8.28 1.33 SPR 
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Complex 
PDB / 
Chains Type 

Unbound 
PDB 

Protein  
1 

Unbound 
PDB 

Protein 
 2 

Pubmed 
ID -ΔG I-RMSD Method 

1E6J_HL:P A 1E6O_HL Fab 13B5 1A43_A HIV-1 capsid protein p24 11080628 10.28 1.05 SPR 

1E96_A:B OG 1MH1_A Rac GTPase 1HH8_A p67 Phox 11090627 7.42 0.71 ITC 

1EFN_B:A OX 1AVV_A HIV-1-NEF protein 1FYN_A Fyn kinase SH3 domain 7588629 10.12 0.9 SPR 

1EMV_A:B EI 1FSJ_B Colicin E9 nuclease 1IMQ_A Im9 immunity protein 7577967 18.58 1.28 Stopped-flow fluormetry 

1EWY_A:C ES 1GJR_A Ferredoxin reductase 1CZP_A Ferredoxin 1910307 7.43 0.8 Spectroscopic assay 

1EZU_C:AB EI 1TRM_A D102N Trypsin 1ECZ_AB Y69F D70P Ecotin 9642073 13.77 1.21 
Spectroscopic inhibition 
assay 

1F34_A:B EI 4PEP_A Porcine pepsin 1F32_A Ascaris inhibitor 3 4594130 14.19 0.93 
Spectroscopic inhibition 
assay 

1F6M_A:C ES 1CL0_A Thioredoxin reductase 2TIR_A Thioredoxin 1 19933368 7.6 4.9 
 

1FC2_C:D OX 1BDD_A Staphylococcus Protein A 1FC1_AB Human Fc fragment 7646442 10.43 1.69 Stopped-flow fluorescence 

1FFW_A:B OX 3CHY_A Chemotaxis protein CheY 1FWP_A Chemotaxis protein CheA 8377825 8.09 1.43 ITC 

1FLE_E:I EI 9EST_A Elastase 
2REL_A(4
) Elafin 2394696 12.28 1.02 Inhibition assay 

1FQJ_A:B OG 1TND_C Gt-alpha 1FQI_A RGS9 10085118 9.79 0.91 Fluorescence spectroscopy 

1FSK_BC:A AB 1FSK_BC 
Fab - Birch pollen antigen 
Bet V1 1BV1_A 

Birch pollen antigen Bet 
V1 

 
13.12 0.45 SPR 

1GCQ_B:C OX 1GRI_B GRB2 C-ter SH3 domain 1GCP_B Vav N-ter SH3 domain 11406576 6.51 0.92 SPR 

1GL1_A:I EI 4CHA_ABC Chymotrypsin 
1PMC_A(
6) PMP-C (LCMI II) 7592720 13.23 1.2 Inhibition assay 

1GLA_G:F ER 1BU6_0 Glycerol Kinase 1F3Z_A Glucose specific IIIGlc 9538005 6.76 0.98 Spectroscopy 

1GPW_A:B OX 1THF_D HISF protein 1K9V_F Amidotransferase HISH 
 

11.32 0.65 Fluorescence Titration 

1GRN_A:B OG 1A4R_A CDC42 GTPase 1RGP_A CDC42 GAP 9468490 9.03 1.22 Fluorescence Spectroscopy 

1GXD_A:C EI 1CK7_A 
ProMMP2 type IV 
collagenase 1BR9_A 

Metalloproteinase 
inhibitor 2 9368077 11.3 1.39 SPR 

1H1V_A:G OX 1IJJ_B Actin 1P8X_A Gelsolin precursor C-term 2836434 10.2 1.05 Fluorescence spectroscopy 

1H9D_A:B OX 1EAN_A 
Runx1 domain of 
CBFalpha1 1ILF_A(1) 

Dimerisation domain of 
CBF-beta 10984496 9.18 1.32 

Electrophoretic mobility shift 
assays 

1HCF_AB:X OR 1B98_AM Neurotrophin-4 1WWB_X 
TrkB-d5 growth factor 
receptor 11855816 13.08 0.88 SPR 

1HE8_B:A OG 821P_A Ras GTPase 1E8Z_A PIP3 kinase 11136978 7.37 0.92 Stopped-flow fluometry 
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Complex 
PDB / 
Chains Type 

Unbound 
PDB 

Protein  
1 

Unbound 
PDB 

Protein 
 2 

Pubmed 
ID -ΔG I-RMSD Method 

1HIA_AB:I EI 2PKA_XY Kallikrein 1BX8_A Hirustatin 8112345 10.76 1.4 Inhibition assay 

1I2M_A:B OG 1QG4_A Ran GTPase-GDP 1A12_A RCC1 7548002 15.83 2.12 Stopped-flow fluometry 

1I4D_D:AB OG 1MH1_A Rac GTPase 1I49_AB Arfaptin 11346801 7.46 1.41 ITC 

1IB1_AB:E OX 1QJB_AB 14-3-3 protein 1KUY_A Serotonin N-acteylase 11336675 9.76 2.09 Sedimentation equilibrium 

1IQD_AB:C AB 1IQD_AB Fab - Factor VIII domain C2 1D7P_M Factor VIII domain C2 9657749 15 0.48 SPR 

1J2J_A:B OG 1O3Y_A Arf1 GTPase.GNP-RanBD1 1OXZ_A GAT domain of GGA1 12679809 8.13 0.63 SPR 

1JIW_P:I EI 1AKL_A Alkaline metallo-proteinase 
2RN4_A(
1) Proteinase inhibitor 10770939 15.55 2.07 Inhibition assay 

1JMO_A:HL ER 1JMJ_A Heparin cofactor 2CN0_HL Thrombin 9162031 9.47 3.21 Inhibition assay 

1JPS_HL:T A 1JPT_HL Fab D3H44 1TFH_B Tissue factor 11307801 13.64 0.51 SPR 

1JTG_B:A EI 3GMU_B 
beta-lactamase inhibitor 
protein 1ZG4_A beta-lactamase TEM-1 9890878 12.82 0.49 SPR 

1JWH_CD:A ER 3EED_AB Casein kinase II beta chain 3C13_A 
Casein kinase II alpha 
chain 18824508 11.14 1.27 ITC 

1K5D_AB:C OG 1RRP_AB Ran GTPase 1YRG_B Ran GAP 14585972 12.77 1.19 Stopped-flow fluorescence 

1KAC_A:B OR 1NOB_F 
Adenovirus fiber knob 
protein 1F5W_B Adenovirus receptor 10684297 10.68 0.95 SPR 

1KKL_ABC:H ES 1JB1_ABC HPr kinase C-ter domain 2HPR_A HPr 12009882 10.02 2.2 SPR 

1KLU_AB:D OX 1H15_AB MHC class 2 HLA-DR1 1STE_A 
Staphylococcus 
enterotoxin C3 10229190 7.28 0.43 SPR 

1KTZ_A:B OR 1TGK_A TGF-beta 1M9Z_A TGF-beta receptor 16300789 8.92 0.39 SPR 

1KXP_A:D OX 1IJJ_B Actin 1KW2_B Vitamin D binding protein 2910852 12.34 1.12 Inhibition assay 

1KXQ_H:A AB 1KXQ_H 
Camel VHH - Pancreatic 
alpha-amylase 1PPI_A Pancreatic alpha-amylase 9649422 11.54 0.72 SPR 

1LFD_B:A OG 5P21_A Ras.GNP 1LXD_A 
RalGDS Ras-interacting 
domain 15197281 7.79 1.79 Stopped-flow fluorescence 

1M10_A:B ER 1AUQ_A 
Von Willebrand Factor dom. 
A1 1M0Z_B Glycoprotein IB-alpha 12183630 11.24 2.1 SPR 

1MAH_A:F EI 1J06_B Acetylcholinesterase 1FSC_A Fasciculin 8509385 14.51 0.61 Inhibition assay 

1MLC_AB:E A 1MLB_AB Fab44.1 3LZT_A HEW lysozyme 10229844 9.61 0.6 SPR 

1MQ8_A:B OX 1IAM_A ICAM-1 domain 1-2 1MQ9_A Integrin alpha-L I domain 12526797 7.53 1.76 SPR 
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Complex 
PDB / 
Chains Type 

Unbound 
PDB 

Protein  
1 

Unbound 
PDB 

Protein 
 2 

Pubmed 
ID -ΔG I-RMSD Method 

1NB5_AP:I EI 8PCH_A Cathepsin H 1DVC_A Stefin A 8898076 13.86 1.58 Inhibition assay 

1NCA_HL:N AB 1NCA_HL 
Fab - Flu virus 
neuraminidase N9 7NN9_A 

Flu virus neuraminidase 
N9 9692956 11.02 0.24 

Fluorescence inhibition 
assay 

1NSN_HL:S AB 1NSN_HL 
Fab N10 - Staphylococcal 
nuclease 1KDC_A Staphylococcal nuclease 1704035 14 0.35 ELISA inhibiton assay 

1NVU_Q:S OG 1LF0_A Ras GTPase.GTP 2II0_B Son of sevenless 15507210 7.43 1.98 Fluorescence anisotropy 

1NVU_R:S OG 1LF0_A Ras GTPase.GTP 2II0_B Son of sevenless 15507210 7.8 3.09 
 

1OPH_A:B EI 1QLP_A Alpha-1-antitrypsin 2PTN_A Trypsin 9012804 11.32 1.2 
Fluorescence inhibition 
assay 

1P2C_AB:C A 2Q76_AB FabF10.6.6 3LZT_A HEW lysozyme 14988501 13.63 0.46 SPR 

1PPE_E:I EI 2PTN_A Trypsin 1LU0_A CMTI-1 squash inhibitor 8543044 15.56 0.34 
Spectrophotometric 
inhibition assay 

1PVH_A:B OR 1BQU_A 
IL6 receptor beta chain D2-
D3 domains 1EMR_A Leukemia inhibitory factor 14527405 9.52 0.34 ITC 

1PXV_A:C EI 1X9Y_A 
Staphylococcus aureus 
cystein protease 1NYC_A Cystein protease inhibitor 17261086 12.97 2.63 Inhibition assay 

1QA9_A:B OX 1HNF_A CD2 1CCZ_A CD58 7520278 7.16 0.73 SPR 

1R0R_E:I EI 1SCN_E Subtilisin carlsberg 2GKR_I OMTKY 7046785 14.17 0.45 Spectrophotometry 

1R6Q_A:C ER 1R6C_X Clp protease subunit ClpA 2W9R_A 
Clp protease adaptor 
protein ClpS 12426582 8.84 1.67 SPR 

1RLB_ABCD:E OX 2PAB_ABCD Transthyretin 1HBP_A Retinol binding protein 8639713 8.18 0.66 Fluorescence anisotropy 

1RV6_VW:X OR 1FZV_AB 
PIGF receptor binding 
domain 1QSZ_A Flt1 protein domain 2 8822205 13.86 1.09 Inhibition assay 

1S1Q_A:B OX 2F0R_A UEV domain 1YJ1_A Ubiquitin 12006492 4.29 0.98 SPR 

1T6B_X:Y OR 1ACC_A Anthrax protective antigen 1SHU_X Anthrax toxin receptor 15044490 13.1 0.62 Stopped-flow fluorescence 

1US7_A:B ER 2FXS_A 
Heat shock protein 82 N-ter 
domain 2W0G_A 

HSP90 co-chaperone 
CDC37 C-ter domain 14718169 8.09 1.06 ITC 

1UUG_A:B EI 3EUG_A Uracyl-DNA glycosylase 2UGI_B Glycosylase inhibitor 8262921 18 0.77 Stopped-flow fluorescence 

1VFB_AB:C A 1VFA_AB Fv D1.3 8LYZ_A HEW lysozyme 8302837 11.46 1.02 ITC 

1WDW_BD:A ER 1V8Z_AB 
Tryptophan synthase beta 
chain 1 1GEQ_A 

Tryptophan synthase 
alpha chain 12643278 12.72 1.29 ITC 

1WEJ_HL:F A 1QBL_HL Fab E8 1HRC_A Cytochrome C 2993413 12.48 0.31 
Spectroscopic inhibition 
assay 
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PDB 
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 2 

Pubmed 
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1WQ1_R:G OG 6Q21_D Ras GTPase.GDP 1WER_A Ras GAP 8262937 6.62 1.16 Fluorescence 

1XD3_A:B OX 1UCH_A UCH-L3 1YJ1_A Ubiquitin 9485312 8.9 1.24 
Fluorescence 
spectrophotometry 

1XQS_A:C OX 1XQR_A HspBP1 1S3X_A Hsp70 ATPase domain 15694338 7.08 1.77 SPR 

1XU1_ABD:T OR 1U5Y_ABD TNF domain of APRIL 
1XUT_A(
11) 

TNF receptor superfamily 
member 13B TACI CRD2 
domain 10956646 11.18 1.3 SPR 

1YVB_A:I EI 2GHU_A Falcipain 2 1CEW_I Cystatin 17502099 11.17 0.51 Inhibition assay 

1Z0K_A:B OG 2BME_A Rab4A GTPase.GNP 1YZM_A 
RAB4 binding domain of 
Rabenosyn 16034420 6.98 0.53 SPR 

1ZM4_A:B ES 1N0V_C Elongation factor 2 1XK9_A 
Diphtheria toxin A 
catalytic domain 12270928 8.03 2.94 Flourescence 

2A9K_A:B ES 1U8Z_A Ral-A.GDP 2C8B_X 
Mono-ADP-
ribosyltransferase C3 16177825 10.25 0.85 ITC 

2ABZ_B:E EI 3I1U_A Carboxypeptidase A1 1ZFI_A(1) 
Leech carboxypeptidase 
inhibitor 16126224 11.67 0.9 Spectroscopic inbition assay 

2AJF_A:E OR 1R42_A 
Angiotensin-converting 
enzyme 2 2GHV_E 

SARS spike protein 
receptor binding domain 15791205 10.63 0.65 SPR 

2AQ3_A:B OX 1BEC_A TCR Vbeta8.2 1CK1_A SEC3 20836565 6.71 1.82 ITC 

2B42_A:B EI 2DCY_A Xylanase 1T6E_X Xylanase inhibitor 16279951 12.11 0.72 SPR 

2B4J_AB:C OX 1BIZ_AB Integrase (HIV-1) 
1Z9E_A(1
) 

PC4 and SFRS1 interacting 
protein 19801648 10.86 0.99 

Fluorescence inhibition 
assay 

2BTF_A:P OX 1IJJ_B Actin 1PNE_A Profilin 9788869 7.69 0.75 Inhibition assay 

2C0L_A:B OX 1FCH_A TRP region of PEX5 1C44_A Sterol carrier protein 2 17157249 9.82 2.62 ITC 

2FJU_B:A OG 2ZKM_X Phospholipase beta 2 1MH1_A Rac GTPase 12657629 7.2 1.04 SPR 

2GOX_A:B OX 1C3D_A Complement C3d fragment 2GOM_A 
Staphylococcus aureus 
Efb-C 18687868 12.08 0.6 SPR 

2HLE_A:B OR 2BBA_A Ephrin B4 receptor 1IKO_P Ephrin B2 ectodomain 16472751 10.09 1.4 ITC 

2HQS_A:H OX 1CRZ_A TolB 1OAP_A Pal 17375930 10.15 1.14 ITC 

2HRK_A:B OX 2HRA_A Glutamyl-t-RNA synthetase 2HQT_A 
GU-4 nucleic binding 
protein 17976650 10.98 2.03 SPR 

2I25_N:L A 2I24_N 
Shark single domain 
antigen receptor 3LZT_A HEW lysozyme 16446445 12.28 1.21 SPR 

2I9B_E:A OR 1YWH_A 
Urokinase plasminogen 
activator surface receptor 2I9A_A 

Urokinase-type 
plasminogen activator 15003263 12.93 3.79 SPR 



Appendices: ΔG Dataset 

202 
 

Complex 
PDB / 
Chains Type 

Unbound 
PDB 

Protein  
1 

Unbound 
PDB 

Protein 
 2 

Pubmed 
ID -ΔG I-RMSD Method 

2J0T_A:D EI 966C_A 
MMP1 Intersitial 
collagenase 

1D2B_A(
20) 

Metalloproteinase 
inhibitor 1 12515831 13.34 1.23 

Fluorescence inhibition 
assay 

2JEL_HL:P AB 2JEL_HL Fab Jel42 - HPr 1POH_A HPr 9671548 11.59 0.17 
Fluorescence inhibition 
assay 

2MTA_HL:A ES 2BBK_JM 
Methylamine 
dehydrogenase 2RAC_A Amicyanin 8347660 7.42 0.41 

Spectroscopic inhibition 
assay 

2NYZ_AB:D OR 1MKF_AB 
Viral chemokine binding p. 
M3 1J9O_A Chemokine XCL1 18070938 12.69 2.09 SPR 

2O3B_A:B EI 1ZM8_A NucA nuclease 1J57_A NuiA nuclease inhibitor 17138564 15.68 3.13 Inhibition assay 

2OOB_A:B ES 2OOA_A 
E3 ubiquitin-protein ligase 
CBL-B UBA domain 1YJ1_A Ubiquitin 17897937 5.66 0.85 ITC 

2OOR_AB:C ER 1L7E_AB 
NAD(P) transhydrogenase 
subunit alpha part 1 1E3T_A 

NAD(P) transhydrogenase 
subunit beta 8898902 10.65 1.42 Fluorescence 

2PCB_A:B ES 1CCP_A Cyt C peroxidase 1HRC_A Cytochrome C 9092837 6.82 0.45 ITC 

2PCC_A:B ES 1CCP_A Cyt C peroxidase 1YCC_A Cytochrome C, yeast 11148036 7.91 0.39 ITC 

2PTC_E:I EI 2PTN_A Trypsin 9PTI_A BPTI 5041905 18.04 0.28 Inhibition assay 

2SIC_E:I EI 1SUP_A Subtilisin 3SSI_A 
Streptomyces subtilisin 
inhibitor 32173 13.84 0.36 Fluorescence titration 

2SNI_E:I EI 1UBN_A Subtilisin 2CI2_I Chymotrypsin inhibitor 2 10065709 15.96 0.35 Inhibition assay 

2TGP_Z:I EI 1TGB_A Trypsinogen 9PTI_A BPTI 311834 7.54 0.57 
Spectroscopic inhibition 
assay 

2UUY_A:B EI 2PTN_A Trypsin 2UUX_A 
Tryptase inhibitor from 
tick 17391695 11.26 0.44 Inhibition assay 

2VDB_A:B OX 3CX9_A Serum albumin 2J5Y_A 
Peptostreptococcalalbumi
n-binding protein 8900134 13.4 0.47 Radioligand inhibition assay 

2VIR_AB:C A 1GIG_LH Fab 2HMG_AB Flu virus hemagglutinin 9461077 12.28 0.8 SPR 

2VIS_AB:C A 1GIG_LH Fab 2VIU_ACE Flu virus hemagglutinin 9461077 7.36 0.8 SPR 

2WPT_A:B EI 1FSJ_B Colicin E9 nuclease 2NO8_A Im2 immunity protein 9718299 10.67 1.61 Stopped-flow fluormetry 

3BP8_AB:C OX 1Z6R_AB Mlc transcription regulator 3BP3_A 
PTS glucose-specific 
enzyme EIICB 18319344 11.44 0.45 SPR 

3BZD_A:B OX 1BEC_A TCR Vbeta8.2 3BVZ_A SEC3-1A4 20836565 9.57 1.08 ITC 

3CPH_G:A OG 1G16_A Ras-related protein Sec4 3CPI_G 
Rab GDP-dissociation 
inhibitor 18426803 8.84 2.12 ITC 

3SGB_E:I EI 2QA9_E Streptogrisin B 2OVO_A 
Ovomucoid inhibitor third 
domain 3555488 14.51 0.36 

Spectrophotometric 
inhibition assay 
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4CPA_A:I EI 8CPA_A Carboxypeptidase A 
1H20_A(
9) 

Potato carboxypeptidase 
inhibitor 4415398 11.32 1.52 

Spectrophotometric 
inhibition assay 
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Table 10.3. Δkoff Dataset 

Complex 
PDB / 
Chains Mutation(s) 

koff_mut 
(s^(-1)) 

koff_wt 
(s^(-1)) Δlog10(koff) 

Pubmed 
ID Protein 1 Protein 2 

1TM1_E_I YI61A 2.56E-04 1.06E-05 1.38 10065709 Subtilisin BPN Chymotrypsin inhibitor 2 

1TM1_E_I YI61G 1.88E-02 1.06E-05 3.25 10065709 Subtilisin BPN Chymotrypsin inhibitor 2 

1TM1_E_I RI65A 3.47E-04 6.10E-06 1.75 10065709 Subtilisin BPN Chymotrypsin inhibitor 2 

1TM1_E_I RI67A 3.15E-04 6.10E-06 1.71 10065709 Subtilisin BPN Chymotrypsin inhibitor 2 

1TM1_E_I RI67C 3.03E-04 6.10E-06 1.7 10065709 Subtilisin BPN Chymotrypsin inhibitor 2 

1TM1_E_I RI67A,RI65A 7.92E-03 1.06E-05 2.87 10065709 Subtilisin BPN Chymotrypsin inhibitor 2 

1TM1_E_I TI58D 3.40E-05 3.90E-06 0.94 7947796 Subtilisin BPN Chymotrypsin inhibitor 2 

1TM1_E_I TI58A 2.06E-04 3.90E-06 1.72 7947796 Subtilisin BPN Chymotrypsin inhibitor 2 

1TM1_E_I TI58D,EI60A 1.07E-05 3.90E-06 0.44 7947796 Subtilisin BPN Chymotrypsin inhibitor 2 

1TM1_E_I VI70A 3.40E-06 3.90E-06 -0.06 7947796 Subtilisin BPN Chymotrypsin inhibitor 2 

2SIC_E_I MI73E 1.10E-04 9.00E-05 0.09 8276767 Subtilisin BPN 
Streptomyces subtilisin 
inhibitor 

2SIC_E_I MI73D 2.60E-04 9.00E-05 0.46 8276767 Subtilisin BPN 
Streptomyces subtilisin 
inhibitor 

2SIC_E_I MI73H 4.10E-04 9.00E-05 0.66 8276767 Subtilisin BPN 
Streptomyces subtilisin 
inhibitor 

2SIC_E_I MI73G 1.30E-04 9.00E-05 0.16 8276767 Subtilisin BPN 
Streptomyces subtilisin 
inhibitor 

2SIC_E_I MI73A 1.40E-04 9.00E-05 0.19 8276767 Subtilisin BPN 
Streptomyces subtilisin 
inhibitor 

2SIC_E_I MI73L 2.10E-04 9.00E-05 0.37 8276767 Subtilisin BPN 
Streptomyces subtilisin 
inhibitor 

2SIC_E_I MI73V 3.50E-04 9.00E-05 0.59 8276767 Subtilisin BPN 
Streptomyces subtilisin 
inhibitor 

2SIC_E_I MI73I 1.70E-03 9.00E-05 1.28 8276767 Subtilisin BPN 
Streptomyces subtilisin 
inhibitor 

1IAR_A_B IA5A 1.40E-02 2.10E-03 0.82 9050834 Interleukin-4 Interleukin-4 receptor 

1IAR_A_B IA5R 8.70E-03 2.10E-03 0.62 9050834 Interleukin-4 Interleukin-4 receptor 

1IAR_A_B TA6A 1.90E-03 2.10E-03 -0.04 9050834 Interleukin-4 Interleukin-4 receptor 
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1IAR_A_B TA6D 1.50E-02 2.10E-03 0.85 9050834 Interleukin-4 Interleukin-4 receptor 

1IAR_A_B QA8A 2.50E-03 2.10E-03 0.08 9050834 Interleukin-4 Interleukin-4 receptor 

1IAR_A_B QA8R 1.90E-03 2.10E-03 -0.04 9050834 Interleukin-4 Interleukin-4 receptor 

1IAR_A_B EA9Q 2.70E-01 2.10E-03 2.11 9050834 Interleukin-4 Interleukin-4 receptor 

1IAR_A_B IA11A 2.00E-03 2.10E-03 -0.02 9050834 Interleukin-4 Interleukin-4 receptor 

1IAR_A_B KA12S 1.90E-03 2.10E-03 -0.04 9050834 Interleukin-4 Interleukin-4 receptor 

1IAR_A_B KA12E 1.50E-03 2.10E-03 -0.15 9050834 Interleukin-4 Interleukin-4 receptor 

1IAR_A_B TA13A 7.10E-03 2.10E-03 0.53 9050834 Interleukin-4 Interleukin-4 receptor 

1IAR_A_B TA13D 8.50E-04 2.10E-03 -0.39 9050834 Interleukin-4 Interleukin-4 receptor 

1IAR_A_B NA15A 2.30E-03 2.10E-03 0.04 9050834 Interleukin-4 Interleukin-4 receptor 

1IAR_A_B NA15D 1.70E-03 2.10E-03 -0.09 9050834 Interleukin-4 Interleukin-4 receptor 

1IAR_A_B SA16A 1.90E-03 2.10E-03 -0.04 9050834 Interleukin-4 Interleukin-4 receptor 

1IAR_A_B SA16D 1.50E-03 2.10E-03 -0.15 9050834 Interleukin-4 Interleukin-4 receptor 

1IAR_A_B EA19A 1.70E-03 2.10E-03 -0.09 9050834 Interleukin-4 Interleukin-4 receptor 

1IAR_A_B EA19R 1.60E-03 2.10E-03 -0.12 9050834 Interleukin-4 Interleukin-4 receptor 

1IAR_A_B RA53Q 7.30E-03 2.10E-03 0.54 9050834 Interleukin-4 Interleukin-4 receptor 

1IAR_A_B KA77A 2.10E-03 2.10E-03 0 9050834 Interleukin-4 Interleukin-4 receptor 

1IAR_A_B KA77E 2.00E-03 2.10E-03 -0.02 9050834 Interleukin-4 Interleukin-4 receptor 

1IAR_A_B QA78A 2.20E-03 2.10E-03 0.02 9050834 Interleukin-4 Interleukin-4 receptor 

1IAR_A_B QA78E 2.70E-03 2.10E-03 0.11 9050834 Interleukin-4 Interleukin-4 receptor 

1IAR_A_B RA81A 2.80E-03 2.10E-03 0.13 9050834 Interleukin-4 Interleukin-4 receptor 

1IAR_A_B RA81E 6.10E-03 2.10E-03 0.46 9050834 Interleukin-4 Interleukin-4 receptor 

1IAR_A_B FA82A 2.10E-03 2.10E-03 0 9050834 Interleukin-4 Interleukin-4 receptor 

1IAR_A_B FA82D 7.30E-04 2.10E-03 -0.46 9050834 Interleukin-4 Interleukin-4 receptor 

1IAR_A_B KA84A 2.90E-03 2.10E-03 0.14 9050834 Interleukin-4 Interleukin-4 receptor 
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1IAR_A_B KA84D 9.30E-03 2.10E-03 0.65 9050834 Interleukin-4 Interleukin-4 receptor 

1IAR_A_B RA85A 2.70E-03 2.10E-03 0.11 9050834 Interleukin-4 Interleukin-4 receptor 

1IAR_A_B RA85E 4.60E-03 2.10E-03 0.34 9050834 Interleukin-4 Interleukin-4 receptor 

1IAR_A_B RA88Q 1.40E-01 2.10E-03 1.82 9050834 Interleukin-4 Interleukin-4 receptor 

1IAR_A_B RA88A 7.60E-01 2.10E-03 2.56 9050834 Interleukin-4 Interleukin-4 receptor 

1IAR_A_B NA89A 2.70E-02 2.10E-03 1.11 9050834 Interleukin-4 Interleukin-4 receptor 

1IAR_A_B WA91A 6.10E-03 2.10E-03 0.46 9050834 Interleukin-4 Interleukin-4 receptor 

1IAR_A_B WA91D 8.50E-03 2.10E-03 0.61 9050834 Interleukin-4 Interleukin-4 receptor 

1BRS_A_D RA59A 2.40E-03 3.73E-06 2.81 7739054 Barnase Barstar 

1BRS_A_D RA83Q 1.00E-02 3.73E-06 3.43 7739054 Barnase Barstar 

1BRS_A_D RA87A 1.70E-02 3.73E-06 3.66 7739054 Barnase Barstar 

1BRS_A_D HA102A 1.29E-01 3.73E-06 4.54 7739054 Barnase Barstar 

1BRS_A_D YD29F 2.40E-06 3.73E-06 -0.19 7739054 Barnase Barstar 

1BRS_A_D YD29A 1.00E-03 3.73E-06 2.43 7739054 Barnase Barstar 

1BRS_A_D DD35A 3.80E-03 3.73E-06 3.01 7739054 Barnase Barstar 

1BRS_A_D WD38F 7.00E-05 3.73E-06 1.27 7739054 Barnase Barstar 

1BRS_A_D DD39A 9.00E-01 3.73E-06 5.38 7739054 Barnase Barstar 

1BRS_A_D TD42A 7.20E-05 3.73E-06 1.29 7739054 Barnase Barstar 

1BRS_A_D WD44F 3.40E-06 3.73E-06 -0.04 7739054 Barnase Barstar 

1BRS_A_D ED76A 2.10E-05 3.73E-06 0.75 7739054 Barnase Barstar 

1BRS_A_D ED80A 5.20E-06 3.73E-06 0.14 7739054 Barnase Barstar 

1BRS_A_D KA27A,YD29A 9.70E-01 3.73E-06 5.42 7739054 Barnase Barstar 

1BRS_A_D KA27A,DD35A 3.60E+00 3.73E-06 5.98 7739054 Barnase Barstar 

1BRS_A_D KA27A,WD38F 2.10E-02 3.73E-06 3.75 7739054 Barnase Barstar 

1BRS_A_D KA27A,DD39A 6.80E-01 3.73E-06 5.26 7739054 Barnase Barstar 
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1BRS_A_D KA27A,TD42A 6.80E-03 3.73E-06 3.26 7739054 Barnase Barstar 

1BRS_A_D KA27A,ED76A 1.30E-02 3.73E-06 3.54 7739054 Barnase Barstar 

1BRS_A_D KA27A,ED80A 3.50E-03 3.73E-06 2.97 7739054 Barnase Barstar 

1BRS_A_D RA59A,YD29A 2.50E-01 3.73E-06 4.83 7739054 Barnase Barstar 

1BRS_A_D RA59A,DD35A 1.40E-02 3.73E-06 3.57 7739054 Barnase Barstar 

1BRS_A_D RA59A,WD38F 1.30E-02 3.73E-06 3.54 7739054 Barnase Barstar 

1BRS_A_D RA59A,TD42A 2.30E-02 3.73E-06 3.79 7739054 Barnase Barstar 

1BRS_A_D RA59A,ED76A 1.60E-03 3.73E-06 2.63 7739054 Barnase Barstar 

1BRS_A_D RA59A,ED80A 2.00E-03 3.73E-06 2.73 7739054 Barnase Barstar 

1BRS_A_D RA83Q,YD29A 1.10E+00 3.73E-06 5.47 7739054 Barnase Barstar 

1BRS_A_D RA83Q,DD35A 7.10E+00 3.73E-06 6.28 7739054 Barnase Barstar 

1BRS_A_D RA83Q,DD39A 5.30E-02 3.73E-06 4.15 7739054 Barnase Barstar 

1BRS_A_D RA83Q,TD42A 3.50E-02 3.73E-06 3.97 7739054 Barnase Barstar 

1BRS_A_D RA83Q,ED76A 3.40E-02 3.73E-06 3.96 7739054 Barnase Barstar 

1BRS_A_D RA83Q,ED80A 1.10E-02 3.73E-06 3.47 7739054 Barnase Barstar 

1BRS_A_D RA87A,YD29A 1.30E+00 3.73E-06 5.54 7739054 Barnase Barstar 

1BRS_A_D RA87A,WD38F 2.75E-01 3.73E-06 4.87 7739054 Barnase Barstar 

1BRS_A_D RA87A,DD39A 3.00E-01 3.73E-06 4.91 7739054 Barnase Barstar 

1BRS_A_D RA87A,TD42A 3.10E-01 3.73E-06 4.92 7739054 Barnase Barstar 

1BRS_A_D RA87A,ED76A 7.40E-02 3.73E-06 4.3 7739054 Barnase Barstar 

1BRS_A_D RA87A,ED80A 2.40E-02 3.73E-06 3.81 7739054 Barnase Barstar 

1BRS_A_D HA102A,YD29A 1.50E-01 3.73E-06 4.6 7739054 Barnase Barstar 

1BRS_A_D HA102A,YD29F 4.50E-02 3.73E-06 4.08 7739054 Barnase Barstar 

1BRS_A_D HA102A,WD38F 1.28E+00 3.73E-06 5.54 7739054 Barnase Barstar 

1BRS_A_D HA102A,DD39A 1.70E+01 3.73E-06 6.66 7739054 Barnase Barstar 
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1BRS_A_D HA102A,TD42A 2.40E+00 3.73E-06 5.81 7739054 Barnase Barstar 

1BRS_A_D HA102A,ED76A 5.90E-01 3.73E-06 5.2 7739054 Barnase Barstar 

1BRS_A_D HA102A,ED80A 1.80E-01 3.73E-06 4.68 7739054 Barnase Barstar 

1B2U_A_D AA27K 3.80E-03 3.60E+00 -2.98 7739054 Barnase Barstar 

1B2U_A_D AD36D 4.50E-03 3.60E+00 -2.9 7739054 Barnase Barstar 

1B2U_A_D AA27K,AD36D 3.70E-06 3.60E+00 -5.99 7739054 Barnase Barstar 

1B2S_A_D AA27K 7.20E-05 6.80E-03 -1.98 7739054 Barnase Barstar 

1B2S_A_D AD43T 4.50E-03 6.80E-03 -0.18 7739054 Barnase Barstar 

1B2S_A_D AA27K,AD43T 3.70E-06 6.80E-03 -3.26 7739054 Barnase Barstar 

1B3S_A_D AA102H 2.40E-06 4.50E-02 -4.27 7739054 Barnase Barstar 

1B3S_A_D FD30Y 1.29E-01 4.50E-02 0.46 7739054 Barnase Barstar 

1B3S_A_D AA102H,FD30Y 3.70E-06 4.50E-02 -4.09 7739054 Barnase Barstar 

1BRS_A_D DD35A 2.73E-02 1.15E-04 2.38 
 

Barnase Barstar 

1BRS_A_D DD39A 4.57E-01 1.15E-04 3.6 
 

Barnase Barstar 

1BRS_A_D ED80A 2.28E-04 1.15E-04 0.3 
 

Barnase Barstar 

1X1W_A_D AD80E 1.15E-04 2.28E-04 -0.3 
 

Barnase Barstar 

1X1X_A_D AD76E 1.15E-04 4.75E-04 -0.62 
 

Barnase Barstar 

1BRS_A_D KA27A 6.60E-03 8.00E-06 2.92 8494892 Barnase Barstar 

1BRS_A_D WA35F 8.00E-05 8.00E-06 1 8494892 Barnase Barstar 

1BRS_A_D DA54A 5.30E-06 8.00E-06 -0.18 8494892 Barnase Barstar 

1BRS_A_D NA58A 6.40E-04 8.00E-06 1.9 8494892 Barnase Barstar 

1BRS_A_D RA59A 3.70E-03 8.00E-06 2.67 8494892 Barnase Barstar 

1BRS_A_D EA60A 3.40E-05 8.00E-06 0.63 8494892 Barnase Barstar 

1BRS_A_D EA73A 7.40E-04 8.00E-06 1.97 8494892 Barnase Barstar 

1BRS_A_D RA87A 6.70E-02 8.00E-06 3.92 8494892 Barnase Barstar 
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(s^(-1)) 

koff_wt 
(s^(-1)) Δlog10(koff) 

Pubmed 
ID Protein 1 Protein 2 

1BRS_A_D HA102A 2.20E-01 8.00E-06 4.44 8494892 Barnase Barstar 

1BRS_A_D KA27A 6.10E-03 1.50E-05 2.61 8494892 Barnase Barstar 

1BRS_A_D WA35F 9.60E-05 1.50E-05 0.81 8494892 Barnase Barstar 

1BRS_A_D DA54A 1.80E-05 1.50E-05 0.08 8494892 Barnase Barstar 

1BRS_A_D NA58A 9.10E-04 1.50E-05 1.78 8494892 Barnase Barstar 

1BRS_A_D RA59A 6.50E-03 1.50E-05 2.64 8494892 Barnase Barstar 

1BRS_A_D EA60A 1.30E-04 1.50E-05 0.94 8494892 Barnase Barstar 

1BRS_A_D EA73A 2.60E-03 1.50E-05 2.24 8494892 Barnase Barstar 

1BRS_A_D HA102A 3.50E-01 1.50E-05 4.37 8494892 Barnase Barstar 

2B42_A_B HA374A 1.59E-03 3.60E-04 0.65 16279951 TAXI-I B. subtilis endoxylanase 

2B42_A_B HA374Q 1.18E-03 3.60E-04 0.52 16279951 TAXI-I B. subtilis endoxylanase 

2B42_A_B HA374K 3.44E-03 3.60E-04 0.98 16279951 TAXI-I B. subtilis endoxylanase 

2I26_N_L AN30V 1.60E-03 2.00E-03 -0.1 16446445 Type II IgNAR HEW Lysozyme 

2I26_N_L SN61R 1.20E-03 2.00E-03 -0.22 16446445 Type II IgNAR HEW Lysozyme 

2GOX_A_B RB131A 6.87E-02 5.63E-04 2.09 18687868 Complement C3d 
Fibrinogen-binding 
protein Efb-C 

2GOX_A_B NB138A 2.14E-02 5.63E-04 1.58 18687868 Complement C3d 
Fibrinogen-binding 
protein Efb-C 

3D5S_A_C AC41R 5.63E-04 6.87E-02 -2.09 18687868 Complement C3d 
Fibrinogen-binding 
protein Efb-C 

3BP8_A_C FA136A 1.30E-02 3.85E-03 0.53 18319344 
Mlc transcription 
regulator 

PTS glucose-specific 
enzyme EIICB 

3BP8_A_C AC63F 8.79E-03 3.85E-03 0.36 18319344 
Mlc transcription 
regulator 

PTS glucose-specific 
enzyme EIICB 

3BP8_A_C FA136A,AC63F 2.25E-03 3.85E-03 -0.23 18319344 
Mlc transcription 
regulator 

PTS glucose-specific 
enzyme EIICB 

2VIS_AB_C IC131T 1.10E-04 2.16E-03 -1.29 9461077 IgG1 lambda FAB Flu virus hemagglutinin 

2VIR_AB_C TC131I 2.16E-03 1.10E-04 1.29 9461077 IgG1 lambda FAB Flu virus hemagglutinin 

2WPT_A_B DA33L 3.80E-03 7.30E-01 -2.28 9718299 
Colicin E2 immunity 
protein Colicin E9 DNase 
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Complex 
PDB / 
Chains Mutation(s) 

koff_mut 
(s^(-1)) 

koff_wt 
(s^(-1)) Δlog10(koff) 

Pubmed 
ID Protein 1 Protein 2 

2WPT_A_B NA34V 1.60E-01 7.30E-01 -0.66 9718299 
Colicin E2 immunity 
protein Colicin E9 DNase 

2WPT_A_B RA38T 2.90E-01 7.30E-01 -0.4 9718299 
Colicin E2 immunity 
protein Colicin E9 DNase 

2WPT_A_B EA39H 8.80E-01 7.30E-01 0.08 9718299 
Colicin E2 immunity 
protein Colicin E9 DNase 

2WPT_A_B RA42E 5.00E-01 7.30E-01 -0.16 9718299 
Colicin E2 immunity 
protein Colicin E9 DNase 

2WPT_A_B NA34V,RA38T 1.80E-02 7.30E-01 -1.61 9718299 
Colicin E2 immunity 
protein Colicin E9 DNase 

2WPT_A_B DA33L,NA34V,RA38T 3.70E-05 7.30E-01 -4.3 9718299 
Colicin E2 immunity 
protein Colicin E9 DNase 

2WPT_A_B NA34V,RA38T,RA42E 1.20E-02 7.30E-01 -1.78 9718299 
Colicin E2 immunity 
protein Colicin E9 DNase 

2WPT_A_B NA34V,RA38T,EA39H,RA42E 1.30E-02 7.30E-01 -1.75 9718299 
Colicin E2 immunity 
protein Colicin E9 DNase 

2WPT_A_B EA30A 2.80E-07 7.30E-01 -6.42 9718299 
Colicin E2 immunity 
protein Colicin E9 DNase 

2WPT_A_B DA33A 1.20E-08 7.30E-01 -7.78 9718299 
Colicin E2 immunity 
protein Colicin E9 DNase 

2WPT_A_B NA34A 7.90E-09 7.30E-01 -7.97 9718299 
Colicin E2 immunity 
protein Colicin E9 DNase 

2WPT_A_B VA37A 9.30E-06 7.30E-01 -4.89 9718299 
Colicin E2 immunity 
protein Colicin E9 DNase 

2WPT_A_B RA38A 2.30E-09 7.30E-01 -8.5 9718299 
Colicin E2 immunity 
protein Colicin E9 DNase 

2WPT_A_B EA41A 3.00E-05 7.30E-01 -4.39 9718299 
Colicin E2 immunity 
protein Colicin E9 DNase 

2WPT_A_B RA42A 1.00E-08 7.30E-01 -7.86 9718299 
Colicin E2 immunity 
protein Colicin E9 DNase 

2WPT_A_B SA50A 9.00E-07 7.30E-01 -5.91 9718299 
Colicin E2 immunity 
protein Colicin E9 DNase 

2WPT_A_B PA56A 2.10E-06 7.30E-01 -5.54 9718299 
Colicin E2 immunity 
protein Colicin E9 DNase 

2WPT_A_B NB72A 1.08E+01 9.00E-01 1.08 18471830 
Colicin E2 immunity 
protein Colicin E9 DNase 

2WPT_A_B SB74A 2.70E-01 9.00E-01 -0.52 18471830 
Colicin E2 immunity 
protein Colicin E9 DNase 

2WPT_A_B NB75A 3.76E+01 9.00E-01 1.62 18471830 
Colicin E2 immunity 
protein Colicin E9 DNase 
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Complex 
PDB / 
Chains Mutation(s) 

koff_mut 
(s^(-1)) 

koff_wt 
(s^(-1)) Δlog10(koff) 

Pubmed 
ID Protein 1 Protein 2 

2WPT_A_B SB77A 3.30E-01 9.00E-01 -0.44 18471830 
Colicin E2 immunity 
protein Colicin E9 DNase 

2WPT_A_B SB78A 6.50E-01 9.00E-01 -0.14 18471830 
Colicin E2 immunity 
protein Colicin E9 DNase 

2WPT_A_B SB84A 8.00E-01 9.00E-01 -0.05 18471830 
Colicin E2 immunity 
protein Colicin E9 DNase 

2WPT_A_B FB86A 5.49E+01 9.00E-01 1.79 18471830 
Colicin E2 immunity 
protein Colicin E9 DNase 

2WPT_A_B TB87A 1.03E+00 9.00E-01 0.06 18471830 
Colicin E2 immunity 
protein Colicin E9 DNase 

2WPT_A_B QB92A 4.10E-01 9.00E-01 -0.34 18471830 
Colicin E2 immunity 
protein Colicin E9 DNase 

2WPT_A_B KB97A 6.80E-01 9.00E-01 -0.12 18471830 
Colicin E2 immunity 
protein Colicin E9 DNase 

2WPT_A_B VB98A 1.05E+00 9.00E-01 0.07 18471830 
Colicin E2 immunity 
protein Colicin E9 DNase 

2VLP_A_B AB54R 2.36E-06 3.54E-05 -1.18 18471830 
Colicin E9 immunity 
protein Colicin E9 DNase 

2VLN_A_B AB75N 2.36E-06 1.68E-04 -1.85 18471830 
Colicin E9 immunity 
protein Colicin E9 DNase 

2VLQ_A_B AB86F 2.36E-06 1.80E-03 -2.88 18471830 
Colicin E9 immunity 
protein Colicin E9 DNase 

2VLO_A_B AB97K 2.36E-06 3.05E-05 -1.11 18471830 
Colicin E9 immunity 
protein Colicin E9 DNase 

1EMV_A_B RB54A 3.54E-05 2.36E-06 1.18 18471830 
Colicin E9 immunity 
protein Colicin E9 DNase 

1EMV_A_B NB72A 1.28E-05 2.36E-06 0.73 18471830 
Colicin E9 immunity 
protein Colicin E9 DNase 

1EMV_A_B SB74A 1.75E-06 2.36E-06 -0.13 18471830 
Colicin E9 immunity 
protein Colicin E9 DNase 

1EMV_A_B NB75A 1.68E-04 2.36E-06 1.85 18471830 
Colicin E9 immunity 
protein Colicin E9 DNase 

1EMV_A_B SB77A 1.58E-06 2.36E-06 -0.17 18471830 
Colicin E9 immunity 
protein Colicin E9 DNase 

1EMV_A_B SB78A 1.02E-06 2.36E-06 -0.36 18471830 
Colicin E9 immunity 
protein Colicin E9 DNase 

1EMV_A_B SB84A 1.87E-06 2.36E-06 -0.1 18471830 
Colicin E9 immunity 
protein Colicin E9 DNase 

1EMV_A_B FB86A 1.80E-03 2.36E-06 2.88 18471830 
Colicin E9 immunity 
protein Colicin E9 DNase 
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Complex 
PDB / 
Chains Mutation(s) 

koff_mut 
(s^(-1)) 

koff_wt 
(s^(-1)) Δlog10(koff) 

Pubmed 
ID Protein 1 Protein 2 

1EMV_A_B QB92A 1.59E-06 2.36E-06 -0.17 18471830 
Colicin E9 immunity 
protein Colicin E9 DNase 

1EMV_A_B KB97A 3.05E-05 2.36E-06 1.11 18471830 
Colicin E9 immunity 
protein Colicin E9 DNase 

1EMV_A_B VB98A 1.45E-05 2.36E-06 0.79 18471830 
Colicin E9 immunity 
protein Colicin E9 DNase 

1EMV_A_B FB86A,LA33A 1.50E-01 2.36E-06 4.8 18471830 
Colicin E9 immunity 
protein Colicin E9 DNase 

1EMV_A_B FB86A,VA34A 4.97E-03 2.36E-06 3.32 18471830 
Colicin E9 immunity 
protein Colicin E9 DNase 

1EMV_A_B FB86A,VA37A 1.70E-03 2.36E-06 2.86 18471830 
Colicin E9 immunity 
protein Colicin E9 DNase 

1EMV_A_B FB86A,YA54A 3.18E+00 2.36E-06 6.13 18471830 
Colicin E9 immunity 
protein Colicin E9 DNase 

1EMV_A_B FB86A,YA55A 3.00E+00 2.36E-06 6.1 18471830 
Colicin E9 immunity 
protein Colicin E9 DNase 

1EMV_A_B CA23A 6.09E-06 1.83E-06 0.52 9425068 
Colicin E9 immunity 
protein Colicin E9 DNase 

1EMV_A_B NA24A 1.98E-06 1.83E-06 0.03 9425068 
Colicin E9 immunity 
protein Colicin E9 DNase 

1EMV_A_B DA26A 2.95E-06 1.83E-06 0.21 9425068 
Colicin E9 immunity 
protein Colicin E9 DNase 

1EMV_A_B TA27A 3.37E-06 1.83E-06 0.27 9425068 
Colicin E9 immunity 
protein Colicin E9 DNase 

1EMV_A_B SA28A 1.91E-06 1.83E-06 0.02 9425068 
Colicin E9 immunity 
protein Colicin E9 DNase 

1EMV_A_B SA29A 7.13E-06 1.83E-06 0.59 9425068 
Colicin E9 immunity 
protein Colicin E9 DNase 

1EMV_A_B EA30A 1.48E-05 1.83E-06 0.91 9425068 
Colicin E9 immunity 
protein Colicin E9 DNase 

1EMV_A_B EA31A 2.19E-06 1.83E-06 0.08 9425068 
Colicin E9 immunity 
protein Colicin E9 DNase 

1EMV_A_B EA32A 2.44E-06 1.83E-06 0.13 9425068 
Colicin E9 immunity 
protein Colicin E9 DNase 

1EMV_A_B LA33A 4.00E-04 1.83E-06 2.34 9425068 
Colicin E9 immunity 
protein Colicin E9 DNase 

1EMV_A_B VA34A 9.54E-05 1.83E-06 1.72 9425068 
Colicin E9 immunity 
protein Colicin E9 DNase 

1EMV_A_B KA35A 2.20E-06 1.83E-06 0.08 9425068 
Colicin E9 immunity 
protein Colicin E9 DNase 
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Complex 
PDB / 
Chains Mutation(s) 

koff_mut 
(s^(-1)) 

koff_wt 
(s^(-1)) Δlog10(koff) 

Pubmed 
ID Protein 1 Protein 2 

1EMV_A_B LA36A 4.75E-06 1.83E-06 0.41 9425068 
Colicin E9 immunity 
protein Colicin E9 DNase 

1EMV_A_B VA37A 2.09E-05 1.83E-06 1.06 9425068 
Colicin E9 immunity 
protein Colicin E9 DNase 

1EMV_A_B TA38A 5.13E-06 1.83E-06 0.45 9425068 
Colicin E9 immunity 
protein Colicin E9 DNase 

1EMV_A_B EA42A 3.25E-06 1.83E-06 0.25 9425068 
Colicin E9 immunity 
protein Colicin E9 DNase 

1EMV_A_B TA44A 2.70E-06 1.83E-06 0.17 9425068 
Colicin E9 immunity 
protein Colicin E9 DNase 

1EMV_A_B EA45A 2.04E-06 1.83E-06 0.05 9425068 
Colicin E9 immunity 
protein Colicin E9 DNase 

1EMV_A_B HA46A 3.98E-06 1.83E-06 0.34 9425068 
Colicin E9 immunity 
protein Colicin E9 DNase 

1EMV_A_B PA47A 2.26E-06 1.83E-06 0.09 9425068 
Colicin E9 immunity 
protein Colicin E9 DNase 

1EMV_A_B SA48A 1.77E-06 1.83E-06 -0.01 9425068 
Colicin E9 immunity 
protein Colicin E9 DNase 

1EMV_A_B GA49A 1.22E-05 1.83E-06 0.82 9425068 
Colicin E9 immunity 
protein Colicin E9 DNase 

1EMV_A_B SA50A 5.14E-05 1.83E-06 1.45 9425068 
Colicin E9 immunity 
protein Colicin E9 DNase 

1EMV_A_B DA51A 6.11E-03 1.83E-06 3.52 9425068 
Colicin E9 immunity 
protein Colicin E9 DNase 

1EMV_A_B LA52A 2.87E-06 1.83E-06 0.2 9425068 
Colicin E9 immunity 
protein Colicin E9 DNase 

1EMV_A_B IA53A 6.06E-06 1.83E-06 0.52 9425068 
Colicin E9 immunity 
protein Colicin E9 DNase 

1EMV_A_B YA54A 2.55E-03 1.83E-06 3.14 9425068 
Colicin E9 immunity 
protein Colicin E9 DNase 

1EMV_A_B YA55A 2.75E-03 1.83E-06 3.18 9425068 
Colicin E9 immunity 
protein Colicin E9 DNase 

1EMV_A_B PA56A 1.30E-05 1.83E-06 0.85 9425068 
Colicin E9 immunity 
protein Colicin E9 DNase 

1EMV_A_B DA60A 2.69E-06 1.83E-06 0.17 9425068 
Colicin E9 immunity 
protein Colicin E9 DNase 

1EMV_A_B SA63A 4.54E-06 1.83E-06 0.4 9425068 
Colicin E9 immunity 
protein Colicin E9 DNase 

1EMV_A_B VA68A 1.59E-05 1.83E-06 0.94 9425068 
Colicin E9 immunity 
protein Colicin E9 DNase 
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Complex 
PDB / 
Chains Mutation(s) 

koff_mut 
(s^(-1)) 

koff_wt 
(s^(-1)) Δlog10(koff) 

Pubmed 
ID Protein 1 Protein 2 

1EMV_A_B NA69A 2.46E-06 1.83E-06 0.13 9425068 
Colicin E9 immunity 
protein Colicin E9 DNase 

1FR2_A_B AA41E 1.83E-06 1.42E-05 -0.89 9425068 
Colicin E9 immunity 
protein Colicin E9 DNase 

2GYK_A_B AA51D 1.83E-06 6.11E-03 -3.52 9425068 
Colicin E9 immunity 
protein Colicin E9 DNase 

2AJF_A_E KE344R 1.04E-03 1.16E-03 -0.05 15791205 

Human 
Angiotensin-
converting enzyme 
2 

SARS spike protein 
receptor binding domain 

2AJF_A_E FE360S 8.80E-04 1.16E-03 -0.12 15791205 

Human 
Angiotensin-
converting enzyme 
2 

SARS spike protein 
receptor binding domain 

2AJF_A_E NE479K 2.77E-02 1.16E-03 1.38 15791205 

Human 
Angiotensin-
converting enzyme 
2 

SARS spike protein 
receptor binding domain 

2AJF_A_E TE487S 1.32E-02 1.16E-03 1.06 15791205 

Human 
Angiotensin-
converting enzyme 
2 

SARS spike protein 
receptor binding domain 

1MQ8_A_B CB161L,CB299F 4.60E+00 4.30E-01 1.03 12526797 
Intercellular 
adhesion molecule I Integrin alpha-L 

1MQ8_A_B 
CB161L,CB299F,KB287C,KB2
94C 1.40E-02 4.30E-01 -1.49 12526797 

Intercellular 
adhesion molecule I Integrin alpha-L 

1MQ8_A_B 
CB161L,CB299F,EB284C,EB3
01C 4.50E-02 4.30E-01 -0.98 12526797 

Intercellular 
adhesion molecule I Integrin alpha-L 

1MQ8_A_B 
CB161L,CB299F,KB160C,TB3
00C 1.20E+00 4.30E-01 0.45 12526797 

Intercellular 
adhesion molecule I Integrin alpha-L 

1MQ8_A_B 
CB161L,CB299F,LB289C,KB2
94C 3.60E+00 4.30E-01 0.92 12526797 

Intercellular 
adhesion molecule I Integrin alpha-L 

1MQ8_A_B CB161L,KB160C 7.70E-01 4.30E-01 0.25 12526797 
Intercellular 
adhesion molecule I Integrin alpha-L 

1MQ8_A_B CB299F,TB300C 7.60E-01 4.30E-01 0.25 12526797 
Intercellular 
adhesion molecule I Integrin alpha-L 

1MAH_A_F FA295L 3.70E-03 4.40E-03 -0.08 8157652 
Acetylcholinesteras
e Fasciculin 

1MAH_A_F FA297I 6.00E-03 4.40E-03 0.14 8157652 
Acetylcholinesteras
e Fasciculin 
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Complex 
PDB / 
Chains Mutation(s) 

koff_mut 
(s^(-1)) 

koff_wt 
(s^(-1)) Δlog10(koff) 

Pubmed 
ID Protein 1 Protein 2 

1MAH_A_F FA297Y 3.10E-03 4.40E-03 -0.15 8157652 
Acetylcholinesteras
e Fasciculin 

1MAH_A_F YA337A 6.80E-03 4.40E-03 0.19 8157652 
Acetylcholinesteras
e Fasciculin 

1MAH_A_F DA74N 4.00E-02 4.40E-03 0.96 8157652 
Acetylcholinesteras
e Fasciculin 

1MAH_A_F YA124Q 2.90E-01 4.40E-03 1.82 8157652 
Acetylcholinesteras
e Fasciculin 

1LFD_A_B RA20A 3.30E+01 1.49E+01 0.35 15197281 RalGSD-RBD H-Ras1 

1LFD_A_B SA22K 2.54E+01 1.49E+01 0.23 15197281 RalGSD-RBD H-Ras1 

1LFD_A_B LA23K 1.68E+01 1.49E+01 0.05 15197281 RalGSD-RBD H-Ras1 

1LFD_A_B NA27K 4.46E+01 1.49E+01 0.48 15197281 RalGSD-RBD H-Ras1 

1LFD_A_B MA30K 6.70E+00 1.49E+01 -0.35 15197281 RalGSD-RBD H-Ras1 

1LFD_A_B KA32A 4.00E+01 1.49E+01 0.43 15197281 RalGSD-RBD H-Ras1 

1LFD_A_B KA48A 1.68E+01 1.49E+01 0.05 15197281 RalGSD-RBD H-Ras1 

1LFD_A_B DA51K 9.30E+00 1.49E+01 -0.21 15197281 RalGSD-RBD H-Ras1 

1LFD_A_B KA52A 2.83E+01 1.49E+01 0.28 15197281 RalGSD-RBD H-Ras1 

1LFD_A_B NA54K 4.20E+00 1.49E+01 -0.55 15197281 RalGSD-RBD H-Ras1 

1LFD_A_B LA55K 1.11E+01 1.49E+01 -0.13 15197281 RalGSD-RBD H-Ras1 

1LFD_A_B DA56A 2.23E+01 1.49E+01 0.18 15197281 RalGSD-RBD H-Ras1 

1LFD_A_B EA57A 2.09E+01 1.49E+01 0.15 15197281 RalGSD-RBD H-Ras1 

1LFD_A_B EA57K 2.30E+01 1.49E+01 0.19 15197281 RalGSD-RBD H-Ras1 

1LFD_A_B DA58K 6.40E+00 1.49E+01 -0.37 15197281 RalGSD-RBD H-Ras1 

1LFD_A_B NA92K 1.61E+01 1.49E+01 0.03 15197281 RalGSD-RBD H-Ras1 

1LFD_A_B YA93K 4.80E+01 1.49E+01 0.51 15197281 RalGSD-RBD H-Ras1 

1LFD_A_B DA94K 7.90E+00 1.49E+01 -0.28 15197281 RalGSD-RBD H-Ras1 

1LFD_A_B MA30K,DA58K 5.80E+00 1.49E+01 -0.41 15197281 RalGSD-RBD H-Ras1 

1LFD_A_B MA30K,DA94K 1.99E+01 1.49E+01 0.13 15197281 RalGSD-RBD H-Ras1 
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PDB / 
Chains Mutation(s) 

koff_mut 
(s^(-1)) 

koff_wt 
(s^(-1)) Δlog10(koff) 

Pubmed 
ID Protein 1 Protein 2 

1LFD_A_B MA30K,DA51K,DA58K 7.80E+00 1.49E+01 -0.28 15197281 RalGSD-RBD H-Ras1 

1LFD_A_B 
MA30K,DA51K,DA58K,DA94
K 1.00E+01 1.49E+01 -0.17 15197281 RalGSD-RBD H-Ras1 

1LFD_A_B DA51K,DA56K,EA57K 6.00E+00 1.49E+01 -0.4 15197281 RalGSD-RBD H-Ras1 

1LFD_A_B DA58K,DA94K 1.99E+01 1.49E+01 0.13 15197281 RalGSD-RBD H-Ras1 

1KTZ_A_B VA92I 7.20E-02 5.40E-02 0.13 19161338 
Transforming 
growth factor beta 3 TGF-beta type II receptor 

1KTZ_A_B RA25K 2.00E-01 5.40E-02 0.57 19161338 
Transforming 
growth factor beta 3 TGF-beta type II receptor 

1REW_AB_C DA30A,DB30A 1.20E-03 4.00E-04 0.48 10880444 

Bone 
morphogenetic 
protein-2 BMPR-IA receptor 

1REW_AB_C WA31A,WB31A 2.28E-03 4.00E-04 0.76 10880444 

Bone 
morphogenetic 
protein-2 BMPR-IA receptor 

1REW_AB_C 
DA30A,WA31A,DB30A,WB31
A 1.20E-02 4.00E-04 1.48 10880444 

Bone 
morphogenetic 
protein-2 BMPR-IA receptor 

1REW_AB_C FA49A,FB49A 4.00E-04 4.00E-04 0 10880444 

Bone 
morphogenetic 
protein-2 BMPR-IA receptor 

1REW_AB_C PA50A,PB50A 3.20E-04 4.00E-04 -0.1 10880444 
Bone 
morphogenetic  BMPR-IA receptor 

1REW_AB_C HA39D,HB39D 4.40E-04 4.00E-04 0.04 10880444 

Bone 
morphogenetic 
protein-2 BMPR-IA receptor 

1REW_AB_C SA88A,SB88A 4.40E-04 4.00E-04 0.04 10880444 

Bone 
morphogenetic 
protein-2 BMPR-IA receptor 

1REW_AB_C LA100A,LB100A 4.80E-04 4.00E-04 0.08 10880444 

Bone 
morphogenetic 
protein-2 BMPR-IA receptor 

1REW_AB_C HA39D,SA88A,HB39D,SB88A 4.80E-04 4.00E-04 0.08 10880444 

Bone 
morphogenetic 
protein-2 BMPR-IA receptor 

1REW_AB_C 
HA39D,LA100A,HB39D,LB10
0A 4.40E-04 4.00E-04 0.04 10880444 

Bone 
morphogenetic 
protein-2 BMPR-IA receptor 
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Complex 
PDB / 
Chains Mutation(s) 

koff_mut 
(s^(-1)) 

koff_wt 
(s^(-1)) Δlog10(koff) 

Pubmed 
ID Protein 1 Protein 2 

1REW_AB_C AA34D,AB34D 2.24E-04 4.00E-04 -0.25 10880444 

Bone 
morphogenetic 
protein-2 BMPR-IA receptor 

1REW_AB_C DA53A,DB53A 4.40E-04 4.00E-04 0.04 10880444 

Bone 
morphogenetic 
protein-2 BMPR-IA receptor 

1REW_AB_C EA109R,EB109R 4.80E-04 4.00E-04 0.08 10880444 

Bone 
morphogenetic 
protein-2 BMPR-IA receptor 

1REW_AB_C DA30A,AA34D,DB30A,AB34D 7.60E-04 4.00E-04 0.28 10880444 

Bone 
morphogenetic 
protein-2 BMPR-IA receptor 

1REW_AB_C AA34D,DA53A,AB34D,DB53A 4.40E-04 4.00E-04 0.04 10880444 

Bone 
morphogenetic 
protein-2 BMPR-IA receptor 

1REW_AB_C 
DA53A,EA109R,DB53A,EB10
9R 5.60E-04 4.00E-04 0.15 10880444 

Bone 
morphogenetic 
protein-2 BMPR-IA receptor 

1REW_AB_C 
KC88R,SC90T,KC92I,AC93P,Q
C94H,LC95Q,TC98D 9.70E-04 2.40E-04 0.61 18160401 

Bone 
morphogenetic 
protein-2 BMPR-IA receptor 

2QJ9_AB_C 
RC88K,TC90S,IC92K,PC93A,H
C94Q,QC95L,SC98T 2.40E-04 9.70E-04 -0.61 18160401 

Bone 
morphogenetic 
protein-2 BMPR-IA receptor 

1REW_AB_C 

KC88R,SC90T,KC92I,AC93P,Q
C94H,LC95Q,TC98D,AC74T,M
C78L,KC79G,YC80L 3.40E-04 2.40E-04 0.15 18160401 

Bone 
morphogenetic 
protein-2 BMPR-IA receptor 

2QJ9_AB_C AC74T,MC78L,KC79G,YC80L 3.40E-04 9.70E-04 -0.46 18160401 

Bone 
morphogenetic 
protein-2 BMPR-IA receptor 

2QJA_AB_C 

RC88K,TC90S,IC92K,PC93A,H
C94Q,QC95L,SC98T,TC74A,L
C78M,GC79K,LC80Y 2.40E-04 3.40E-04 -0.15 18160401 

Bone 
morphogenetic 
protein-2 BMPR-IA receptor 

1REW_AB_C 

KC88R,SC90T,KC92I,AC93P,Q
C94H,LC95Q,TC98D,AC74T,M
C78L,KC79G,YC80L,GC42H,D
C46E,AC61T,IC62M 1.11E-03 2.40E-04 0.67 18160401 

Bone 
morphogenetic 
protein-2 BMPR-IA receptor 

2QJ9_AB_C 
AC74T,MC78L,KC79G,YC80L,
GC42H,DC46E,AC61T,IC62M 1.11E-03 9.70E-04 0.06 18160401 

Bone 
morphogenetic 
protein-2 BMPR-IA receptor 
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Complex 
PDB / 
Chains Mutation(s) 

koff_mut 
(s^(-1)) 

koff_wt 
(s^(-1)) Δlog10(koff) 

Pubmed 
ID Protein 1 Protein 2 

2QJA_AB_C GC42H,DC46E,AC61T,IC62M 1.11E-03 3.40E-04 0.51 18160401 

Bone 
morphogenetic 
protein-2 BMPR-IA receptor 

2QJB_AB_C HC42G,EC46D,TC61A,MC62I 3.40E-04 1.11E-03 -0.51 18160401 

Bone 
morphogenetic 
protein-2 BMPR-IA receptor 

2QJB_AB_C 
TC74A,LC78M,GC79K,LC80Y,
HC42G,EC46D,TC61A,MC62I 9.70E-04 1.11E-03 -0.06 18160401 

Bone 
morphogenetic 
protein-2 BMPR-IA receptor 

2QJB_AB_C 

RC88K,TC90S,IC92K,PC93A,H
C94Q,QC95L,SC98T,TC74A,L
C78M,GC79K,LC80Y,HC42G,E
C46D,TC61A,MC62I 2.40E-04 1.11E-03 -0.67 18160401 

Bone 
morphogenetic 
protein-2 BMPR-IA receptor 

3BK3_A_C LC1A 2.80E-02 2.60E-02 0.03 18477456 

Bone 
morphogenetic 
protein-2 Crossveinless 2 

3BK3_A_C LC1R 2.80E-02 2.60E-02 0.03 18477456 

Bone 
morphogenetic 
protein-2 Crossveinless 2 

3BK3_A_C TC3P 4.80E-02 2.60E-02 0.27 18477456 

Bone 
morphogenetic 
protein-2 Crossveinless 2 

3BK3_A_C TC5P 7.50E-02 2.60E-02 0.46 18477456 

Bone 
morphogenetic 
protein-2 Crossveinless 2 

3BK3_A_C IC18A 4.40E-02 2.60E-02 0.23 18477456 

Bone 
morphogenetic 
protein-2 Crossveinless 2 

3BK3_A_C IC18R 8.90E-02 2.60E-02 0.53 18477456 

Bone 
morphogenetic 
protein-2 Crossveinless 2 

1JTG_A_B DB49A 7.89E-03 2.80E-04 1.45 10772866 
TEM-1 beta-
lactamase BLIP 

1JTG_A_B SA235A,DB49A 6.22E-03 2.80E-04 1.35 10772866 
TEM-1 beta-
lactamase BLIP 

1JTG_A_B SA235A,SA130A,DB49A 2.47E-03 2.80E-04 0.95 10772866 
TEM-1 beta-
lactamase BLIP 

1JTG_A_B RA243A,DB49A 2.05E-03 2.80E-04 0.87 10772866 
TEM-1 beta-
lactamase BLIP 

1JTG_A_B KA234A,DB49A 5.27E-03 2.80E-04 1.27 10772866 TEM-1 beta- BLIP 
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Complex 
PDB / 
Chains Mutation(s) 

koff_mut 
(s^(-1)) 

koff_wt 
(s^(-1)) Δlog10(koff) 

Pubmed 
ID Protein 1 Protein 2 

lactamase 

1JTG_A_B RA243A,SA235A,DB49A 6.40E-04 2.80E-04 0.36 10772866 
TEM-1 beta-
lactamase BLIP 

1JTG_A_B RA243A,SA130A,DB49A 2.27E-03 2.80E-04 0.91 10772866 
TEM-1 beta-
lactamase BLIP 

1JTG_A_B SA235A,KA234A,DB49A 3.19E-03 2.80E-04 1.06 10772866 
TEM-1 beta-
lactamase BLIP 

1JTG_A_B KA234A,SA130A,DB49A 1.58E-03 2.80E-04 0.75 10772866 
TEM-1 beta-
lactamase BLIP 

1JTG_A_B 
RA243A,SA235A,SA130A,DB
49A 1.05E-03 2.80E-04 0.57 10772866 

TEM-1 beta-
lactamase BLIP 

1JTG_A_B 
SA235A,SA130A,KA234A,DB
49A 1.09E-03 2.80E-04 0.59 10772866 

TEM-1 beta-
lactamase BLIP 

1JTG_A_B RA243A,KA234A,DB49A 5.10E-03 2.80E-04 1.26 10772866 
TEM-1 beta-
lactamase BLIP 

1JTG_A_B 
RA243A,SA235A,KA234A,DB
49A 4.86E-03 2.80E-04 1.24 10772866 

TEM-1 beta-
lactamase BLIP 

1JTG_A_B 
KA234A,SA130A,RA243A,DB
49A 3.13E-03 2.80E-04 1.05 10772866 

TEM-1 beta-
lactamase BLIP 

1JTG_A_B 
KA234A,SA235A,SA130A,RA
243A,DB49A 3.90E-03 2.80E-04 1.14 10772866 

TEM-1 beta-
lactamase BLIP 

1JTG_A_B SA235A 2.60E-03 2.80E-04 0.97 10772866 
TEM-1 beta-
lactamase BLIP 

1JTG_A_B SA130A 6.50E-04 2.80E-04 0.37 10772866 
TEM-1 beta-
lactamase BLIP 

1JTG_A_B SA235A,SA130A 1.10E-03 2.80E-04 0.59 10772866 
TEM-1 beta-
lactamase BLIP 

1JTG_A_B RA243A 7.20E-04 2.80E-04 0.41 10772866 
TEM-1 beta-
lactamase BLIP 

1JTG_A_B KA234A 1.12E-03 2.80E-04 0.6 10772866 
TEM-1 beta-
lactamase BLIP 

1JTG_A_B RA243A,SA235A 3.10E-04 2.80E-04 0.04 10772866 
TEM-1 beta-
lactamase BLIP 

1JTG_A_B RA243A,SA130A 1.55E-03 2.80E-04 0.74 10772866 
TEM-1 beta-
lactamase BLIP 

1JTG_A_B SA235A,KA234A 1.87E-03 2.80E-04 0.83 10772866 
TEM-1 beta-
lactamase BLIP 

1JTG_A_B KA234A,SA130A 1.16E-03 2.80E-04 0.62 10772866 
TEM-1 beta-
lactamase BLIP 
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Complex 
PDB / 
Chains Mutation(s) 

koff_mut 
(s^(-1)) 

koff_wt 
(s^(-1)) Δlog10(koff) 

Pubmed 
ID Protein 1 Protein 2 

1JTG_A_B RA243A,SA235A,SA130A 1.06E-03 2.80E-04 0.58 10772866 
TEM-1 beta-
lactamase BLIP 

1JTG_A_B RA243A,KA234A 2.74E-03 2.80E-04 0.99 10772866 
TEM-1 beta-
lactamase BLIP 

1JTG_A_B RA243A,SA235A,KA234A 2.68E-03 2.80E-04 0.98 10772866 
TEM-1 beta-
lactamase BLIP 

1JTG_A_B KA234A,SA130A,RA243A 1.89E-03 2.80E-04 0.83 10772866 
TEM-1 beta-
lactamase BLIP 

1JTG_A_B 
KA234A,SA235A,SA130A,RA
243A 3.78E-03 2.80E-04 1.13 10772866 

TEM-1 beta-
lactamase BLIP 

1JTG_A_B QA99A 3.19E-04 1.50E-04 0.33 17070843 
TEM-1 beta-
lactamase BLIP 

1JTG_A_B NA100A 1.16E-04 1.50E-04 -0.11 17070843 
TEM-1 beta-
lactamase BLIP 

1JTG_A_B VA103A 4.03E-03 1.50E-04 1.43 17070843 
TEM-1 beta-
lactamase BLIP 

1JTG_A_B EA104A 8.67E-03 1.50E-04 1.76 17070843 
TEM-1 beta-
lactamase BLIP 

1JTG_A_B PA107A 2.01E-04 1.50E-04 0.13 17070843 
TEM-1 beta-
lactamase BLIP 

1JTG_A_B MA129A 3.35E-04 1.50E-04 0.35 17070843 
TEM-1 beta-
lactamase BLIP 

1JTG_A_B EA168A 1.78E-04 1.50E-04 0.07 17070843 
TEM-1 beta-
lactamase BLIP 

1JTG_A_B VA216A 2.96E-05 1.50E-04 -0.71 17070843 
TEM-1 beta-
lactamase BLIP 

1JTG_A_B FB36A 1.52E-02 1.50E-04 2.01 17070843 
TEM-1 beta-
lactamase BLIP 

1JTG_A_B HB41A 3.70E-02 1.50E-04 2.39 17070843 
TEM-1 beta-
lactamase BLIP 

1JTG_A_B DB49A 2.90E-03 1.50E-04 1.29 17070843 
TEM-1 beta-
lactamase BLIP 

1JTG_A_B YB50A 3.92E-05 1.50E-04 -0.58 17070843 
TEM-1 beta-
lactamase BLIP 

1JTG_A_B YB53A 8.27E-03 1.50E-04 1.74 17070843 
TEM-1 beta-
lactamase BLIP 

1JTG_A_B SB71A 4.05E-04 1.50E-04 0.43 17070843 
TEM-1 beta-
lactamase BLIP 

1JTG_A_B WB112A 3.22E-02 1.50E-04 2.33 17070843 
TEM-1 beta-
lactamase BLIP 
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Complex 
PDB / 
Chains Mutation(s) 

koff_mut 
(s^(-1)) 

koff_wt 
(s^(-1)) Δlog10(koff) 

Pubmed 
ID Protein 1 Protein 2 

1JTG_A_B SB113A 1.74E-04 1.50E-04 0.06 17070843 
TEM-1 beta-
lactamase BLIP 

1JTG_A_B FB142A 9.80E-03 1.50E-04 1.82 17070843 
TEM-1 beta-
lactamase BLIP 

1JTG_A_B HB148A 1.40E-02 1.50E-04 1.97 17070843 
TEM-1 beta-
lactamase BLIP 

1JTG_A_B WB150A 9.08E-02 1.50E-04 2.78 17070843 
TEM-1 beta-
lactamase BLIP 

1JTG_A_B WB162A 9.40E-03 1.50E-04 1.8 17070843 
TEM-1 beta-
lactamase BLIP 

1JTG_A_B QA99A,HB148A 8.00E-02 1.50E-04 2.73 17070843 
TEM-1 beta-
lactamase BLIP 

1JTG_A_B QA99A,WB150A 3.81E-02 1.50E-04 2.4 17070843 
TEM-1 beta-
lactamase BLIP 

1JTG_A_B QA99A,RB160A 1.14E-02 1.50E-04 1.88 17070843 
TEM-1 beta-
lactamase BLIP 

1JTG_A_B NA100A,HB148A 8.11E-03 1.50E-04 1.73 17070843 
TEM-1 beta-
lactamase BLIP 

1JTG_A_B NA100A,WB150A 1.10E-01 1.50E-04 2.87 17070843 
TEM-1 beta-
lactamase BLIP 

1JTG_A_B NA100A,RB160A 1.77E-03 1.50E-04 1.07 17070843 
TEM-1 beta-
lactamase BLIP 

1JTG_A_B EA168A,WB162A 5.17E-03 1.50E-04 1.54 17070843 
TEM-1 beta-
lactamase BLIP 

1JTG_A_B VA103A,WB162A 9.00E-02 1.50E-04 2.78 17070843 
TEM-1 beta-
lactamase BLIP 

1JTG_A_B MA129A,YB53A 2.99E-02 1.50E-04 2.3 17070843 
TEM-1 beta-
lactamase BLIP 

1JTG_A_B MA129A,YB50A 2.27E-04 1.50E-04 0.18 17070843 
TEM-1 beta-
lactamase BLIP 

1JTG_A_B MA129A,FB36A 1.60E-02 1.50E-04 2.03 17070843 
TEM-1 beta-
lactamase BLIP 

1JTG_A_B PA107A,HB41A 1.03E-02 1.50E-04 1.84 17070843 
TEM-1 beta-
lactamase BLIP 

1JTG_A_B PA107A,YB50A 8.75E-05 1.50E-04 -0.23 17070843 
TEM-1 beta-
lactamase BLIP 

1JTG_A_B PA107A,YB53A 4.34E-03 1.50E-04 1.46 17070843 
TEM-1 beta-
lactamase BLIP 

1JTG_A_B VA216A,YB50A 1.16E-05 1.50E-04 -1.11 17070843 
TEM-1 beta-
lactamase BLIP 
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Complex 
PDB / 
Chains Mutation(s) 

koff_mut 
(s^(-1)) 

koff_wt 
(s^(-1)) Δlog10(koff) 

Pubmed 
ID Protein 1 Protein 2 

1JTG_A_B EA110A,SB113A,SB71A 1.25E-03 1.50E-04 0.92 17070843 
TEM-1 beta-
lactamase BLIP 

1JTG_A_B SB71A,SB113A 6.08E-04 1.50E-04 0.61 17070843 
TEM-1 beta-
lactamase BLIP 

1JTG_A_B EA104A,SB113A 5.29E-03 1.50E-04 1.55 17070843 
TEM-1 beta-
lactamase BLIP 

1JTG_A_B QA99A,WB112A 5.19E-02 1.50E-04 2.54 17070843 
TEM-1 beta-
lactamase BLIP 

1JTG_A_B QA99A,WB162A 2.87E-02 1.50E-04 2.28 17070843 
TEM-1 beta-
lactamase BLIP 

1JTG_A_B QA99A,KB74A 9.33E-02 1.50E-04 2.79 17070843 
TEM-1 beta-
lactamase BLIP 

1JTG_A_B QA99A,FB142A 2.81E-02 1.50E-04 2.27 17070843 
TEM-1 beta-
lactamase BLIP 

1JTG_A_B NA100A,WB112A 1.46E-02 1.50E-04 1.99 17070843 
TEM-1 beta-
lactamase BLIP 

1JTG_A_B NA100A,WB162A 3.59E-03 1.50E-04 1.38 17070843 
TEM-1 beta-
lactamase BLIP 

1JTG_A_B NA100A,RB160A 1.77E-03 1.50E-04 1.07 17070843 
TEM-1 beta-
lactamase BLIP 

1JTG_A_B NA100A,KB74A 4.12E-02 1.50E-04 2.44 17070843 
TEM-1 beta-
lactamase BLIP 

1JTG_A_B NA100A,FB142A 7.31E-03 1.50E-04 1.69 17070843 
TEM-1 beta-
lactamase BLIP 

1JTG_A_B NA100A,DB49A 1.57E-03 1.50E-04 1.02 17070843 
TEM-1 beta-
lactamase BLIP 

1JTG_A_B EA168A,WB112A 1.65E-02 1.50E-04 2.04 17070843 
TEM-1 beta-
lactamase BLIP 

1JTG_A_B EA168A,WB150A 7.70E-02 1.50E-04 2.71 17070843 
TEM-1 beta-
lactamase BLIP 

1JTG_A_B EA168A,RB160A 2.00E-03 1.50E-04 1.12 17070843 
TEM-1 beta-
lactamase BLIP 

1JTG_A_B EA168A,KB74A 6.83E-02 1.50E-04 2.66 17070843 
TEM-1 beta-
lactamase BLIP 

1JTG_A_B EA168A,FB142A 1.10E-02 1.50E-04 1.87 17070843 
TEM-1 beta-
lactamase BLIP 

1JTG_A_B EA168A,DB49A 2.29E-03 1.50E-04 1.18 17070843 
TEM-1 beta-
lactamase BLIP 

1JTG_A_B MA129A,SB113A,SB71A 1.58E-03 1.50E-04 1.02 17070843 
TEM-1 beta-
lactamase BLIP 
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Complex 
PDB / 
Chains Mutation(s) 

koff_mut 
(s^(-1)) 

koff_wt 
(s^(-1)) Δlog10(koff) 

Pubmed 
ID Protein 1 Protein 2 

1JTG_A_B VA216A,FB142A 2.17E-03 1.50E-04 1.16 17070843 
TEM-1 beta-
lactamase BLIP 

1JTG_A_B EA104A,SB113A,SB71A 2.58E-02 1.50E-04 2.24 17070843 
TEM-1 beta-
lactamase BLIP 

1JTG_A_B TB32K 6.00E-04 2.80E-04 0.33 10876236 
TEM-1 beta-
lactamase BLIP 

1JTG_A_B VB93K 3.00E-04 2.80E-04 0.03 10876236 
TEM-1 beta-
lactamase BLIP 

1JTG_A_B TB140K 6.60E-04 2.80E-04 0.37 10876236 
TEM-1 beta-
lactamase BLIP 

1JTG_A_B NB89K 3.60E-04 2.80E-04 0.11 10876236 
TEM-1 beta-
lactamase BLIP 

1JTG_A_B DB163A 2.40E-04 2.80E-04 -0.07 10876236 
TEM-1 beta-
lactamase BLIP 

1JTG_A_B DB163K 2.20E-04 2.80E-04 -0.11 10876236 
TEM-1 beta-
lactamase BLIP 

1JTG_A_B TB140K,QB157K 6.70E-04 2.80E-04 0.38 10876236 
TEM-1 beta-
lactamase BLIP 

1JTG_A_B VB165K,DB163K,NB89K 2.70E-04 2.80E-04 -0.02 10876236 
TEM-1 beta-
lactamase BLIP 

1JTG_A_B 
VB165K,DB163K,DB135K,NB
89K 2.30E-04 2.80E-04 -0.09 10876236 

TEM-1 beta-
lactamase BLIP 

1GL1_A_I KI31M,AI32G 7.40E-05 1.62E-04 -0.34 7592720 
Bovine alpha-
chymotrypsin PMP-C insect inhibitor 

1GL0_E_I MI30K 1.10E-04 2.10E-04 -0.28 7592720 
Bovine alpha-
chymotrypsin PMP-D2v insect inhibitor 

1FC2_C_D LC136D 3.60E-03 3.20E-03 0.05 8588944 Protein A/Z IgG1 MO61 Fc 

1FC2_C_D NC147A 8.40E-03 3.20E-03 0.42 8588944 Protein A/Z IgG1 MO61 Fc 

1FC2_C_D FC149A 4.30E-03 3.20E-03 0.13 8588944 Protein A/Z IgG1 MO61 Fc 

1FC2_C_D IC150A 6.20E-03 3.20E-03 0.29 8588944 Protein A/Z IgG1 MO61 Fc 

1FC2_C_D KC154A 3.10E-02 3.20E-03 0.99 8588944 Protein A/Z IgG1 MO61 Fc 

2FTL_E_I GI12A 1.90E-05 5.00E-08 2.58 8784199 Bovine trypsin BPTI 

2FTL_E_I KI15A 4.20E-05 5.00E-08 2.92 8784199 Bovine trypsin BPTI 

2FTL_E_I II18A 9.20E-05 5.00E-08 3.26 8784199 Bovine trypsin BPTI 

2FTL_E_I GI36A 1.10E-04 5.00E-08 3.34 8784199 Bovine trypsin BPTI 
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Complex 
PDB / 
Chains Mutation(s) 

koff_mut 
(s^(-1)) 

koff_wt 
(s^(-1)) Δlog10(koff) 

Pubmed 
ID Protein 1 Protein 2 

1CBW_FGH_I TI11A 2.30E-03 1.80E-03 0.11 8784199 
Bovine alpha-
chymotrypsin BPTI 

1CBW_FGH_I GI12A 2.00E-03 1.80E-03 0.05 8784199 
Bovine alpha-
chymotrypsin BPTI 

1CBW_FGH_I PI13A 2.30E-03 1.80E-03 0.11 8784199 
Bovine alpha-
chymotrypsin BPTI 

1CBW_FGH_I KI15A 2.00E-02 1.80E-03 1.05 8784199 
Bovine alpha-
chymotrypsin BPTI 

1CBW_FGH_I RI17A 4.90E-03 1.80E-03 0.44 8784199 
Bovine alpha-
chymotrypsin BPTI 

1CBW_FGH_I II18A 1.70E-02 1.80E-03 0.98 8784199 
Bovine alpha-
chymotrypsin BPTI 

1CBW_FGH_I II19A 2.50E-03 1.80E-03 0.14 8784199 
Bovine alpha-
chymotrypsin BPTI 

1CBW_FGH_I RI20A 3.90E-03 1.80E-03 0.34 8784199 
Bovine alpha-
chymotrypsin BPTI 

1CBW_FGH_I FI33A 2.40E-03 1.80E-03 0.13 8784199 
Bovine alpha-
chymotrypsin BPTI 

1CBW_FGH_I VI34A 2.80E-03 1.80E-03 0.19 8784199 
Bovine alpha-
chymotrypsin BPTI 

1CBW_FGH_I YI35A 8.90E-03 1.80E-03 0.69 8784199 
Bovine alpha-
chymotrypsin BPTI 

1CBW_FGH_I GI36A 5.60E-03 1.80E-03 0.49 8784199 
Bovine alpha-
chymotrypsin BPTI 

1CBW_FGH_I GI37A 5.00E-03 1.80E-03 0.44 8784199 
Bovine alpha-
chymotrypsin BPTI 

1CBW_FGH_I KI46A 1.20E-03 1.80E-03 -0.18 8784199 
Bovine alpha-
chymotrypsin BPTI 

1A4Y_A_B HB8A 4.50E-07 1.40E-07 0.51 9050852 
Ribonuclease 
inhibitor Angiogenin 

1A4Y_A_B QB12A 2.00E-07 1.40E-07 0.16 9050852 
Ribonuclease 
inhibitor Angiogenin 

1A4Y_A_B NB68A 2.30E-07 1.40E-07 0.22 9050852 
Ribonuclease 
inhibitor Angiogenin 

1A4Y_A_B EB108A 1.60E-07 1.40E-07 0.06 9050852 
Ribonuclease 
inhibitor Angiogenin 

1A4Y_A_B YA434A 7.30E-06 1.10E-07 1.82 9050852 
Ribonuclease 
inhibitor Angiogenin 

1A4Y_A_B DA435A 1.40E-05 1.10E-07 2.1 9050852 
Ribonuclease 
inhibitor Angiogenin 
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1A4Y_A_B YA437A 3.10E-07 1.10E-07 0.45 9050852 
Ribonuclease 
inhibitor Angiogenin 

1Z7X_W_X YW437A 7.40E-04 1.20E-05 1.79 9050852 
Ribonuclease 
inhibitor RNase A 

1Z7X_W_X QW430A,VW432A 4.00E-05 1.20E-05 0.52 10970748 
Ribonuclease 
inhibitor RNase A 

1Z7X_W_X WW438A,SW439A,EW440A 2.50E-04 1.20E-05 1.32 10970748 
Ribonuclease 
inhibitor RNase A 

1Z7X_W_X RW457A 3.20E-05 1.20E-05 0.43 10970748 
Ribonuclease 
inhibitor RNase A 

1Z7X_W_X IW459A 1.20E-05 1.20E-05 0 10970748 
Ribonuclease 
inhibitor RNase A 

1A4Y_A_B QA430A,VA432A 8.40E-08 1.10E-07 -0.12 10970748 
Ribonuclease 
inhibitor Angiogenin 

1A4Y_A_B WA438A,SA439A,EA440A 1.70E-06 1.10E-07 1.19 10970748 
Ribonuclease 
inhibitor Angiogenin 

1A4Y_A_B RA457A 5.80E-08 1.10E-07 -0.28 10970748 
Ribonuclease 
inhibitor Angiogenin 

1A4Y_A_B IA459A 2.00E-07 1.10E-07 0.26 10970748 
Ribonuclease 
inhibitor Angiogenin 

1Z7X_W_X EW206A 7.60E-05 1.20E-05 0.8 10970748 
Ribonuclease 
inhibitor RNase A 

1Z7X_W_X WW261A 8.00E-05 1.20E-05 0.82 10970748 
Ribonuclease 
inhibitor RNase A 

1Z7X_W_X WW263A 4.60E-04 1.20E-05 1.58 10970748 
Ribonuclease 
inhibitor RNase A 

1Z7X_W_X EW287A 5.20E-05 1.20E-05 0.64 10970748 
Ribonuclease 
inhibitor RNase A 

1Z7X_W_X SW289A 3.40E-05 1.20E-05 0.45 10970748 
Ribonuclease 
inhibitor RNase A 

1Z7X_W_X KW320A 5.60E-05 1.20E-05 0.67 10970748 
Ribonuclease 
inhibitor RNase A 

1Z7X_W_X EW344A 1.10E-04 1.20E-05 0.96 10970748 
Ribonuclease 
inhibitor RNase A 

1Z7X_W_X WW375A 9.90E-05 1.20E-05 0.92 10970748 
Ribonuclease 
inhibitor RNase A 

1Z7X_W_X EW401A 4.30E-05 1.20E-05 0.55 10970748 
Ribonuclease 
inhibitor RNase A 

1A4Y_A_B HB84A 1.40E-07 1.10E-07 0.11 10970748 
Ribonuclease 
inhibitor Angiogenin 
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1A4Y_A_B WB89A 1.60E-07 1.10E-07 0.16 10970748 
Ribonuclease 
inhibitor Angiogenin 

1A4Y_A_B WA261A 1.00E-07 1.10E-07 -0.04 10970748 
Ribonuclease 
inhibitor Angiogenin 

1A4Y_A_B WA263A 6.90E-07 1.10E-07 0.8 10970748 
Ribonuclease 
inhibitor Angiogenin 

1A4Y_A_B EA287A 8.80E-08 1.10E-07 -0.1 10970748 
Ribonuclease 
inhibitor Angiogenin 

1A4Y_A_B SA289A 6.30E-08 1.10E-07 -0.24 10970748 
Ribonuclease 
inhibitor Angiogenin 

1A4Y_A_B WA318A 1.30E-06 1.10E-07 1.07 10970748 
Ribonuclease 
inhibitor Angiogenin 

1A4Y_A_B KA320A 9.40E-08 1.10E-07 -0.07 10970748 
Ribonuclease 
inhibitor Angiogenin 

1A4Y_A_B EA344A 9.80E-08 1.10E-07 -0.05 10970748 
Ribonuclease 
inhibitor Angiogenin 

1A4Y_A_B WA375A 3.10E-07 1.10E-07 0.45 10970748 
Ribonuclease 
inhibitor Angiogenin 

1A4Y_A_B EA401A 3.20E-07 1.10E-07 0.46 10970748 
Ribonuclease 
inhibitor Angiogenin 

1A4Y_A_B RB5A 3.90E-06 1.30E-07 1.48 1281426 
Ribonuclease 
inhibitor Angiogenin 

1A4Y_A_B RB32A 7.80E-07 1.30E-07 0.78 1281426 
Ribonuclease 
inhibitor Angiogenin 

1A4Y_A_B RB66A 1.80E-07 1.30E-07 0.14 1281426 
Ribonuclease 
inhibitor Angiogenin 

1A4Y_A_B RB70A 1.10E-07 1.30E-07 -0.07 1281426 
Ribonuclease 
inhibitor Angiogenin 

1A4Y_A_B RB31A 1.60E-07 1.50E-07 0.03 1281426 
Ribonuclease 
inhibitor Angiogenin 

1A4Y_A_B RB33A 2.20E-07 1.50E-07 0.17 1281426 
Ribonuclease 
inhibitor Angiogenin 

1A4Y_A_B KB40Q 5.70E-05 1.30E-07 2.64 2742853 
Ribonuclease 
inhibitor Angiogenin 

1A4Y_A_B HB13A 8.10E-08 1.50E-07 -0.27 2479414 
Ribonuclease 
inhibitor Angiogenin 

1A4Y_A_B YA434F 1.60E-07 1.10E-07 0.16 10413501 
Ribonuclease 
inhibitor Angiogenin 

1A4Y_A_B YA437F 9.00E-08 1.10E-07 -0.09 10413501 
Ribonuclease 
inhibitor Angiogenin 
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1A4Y_A_B YA434A,DA435A 2.70E-03 1.10E-07 4.39 10413501 
Ribonuclease 
inhibitor Angiogenin 

1A4Y_A_B YA434A,YA437A 1.70E-03 1.10E-07 4.19 10413501 
Ribonuclease 
inhibitor Angiogenin 

1A4Y_A_B RB5A,YA434A 2.80E-03 1.10E-07 4.41 10413501 
Ribonuclease 
inhibitor Angiogenin 

1A4Y_A_B RB5A,DA435A 2.70E-03 1.10E-07 4.39 10413501 
Ribonuclease 
inhibitor Angiogenin 

1A4Y_A_B RB5A,YA434A,DA435A 6.20E-01 1.10E-07 6.75 10413501 
Ribonuclease 
inhibitor Angiogenin 

1A4Y_A_B RB5A,YA434A,YA437A 2.80E-02 1.10E-07 5.41 10413501 
Ribonuclease 
inhibitor Angiogenin 

1A4Y_A_B KB40G 1.20E-05 1.10E-07 2.04 10413501 
Ribonuclease 
inhibitor Angiogenin 

1A4Y_A_B KB40G,YA434F 9.30E-04 1.10E-07 3.93 10413501 
Ribonuclease 
inhibitor Angiogenin 

1A4Y_A_B KB40G,DA435A 1.90E-05 1.10E-07 2.24 10413501 
Ribonuclease 
inhibitor Angiogenin 

1A4Y_A_B KB40G,YA437A 5.60E-04 1.10E-07 3.71 10413501 
Ribonuclease 
inhibitor Angiogenin 

1A4Y_A_B KB40G,YA434A,DA435A 1.90E-03 1.10E-07 4.24 10413501 
Ribonuclease 
inhibitor Angiogenin 

1A4Y_A_B KB40G,YA434A,YA437A 1.90E-02 1.10E-07 5.24 10413501 
Ribonuclease 
inhibitor Angiogenin 

1Z7X_W_X YW434F 1.00E-05 1.20E-05 -0.08 10413501 
Ribonuclease 
inhibitor RNase A 

1Z7X_W_X YW437F 2.90E-04 1.20E-05 1.38 10413501 
Ribonuclease 
inhibitor RNase A 

1A22_A_B MA14A 3.24E-04 2.70E-04 0.08 7504735 
Human growth 
hormone hGH binding protein 

1A22_A_B HA18A 1.11E-04 2.70E-04 -0.39 7504735 
Human growth 
hormone hGH binding protein 

1A22_A_B HA21A 3.51E-04 2.70E-04 0.11 7504735 
Human growth 
hormone hGH binding protein 

1A22_A_B QA22A 1.67E-04 2.70E-04 -0.21 7504735 
Human growth 
hormone hGH binding protein 

1A22_A_B FA25A 1.27E-04 2.70E-04 -0.33 7504735 
Human growth 
hormone hGH binding protein 

1A22_A_B DA26A 2.13E-04 2.70E-04 -0.1 7504735 
Human growth 
hormone hGH binding protein 
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1A22_A_B QA29A 1.03E-04 2.70E-04 -0.42 7504735 
Human growth 
hormone hGH binding protein 

1A22_A_B LA45A 1.16E-03 2.70E-04 0.63 7504735 
Human growth 
hormone hGH binding protein 

1A22_A_B QA46A 2.43E-04 2.70E-04 -0.05 7504735 
Human growth 
hormone hGH binding protein 

1A22_A_B PA48A 3.24E-04 2.70E-04 0.08 7504735 
Human growth 
hormone hGH binding protein 

1A22_A_B SA51A 3.24E-04 2.70E-04 0.08 7504735 
Human growth 
hormone hGH binding protein 

1A22_A_B EA56A 5.67E-04 2.70E-04 0.32 7504735 
Human growth 
hormone hGH binding protein 

1A22_A_B PA61A 1.94E-03 2.70E-04 0.86 7504735 
Human growth 
hormone hGH binding protein 

1A22_A_B SA62A 4.32E-04 2.70E-04 0.2 7504735 
Human growth 
hormone hGH binding protein 

1A22_A_B NA63A 3.24E-04 2.70E-04 0.08 7504735 
Human growth 
hormone hGH binding protein 

1A22_A_B RA64A 2.13E-03 2.70E-04 0.9 7504735 
Human growth 
hormone hGH binding protein 

1A22_A_B EA65A 1.86E-04 2.70E-04 -0.16 7504735 
Human growth 
hormone hGH binding protein 

1A22_A_B QA68A 8.91E-04 2.70E-04 0.52 7504735 
Human growth 
hormone hGH binding protein 

1A22_A_B YA164A 5.67E-04 2.70E-04 0.32 7504735 
Human growth 
hormone hGH binding protein 

1A22_A_B RA167A 1.32E-04 2.70E-04 -0.31 7504735 
Human growth 
hormone hGH binding protein 

1A22_A_B KA168A 1.73E-04 2.70E-04 -0.19 7504735 
Human growth 
hormone hGH binding protein 

1A22_A_B DA171A 1.24E-03 2.70E-04 0.66 7504735 
Human growth 
hormone hGH binding protein 

1A22_A_B KA172A 5.40E-03 2.70E-04 1.3 7504735 
Human growth 
hormone hGH binding protein 

1A22_A_B EA174A 8.91E-05 2.70E-04 -0.48 7504735 
Human growth 
hormone hGH binding protein 

1A22_A_B TA175A 6.75E-03 2.70E-04 1.4 7504735 
Human growth 
hormone hGH binding protein 

1A22_A_B FA176A 5.94E-03 2.70E-04 1.34 7504735 
Human growth 
hormone hGH binding protein 
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1A22_A_B RA178A 6.48E-03 2.70E-04 1.38 7504735 
Human growth 
hormone hGH binding protein 

1A22_A_B IA179A 7.83E-04 2.70E-04 0.46 7504735 
Human growth 
hormone hGH binding protein 

1A22_A_B RA183A 3.78E-04 2.70E-04 0.15 7504735 
Human growth 
hormone hGH binding protein 

1A22_A_B EA186A 2.62E-04 2.70E-04 -0.01 7504735 
Human growth 
hormone hGH binding protein 

1A22_A_B EB244A 1.42E-03 5.10E-05 1.44 9571026 
Human growth 
hormone hGH binding protein 

1A22_A_B RB270A 1.72E-04 5.10E-05 0.53 9571026 
Human growth 
hormone hGH binding protein 

1A22_A_B WB276A 7.65E-05 5.10E-05 0.18 9571026 
Human growth 
hormone hGH binding protein 

1A22_A_B SB298A 3.39E-05 5.10E-05 -0.18 9571026 
Human growth 
hormone hGH binding protein 

1A22_A_B SB302A 2.81E-05 5.10E-05 -0.26 9571026 
Human growth 
hormone hGH binding protein 

1A22_A_B IB303A 1.15E-03 5.10E-05 1.35 9571026 
Human growth 
hormone hGH binding protein 

1A22_A_B IB305A 1.08E-03 5.10E-05 1.33 9571026 
Human growth 
hormone hGH binding protein 

1A22_A_B PB306A 5.14E-04 5.10E-05 1 9571026 
Human growth 
hormone hGH binding protein 

1A22_A_B EB320A 4.42E-05 5.10E-05 -0.06 9571026 
Human growth 
hormone hGH binding protein 

1A22_A_B KB321A 4.39E-05 5.10E-05 -0.07 9571026 
Human growth 
hormone hGH binding protein 

1A22_A_B DB326A 4.91E-04 5.10E-05 0.98 9571026 
Human growth 
hormone hGH binding protein 

1A22_A_B EB327A 2.86E-04 5.10E-05 0.75 9571026 
Human growth 
hormone hGH binding protein 

1A22_A_B DB364A 6.08E-04 5.10E-05 1.08 9571026 
Human growth 
hormone hGH binding protein 

1A22_A_B IB365A 1.66E-03 5.10E-05 1.51 9571026 
Human growth 
hormone hGH binding protein 

1A22_A_B QB366A 3.89E-05 5.10E-05 -0.12 9571026 
Human growth 
hormone hGH binding protein 

1A22_A_B VB371A 1.53E-05 5.10E-05 -0.52 9571026 
Human growth 
hormone hGH binding protein 
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1A22_A_B QB416A 1.86E-04 5.10E-05 0.56 9571026 
Human growth 
hormone hGH binding protein 

1A22_A_B RB417A 7.05E-05 5.10E-05 0.14 9571026 
Human growth 
hormone hGH binding protein 

1A22_A_B NB418A 8.65E-05 5.10E-05 0.23 9571026 
Human growth 
hormone hGH binding protein 

1A22_A_B SB419A 4.05E-05 5.10E-05 -0.1 9571026 
Human growth 
hormone hGH binding protein 

1A22_A_B NB272A 6.97E-05 5.10E-05 0.14 9571026 
Human growth 
hormone hGH binding protein 

1A22_A_B TB277A 6.41E-05 5.10E-05 0.1 9571026 
Human growth 
hormone hGH binding protein 

1A22_A_B KB415A 2.02E-04 5.10E-05 0.6 9571026 
Human growth 
hormone hGH binding protein 

1A22_A_B FA25A 2.80E-04 4.90E-04 -0.24 8756685 
Human growth 
hormone hGH binding protein 

1A22_A_B YA42A,QA46A 8.50E-04 4.90E-04 0.24 8756685 
Human growth 
hormone hGH binding protein 

1JRH_LH_I NI48A 4.81E-03 8.75E-03 -0.26 9878445 mAbs A6 
Interferon gamma 
receptor 

1JRH_LH_I NI48Q 9.62E-03 8.75E-03 0.04 9878445 mAbs A6 
Interferon gamma 
receptor 

1JRH_LH_I YI49F 3.88E-02 8.75E-03 0.65 9878445 mAbs A6 
Interferon gamma 
receptor 

1JRH_LH_I VI51A 2.06E-01 8.75E-03 1.37 9878445 mAbs A6 
Interferon gamma 
receptor 

1JRH_LH_I KI52A 3.32E-03 8.75E-03 -0.42 9878445 mAbs A6 
Interferon gamma 
receptor 

1JRH_LH_I NI53A 7.61E-03 8.75E-03 -0.06 9878445 mAbs A6 
Interferon gamma 
receptor 

1JRH_LH_I SI54A 1.29E-02 8.75E-03 0.17 9878445 mAbs A6 
Interferon gamma 
receptor 

1JRH_LH_I EI55A 4.29E-03 8.75E-03 -0.31 9878445 mAbs A6 
Interferon gamma 
receptor 

1JRH_LH_I WI56F 3.50E-03 8.75E-03 -0.4 9878445 mAbs A6 
Interferon gamma 
receptor 

1JRH_LH_I WI56Y 7.52E-03 8.75E-03 -0.07 9878445 mAbs A6 
Interferon gamma 
receptor 

1JRH_LH_I NI79A 4.64E-03 8.75E-03 -0.28 9878445 mAbs A6 
Interferon gamma 
receptor 
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1JRH_LH_I WI82F 6.37E-02 8.75E-03 0.86 9878445 mAbs A6 
Interferon gamma 
receptor 

1JRH_LH_I WI82Y 5.01E-02 8.75E-03 0.76 9878445 mAbs A6 
Interferon gamma 
receptor 

1JRH_LH_I RI84A 5.34E-03 8.75E-03 -0.21 9878445 mAbs A6 
Interferon gamma 
receptor 

1JRH_LH_I KI98A 1.08E-02 8.75E-03 0.09 9878445 mAbs A6 
Interferon gamma 
receptor 

1DAN_HL_UT RH134A 1.80E-03 5.70E-04 0.5 8962059 Factor VIIa Tissue factor 

1DAN_HL_UT MH164A 1.50E-03 5.70E-04 0.42 8962059 Factor VIIa Tissue factor 

1DAN_HL_UT KH192A 3.90E-04 5.70E-04 -0.17 8962059 Factor VIIa Tissue factor 

1DAN_HL_UT LH144A 5.70E-04 5.70E-04 0 8962059 Factor VIIa Tissue factor 

1NMB_N_LH DH56N 2.90E-03 5.20E-03 -0.25 9579662 
Subtype N9 
neuraminidase Antibody NC10 

1NMB_N_LH YH99A 5.88E-02 5.20E-03 1.05 9579662 
Subtype N9 
neuraminidase Antibody NC10 

1NMB_N_LH YH100aF 5.60E-03 5.20E-03 0.03 9579662 Subtype N9  Antibody NC10 

1NMB_N_LH TL93F 4.30E-03 5.20E-03 -0.08 9579662 
Subtype N9 
neuraminidase Antibody NC10 

1NMB_N_LH TL93W 6.30E-03 5.20E-03 0.08 9579662 
Subtype N9 
neuraminidase Antibody NC10 

1NMB_N_LH LL94V 1.11E-02 5.20E-03 0.33 9579662 
Subtype N9 
neuraminidase Antibody NC10 

3HFM_HL_Y NL31D 3.68E-04 5.40E-05 0.83 10338006 HyHEL-10 HEW Lysozyme 

3HFM_HL_Y YL50F 2.06E-03 5.40E-05 1.58 10338006 HyHEL-10 HEW Lysozyme 

3HFM_HL_Y DH32A 1.19E-03 5.40E-05 1.34 10338006 HyHEL-10 HEW Lysozyme 

3HFM_HL_Y DH32N 3.30E-05 5.40E-05 -0.21 10338006 HyHEL-10 HEW Lysozyme 

3HFM_HL_Y DH32A,KY97M 5.80E-04 5.40E-05 1.03 10338006 HyHEL-10 HEW Lysozyme 

3HFM_HL_Y DH32N,KY97M 1.12E-04 5.40E-05 0.32 10338006 HyHEL-10 HEW Lysozyme 

3HFM_HL_Y KY97M 2.80E-04 5.40E-05 0.72 10338006 HyHEL-10 HEW Lysozyme 

3HFM_HL_Y RY21A 2.71E-04 5.40E-05 0.7 10338006 HyHEL-10 HEW Lysozyme 

3HFM_HL_Y SH31A 4.80E-05 5.40E-05 -0.05 10338006 HyHEL-10 HEW Lysozyme 
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3HFM_HL_Y QL53A 2.00E-04 5.40E-05 0.57 10338006 HyHEL-10 HEW Lysozyme 

3HFM_HL_Y YL96A 2.30E-03 5.40E-05 1.63 10338006 HyHEL-10 HEW Lysozyme 

3HFM_HL_Y YL96F 4.50E-04 5.40E-05 0.92 10338006 HyHEL-10 HEW Lysozyme 

3HFM_HL_Y RY21G 5.80E-03 1.12E-04 1.71 9761467 HyHEL-10 HEW Lysozyme 

3HFM_HL_Y RY21A 4.40E-04 1.12E-04 0.59 9761467 HyHEL-10 HEW Lysozyme 

3HFM_HL_Y RY21N 4.50E-03 1.12E-04 1.6 9761467 HyHEL-10 HEW Lysozyme 

3HFM_HL_Y RY21E 1.80E-03 1.12E-04 1.21 9761467 HyHEL-10 HEW Lysozyme 

3HFM_HL_Y RY21Q 5.80E-03 1.12E-04 1.71 9761467 HyHEL-10 HEW Lysozyme 

3HFM_HL_Y RY21H 4.40E-03 1.12E-04 1.59 9761467 HyHEL-10 HEW Lysozyme 

3HFM_HL_Y RY21M 1.43E-03 1.12E-04 1.11 9761467 HyHEL-10 HEW Lysozyme 

3HFM_HL_Y RY21K 1.50E-03 1.12E-04 1.13 9761467 HyHEL-10 HEW Lysozyme 

3HFM_HL_Y RY21W 2.00E-03 1.12E-04 1.25 9761467 HyHEL-10 HEW Lysozyme 

3HFM_HL_Y KY97E 1.50E-02 1.12E-04 2.13 9761467 HyHEL-10 HEW Lysozyme 

3HFM_HL_Y KY97M 1.70E-04 1.12E-04 0.18 9761467 HyHEL-10 HEW Lysozyme 

3HFM_HL_Y KY97R 8.20E-03 1.12E-04 1.86 9761467 HyHEL-10 HEW Lysozyme 

3HFM_HL_Y DY101G 1.10E-04 1.12E-04 -0.01 9761467 HyHEL-10 HEW Lysozyme 

3HFM_HL_Y DY101S 1.00E-03 1.12E-04 0.95 9761467 HyHEL-10 HEW Lysozyme 

3HFM_HL_Y DY101N 6.00E-04 1.12E-04 0.73 9761467 HyHEL-10 HEW Lysozyme 

3HFM_HL_Y DY101E 3.60E-03 1.12E-04 1.51 9761467 HyHEL-10 HEW Lysozyme 

3HFM_HL_Y DY101Q 1.80E-03 1.12E-04 1.21 9761467 HyHEL-10 HEW Lysozyme 

3HFM_HL_Y DY101K 1.10E-03 1.12E-04 0.99 9761467 HyHEL-10 HEW Lysozyme 

3HFM_HL_Y DY101F 9.00E-04 1.12E-04 0.91 9761467 HyHEL-10 HEW Lysozyme 

3HFM_HL_Y DY101R 1.30E-03 1.12E-04 1.06 9761467 HyHEL-10 HEW Lysozyme 

3HFM_HL_Y YY20F 6.10E-05 1.12E-04 -0.26 9761467 HyHEL-10 HEW Lysozyme 

3HFM_HL_Y GY102V 1.00E-04 1.12E-04 -0.05 9761467 HyHEL-10 HEW Lysozyme 
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(s^(-1)) 
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(s^(-1)) Δlog10(koff) 

Pubmed 
ID Protein 1 Protein 2 

3HFM_HL_Y HY15A 6.30E-05 1.00E-04 -0.2 9761468 HyHEL-10 HEW Lysozyme 

3HFM_HL_Y RY21A 4.40E-04 1.00E-04 0.64 9761468 HyHEL-10 HEW Lysozyme 

3HFM_HL_Y WY63A 1.77E-04 1.00E-04 0.25 9761468 HyHEL-10 HEW Lysozyme 

3HFM_HL_Y RY73A 6.20E-05 1.00E-04 -0.21 9761468 HyHEL-10 HEW Lysozyme 

3HFM_HL_Y LY75A 1.64E-04 1.00E-04 0.22 9761468 HyHEL-10 HEW Lysozyme 

3HFM_HL_Y TY89A 1.13E-04 1.00E-04 0.05 9761468 HyHEL-10 HEW Lysozyme 

3HFM_HL_Y NY93A 1.50E-04 1.00E-04 0.18 9761468 HyHEL-10 HEW Lysozyme 

3HFM_HL_Y IY98A 9.10E-05 1.00E-04 -0.04 9761468 HyHEL-10 HEW Lysozyme 

3HFM_HL_Y SY100A 1.60E-04 1.00E-04 0.2 9761468 HyHEL-10 HEW Lysozyme 

3HFM_HL_Y DY101A 2.90E-04 1.00E-04 0.46 9761468 HyHEL-10 HEW Lysozyme 

1DAN_HL_UT EU208A 1.82E-03 2.10E-03 -0.06 7654692 Factor VIIa Tissue factor 

1DAN_HL_UT VU207A 1.76E-03 2.10E-03 -0.08 7654692 Factor VIIa Tissue factor 

1DAN_HL_UT TU203A 1.98E-03 2.10E-03 -0.03 7654692 Factor VIIa Tissue factor 

1DAN_HL_UT KU201A,DU204A 2.18E-03 2.10E-03 0.02 7654692 Factor VIIa Tissue factor 

1DAN_HL_UT NU199A,RU200A 2.86E-03 2.10E-03 0.13 7654692 Factor VIIa Tissue factor 

1DAN_HL_UT TU197A,VU198A 2.07E-03 2.10E-03 -0.01 7654692 Factor VIIa Tissue factor 

1DAN_HL_UT SU195A 2.11E-03 2.10E-03 0 7654692 Factor VIIa Tissue factor 

1DAN_HL_UT SU195A,RU196A 3.37E-03 2.10E-03 0.21 7654692 Factor VIIa Tissue factor 

1DAN_HL_UT YU185A 1.78E-03 2.10E-03 -0.07 7654692 Factor VIIa Tissue factor 

1DAN_HL_UT KU181A 2.42E-03 2.10E-03 0.06 7654692 Factor VIIa Tissue factor 

1DAN_HL_UT LU176A 2.01E-03 2.10E-03 -0.02 7654692 Factor VIIa Tissue factor 

1DAN_HL_UT NU173A,EU174A 2.40E-03 2.10E-03 0.06 7654692 Factor VIIa Tissue factor 

1DAN_HL_UT TU172A 1.90E-03 2.10E-03 -0.04 7654692 Factor VIIa Tissue factor 

1DAN_HL_UT KU169A 2.00E-03 2.10E-03 -0.02 7654692 Factor VIIa Tissue factor 

1DAN_HL_UT TU167A 2.71E-03 2.10E-03 0.11 7654692 Factor VIIa Tissue factor 
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ID Protein 1 Protein 2 

1DAN_HL_UT KU165A,KU166A 1.69E-03 2.10E-03 -0.09 7654692 Factor VIIa Tissue factor 

1DAN_HL_UT GU164R 2.07E-03 2.10E-03 -0.01 7654692 Factor VIIa Tissue factor 

1DAN_HL_UT SU163A 1.93E-03 2.10E-03 -0.04 7654692 Factor VIIa Tissue factor 

1DAN_HL_UT WU158F 1.70E-03 2.10E-03 -0.09 7654692 Factor VIIa Tissue factor 

1DAN_HL_UT YU156L 1.95E-03 2.10E-03 -0.03 7654692 Factor VIIa Tissue factor 

1DAN_HL_UT IU152A 2.58E-03 2.10E-03 0.09 7654692 Factor VIIa Tissue factor 

1DAN_HL_UT KU149A,DU150A 1.63E-03 2.10E-03 -0.11 7654692 Factor VIIa Tissue factor 

1DAN_HL_UT DU145A 1.37E-03 2.10E-03 -0.19 7654692 Factor VIIa Tissue factor 

1DAN_HL_UT RU144A 2.14E-03 2.10E-03 0.01 7654692 Factor VIIa Tissue factor 

1DAN_HL_UT FU140A 1.86E-02 2.10E-03 0.95 7654692 Factor VIIa Tissue factor 

1DAN_HL_UT TU139A 2.09E-03 2.10E-03 0 7654692 Factor VIIa Tissue factor 

1DAN_HL_UT RU136A,NU137A,NU138A 1.73E-03 2.10E-03 -0.08 7654692 Factor VIIa Tissue factor 

1DAN_HL_UT RU135A 3.11E-03 2.10E-03 0.17 7654692 Factor VIIa Tissue factor 

1DAN_HL_UT LU133A 1.68E-03 2.10E-03 -0.1 7654692 Factor VIIa Tissue factor 

1DAN_HL_UT EU130A,RU131F 2.08E-03 2.10E-03 0 7654692 Factor VIIa Tissue factor 

1DAN_HL_UT DU129A 2.18E-03 2.10E-03 0.02 7654692 Factor VIIa Tissue factor 

1DAN_HL_UT EU128A 2.15E-03 2.10E-03 0.01 7654692 Factor VIIa Tissue factor 

1DAN_HL_UT KU122A 2.07E-03 2.10E-03 -0.01 7654692 Factor VIIa Tissue factor 

1DAN_HL_UT QU114A,EU117A 1.74E-03 2.10E-03 -0.08 7654692 Factor VIIa Tissue factor 

1DAN_HL_UT NU107A,QU110A 4.55E-03 2.10E-03 0.34 7654692 Factor VIIa Tissue factor 

1DAN_HL_UT LU104A,EU105A 1.88E-03 2.10E-03 -0.05 7654692 Factor VIIa Tissue factor 

1DAN_HL_UT EU99A 2.07E-03 2.10E-03 -0.01 7654692 Factor VIIa Tissue factor 

1DAN_HL_UT KT68A 2.42E-03 2.10E-03 0.06 7654692 Factor VIIa Tissue factor 

1DAN_HL_UT KT68A,QT69A 1.88E-03 2.10E-03 -0.05 7654692 Factor VIIa Tissue factor 

1DAN_HL_UT KT65A,DT66A 6.85E-04 2.10E-03 -0.49 7654692 Factor VIIa Tissue factor 
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1DAN_HL_UT DT61A,ET62A 2.05E-03 2.10E-03 -0.01 7654692 Factor VIIa Tissue factor 

1DAN_HL_UT DT58E 3.08E-02 2.10E-03 1.17 7654692 Factor VIIa Tissue factor 

1DAN_HL_UT DT58A 4.97E-02 2.10E-03 1.37 7654692 Factor VIIa Tissue factor 

1DAN_HL_UT DT54A,ET56A 3.95E-03 2.10E-03 0.27 7654692 Factor VIIa Tissue factor 

1DAN_HL_UT TT52A 2.07E-03 2.10E-03 -0.01 7654692 Factor VIIa Tissue factor 

1DAN_HL_UT FT50A 3.99E-03 2.10E-03 0.28 7654692 Factor VIIa Tissue factor 

1DAN_HL_UT KT48A 2.70E-03 2.10E-03 0.11 7654692 Factor VIIa Tissue factor 

1DAN_HL_UT ST47A 2.07E-03 2.10E-03 -0.01 7654692 Factor VIIa Tissue factor 

1DAN_HL_UT KT46A 2.16E-03 2.10E-03 0.01 7654692 Factor VIIa Tissue factor 

1DAN_HL_UT KT46A,KT48A 1.51E-02 2.10E-03 0.86 7654692 Factor VIIa Tissue factor 

1DAN_HL_UT WT45F 5.45E-02 2.10E-03 1.41 7654692 Factor VIIa Tissue factor 

1DAN_HL_UT DT44A 5.77E-03 2.10E-03 0.44 7654692 Factor VIIa Tissue factor 

1DAN_HL_UT ST42A 1.95E-03 2.10E-03 -0.03 7654692 Factor VIIa Tissue factor 

1DAN_HL_UT KT41A 3.01E-03 2.10E-03 0.16 7654692 Factor VIIa Tissue factor 

1DAN_HL_UT KT41A,DT44A 5.25E-02 2.10E-03 1.4 7654692 Factor VIIa Tissue factor 

1DAN_HL_UT QT37A 4.56E-03 2.10E-03 0.34 7654692 Factor VIIa Tissue factor 

1DAN_HL_UT KT28A 2.08E-03 2.10E-03 0 7654692 Factor VIIa Tissue factor 

1DAN_HL_UT ET26A 2.09E-03 2.10E-03 0 7654692 Factor VIIa Tissue factor 

1DAN_HL_UT WT25F 8.93E-04 2.10E-03 -0.37 7654692 Factor VIIa Tissue factor 

1DAN_HL_UT ET24A 5.51E-03 2.10E-03 0.42 7654692 Factor VIIa Tissue factor 

1DAN_HL_UT IT22A 6.53E-03 2.10E-03 0.49 7654692 Factor VIIa Tissue factor 

1DAN_HL_UT TT21A 2.06E-03 2.10E-03 -0.01 7654692 Factor VIIa Tissue factor 

1DAN_HL_UT KT20R 4.23E-02 2.10E-03 1.3 7654692 Factor VIIa Tissue factor 

1DAN_HL_UT KT20A 1.30E-02 2.10E-03 0.79 7654692 Factor VIIa Tissue factor 

1DAN_HL_UT NT18A 1.76E-03 2.10E-03 -0.08 7654692 Factor VIIa 
Tissue factor 
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1DAN_HL_UT KT15A 1.25E-03 2.10E-03 -0.23 7654692 Factor VIIa Tissue factor 

1DAN_HL_UT WT14F 1.24E-03 2.10E-03 -0.23 7654692 Factor VIIa Tissue factor 

2VLR_ABC_DE AE99S 1.60E-01 2.90E-01 -0.26 18275829 HL-A2-flu JM22 

2VLJ_ABC_DE IE53V 1.30E-01 1.60E-01 -0.09 18275829 HL-A2-flu JM22 

2VLJ_ABC_DE IE53L 4.00E-01 1.60E-01 0.4 18275829 HL-A2-flu JM22 

2VLJ_ABC_DE NE55A 6.30E-01 1.60E-01 0.6 18275829 HL-A2-flu JM22 

2VLJ_ABC_DE NE55D 3.80E-01 1.60E-01 0.38 18275829 HL-A2-flu JM22 

2VLJ_ABC_DE DE56A 2.50E-01 1.60E-01 0.19 18275829 HL-A2-flu JM22 

2VLJ_ABC_DE QE58A 3.40E-01 1.60E-01 0.33 18275829 HL-A2-flu JM22 

2VLJ_ABC_DE QE58E 2.60E-01 1.60E-01 0.21 18275829 HL-A2-flu JM22 

2VLJ_ABC_DE SE99A 2.90E-01 1.60E-01 0.26 18275829 HL-A2-flu JM22 

2VLJ_ABC_DE YE101F 2.10E-01 1.60E-01 0.12 18275829 HL-A2-flu JM22 

2VLJ_ABC_DE SD31A 2.00E-01 1.60E-01 0.1 18275829 HL-A2-flu JM22 

2VLJ_ABC_DE SD32A 4.60E-01 1.60E-01 0.46 18275829 HL-A2-flu JM22 

2VLJ_ABC_DE QD34A 1.03E+00 1.60E-01 0.81 18275829 HL-A2-flu JM22 
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Table 10.4. SKEMPI Hotspot (ΔΔG) Dataset 

Protein Mutation(s)_PDB Location(s) ΔΔG Reference Protein 1 Protein 2 
 

1A22_A_B HA18A COR -0.48639 7504735 Human growth hormone hGH binding protein 

1A22_A_B HA21A SUP 0.155438 7504735 Human growth hormone hGH binding protein 

1A22_A_B QA22A RIM -0.21984 7504735 Human growth hormone hGH binding protein 

1A22_A_B FA25A COR -0.44731 7504735 Human growth hormone hGH binding protein 

1A22_A_B DA26A RIM -0.21131 7504735 Human growth hormone hGH binding protein 

1A22_A_B YA42A COR 0.199344 7504735 Human growth hormone hGH binding protein 

1A22_A_B LA45A COR 1.224517 7504735 Human growth hormone hGH binding protein 

1A22_A_B QA46A RIM 0.108017 7504735 Human growth hormone hGH binding protein 

1A22_A_B PA48A COR 0.410656 7504735 Human growth hormone hGH binding protein 

1A22_A_B SA51A SUP 0.348235 7504735 Human growth hormone hGH binding protein 

1A22_A_B EA56A RIM 0.410656 7504735 Human growth hormone hGH binding protein 

1A22_A_B PA61A SUP 1.209325 7504735 Human growth hormone hGH binding protein 

1A22_A_B SA62A COR 0.155438 7504735 Human growth hormone hGH binding protein 

1A22_A_B NA63A COR 0.314372 7504735 Human growth hormone hGH binding protein 

1A22_A_B RA64A COR 1.642626 7504735 Human growth hormone hGH binding protein 

1A22_A_B EA65A RIM -0.47308 7504735 Human growth hormone hGH binding protein 

1A22_A_B QA68A RIM 0.588454 7504735 Human growth hormone hGH binding protein 

1A22_A_B YA164A SUP 0.348235 7504735 Human growth hormone hGH binding protein 

1A22_A_B RA167A SUP 0.278455 7504735 Human growth hormone hGH binding protein 

1A22_A_B KA168A COR -0.15485 7504735 Human growth hormone hGH binding protein 

1A22_A_B DA171A COR 0.790924 7504735 Human growth hormone hGH binding protein 

1A22_A_B KA172A SUP 2.015046 7504735 Human growth hormone hGH binding protein 

1A22_A_B EA174A COR -0.92461 7504735 Human growth hormone hGH binding protein 

1A22_A_B TA175A COR 1.907029 7504735 Human growth hormone hGH binding protein 
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Protein Mutation(s)_PDB Location(s) ΔΔG Reference Protein 1 Protein 2 
 

1A22_A_B FA176A SUP 0.410656 7504735 Human growth hormone hGH binding protein 

1A22_A_B RA178A COR 2.425703 7504735 Human growth hormone hGH binding protein 

1A22_A_B IA179A SUP 0.806313 7504735 Human growth hormone hGH binding protein 

1A22_A_B RA183A RIM 0.542858 7504735 Human growth hormone hGH binding protein 

1A22_A_B RB243A SUP 2.116247 9571026 Human growth hormone hGH binding protein 

1A22_A_B EB244A RIM 1.692722 9571026 Human growth hormone hGH binding protein 

1A22_A_B RB270A SUP 0.690199 9571026 Human growth hormone hGH binding protein 

1A22_A_B RB271A COR 0.535847 9571026 Human growth hormone hGH binding protein 

1A22_A_B TB273A RIM 0.110914 9571026 Human growth hormone hGH binding protein 

1A22_A_B QB274A RIM 0 9571026 Human growth hormone hGH binding protein 

1A22_A_B EB275A RIM -0.09424 9571026 Human growth hormone hGH binding protein 

1A22_A_B WB276A COR 0.514301 9571026 Human growth hormone hGH binding protein 

1A22_A_B WB280A RIM -0.01769 9571026 Human growth hormone hGH binding protein 

1A22_A_B SB298A RIM -0.05473 9571026 Human growth hormone hGH binding protein 

1A22_A_B SB302A SUP -0.18217 9571026 Human growth hormone hGH binding protein 

1A22_A_B IB303A SUP 1.607865 9571026 Human growth hormone hGH binding protein 

1A22_A_B IB305A SUP 1.941551 9571026 Human growth hormone hGH binding protein 

1A22_A_B PB306A SUP 3.305722 9571026 Human growth hormone hGH binding protein 

1A22_A_B EB320A RIM -0.18217 9571026 Human growth hormone hGH binding protein 

1A22_A_B KB321A COR 0.081285 9571026 Human growth hormone hGH binding protein 

1A22_A_B SB324A SUP 0.274082 9571026 Human growth hormone hGH binding protein 

1A22_A_B DB326A SUP 0.993925 9571026 Human growth hormone hGH binding protein 

1A22_A_B EB327A RIM 0.970688 9571026 Human growth hormone hGH binding protein 

1A22_A_B DB364A SUP 1.486534 9571026 Human growth hormone hGH binding protein 

1A22_A_B IB365A COR 2.130757 9571026 Human growth hormone hGH binding protein 

1A22_A_B QB366A RIM 0.017174 9571026 Human growth hormone hGH binding protein 
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Protein Mutation(s)_PDB Location(s) ΔΔG Reference Protein 1 Protein 2 
 

1A22_A_B KB367A RIM -0.01769 9571026 Human growth hormone hGH binding protein 

1A22_A_B VB371A COR -0.61701 9571026 Human growth hormone hGH binding protein 

1A22_A_B TB395A RIM -0.09424 9571026 Human growth hormone hGH binding protein 

1A22_A_B QB416A SUP 0.891094 9571026 Human growth hormone hGH binding protein 

1A22_A_B RB417A COR 0.274082 9571026 Human growth hormone hGH binding protein 

1A22_A_B NB418A COR 0.295628 9571026 Human growth hormone hGH binding protein 

1A22_A_B SB419A COR 0.033864 9571026 Human growth hormone hGH binding protein 

1A22_A_B TB301A SUP 1.761612 9571026 Human growth hormone hGH binding protein 

1A22_A_B RB243A SUP 0.278455 2034689 Human growth hormone hGH binding protein 

1A22_A_B EB244A RIM 0.650875 2034689 Human growth hormone hGH binding protein 

1A22_A_B RB270A SUP 0.418016 2034689 Human growth hormone hGH binding protein 

1A22_A_B RB271A COR 0.599325 2034689 Human growth hormone hGH binding protein 

1A22_A_B EB275A RIM -0.07911 2034689 Human growth hormone hGH binding protein 

1A22_A_B DB326A SUP 0.982421 2034689 Human growth hormone hGH binding protein 

1A22_A_B EB327A RIM 0.410656 2034689 Human growth hormone hGH binding protein 

1A22_A_B RB417A COR 0.331545 2034689 Human growth hormone hGH binding protein 

1A22_A_B WB276A COR 0.56037 2034689 Human growth hormone hGH binding protein 

1A22_A_B WB280A RIM 0.166723 2034689 Human growth hormone hGH binding protein 

1A22_A_B TB273A RIM -0.44105 2034689 Human growth hormone hGH binding protein 

1A22_A_B QB274A RIM -0.58109 2034689 Human growth hormone hGH binding protein 

1A22_A_B SB298A RIM -0.32785 2034689 Human growth hormone hGH binding protein 

1A22_A_B SB299A RIM -0.50694 2034689 Human growth hormone hGH binding protein 

1A22_A_B TB301A SUP 1.085717 2034689 Human growth hormone hGH binding protein 

1A22_A_B SB302A SUP 0.467123 2034689 Human growth hormone hGH binding protein 

1A22_A_B IB303A SUP 0.432467 2034689 Human growth hormone hGH binding protein 

1A22_A_B IB305A SUP 0.132202 2034689 Human growth hormone hGH binding protein 
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Protein Mutation(s)_PDB Location(s) ΔΔG Reference Protein 1 Protein 2 
 

1A22_A_B PB306A SUP 2.626807 2034689 Human growth hormone hGH binding protein 

1A22_A_B FA25A COR -0.43145 8756685 Human growth hormone hGH binding protein 

1A22_A_B RB243A SUP 2.200368 7529940 Human growth hormone hGH binding protein 

1A22_A_B EB244A RIM 1.800119 7529940 Human growth hormone hGH binding protein 

1A22_A_B TB273A RIM 0.099964 7529940 Human growth hormone hGH binding protein 

1A22_A_B QB274A RIM 0 7529940 Human growth hormone hGH binding protein 

1A22_A_B EB275A RIM -0.10032 7529940 Human growth hormone hGH binding protein 

1A22_A_B WB276A COR 0.599716 7529940 Human growth hormone hGH binding protein 

1A22_A_B WB280A RIM 0 7529940 Human growth hormone hGH binding protein 

1A22_A_B SB298A RIM -0.10032 7529940 Human growth hormone hGH binding protein 

1A22_A_B SB302A SUP -0.20008 7529940 Human growth hormone hGH binding protein 

1A22_A_B IB303A SUP 1.800119 7529940 Human growth hormone hGH binding protein 

1A22_A_B IB305A SUP 2.000724 7529940 Human growth hormone hGH binding protein 

1A22_A_B CB308A SUP 0 7529940 Human growth hormone hGH binding protein 

1A22_A_B EB320A RIM -0.20008 7529940 Human growth hormone hGH binding protein 

1A22_A_B KB321A COR 0.099964 7529940 Human growth hormone hGH binding protein 

1A22_A_B CB322A COR 0 7529940 Human growth hormone hGH binding protein 

1A22_A_B SB324A SUP 0.200134 7529940 Human growth hormone hGH binding protein 

1A22_A_B DB326A SUP 1.000226 7529940 Human growth hormone hGH binding protein 

1A22_A_B EB327A RIM 1.000226 7529940 Human growth hormone hGH binding protein 

1A22_A_B DB364A SUP 1.598413 7529940 Human growth hormone hGH binding protein 

1A22_A_B IB365A COR 2.200368 7529940 Human growth hormone hGH binding protein 

1A22_A_B QB366A RIM 0 7529940 Human growth hormone hGH binding protein 

1A22_A_B KB367A RIM 0 7529940 Human growth hormone hGH binding protein 

1A22_A_B VB371A COR -0.70092 7529940 Human growth hormone hGH binding protein 

1A22_A_B TB395A RIM -0.10032 7529940 Human growth hormone hGH binding protein 
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Protein Mutation(s)_PDB Location(s) ΔΔG Reference Protein 1 Protein 2 
 

1A22_A_B QB416A SUP 0.900116 7529940 Human growth hormone hGH binding protein 

1A22_A_B RB417A COR 0.200134 7529940 Human growth hormone hGH binding protein 

1A22_A_B NB418A COR 0.300791 7529940 Human growth hormone hGH binding protein 

1A22_A_B CA182A COR 1.010373 2471267 Human growth hormone hGH binding protein 

1A22_A_B FA191A RIM 0.191291 2471267 Human growth hormone hGH binding protein 

1A4Y_A_B HB8A RIM 0.904115 9050852 Ribonuclease inhibitor Angiogenin 

1A4Y_A_B QB12A SUP 0.300265 9050852 Ribonuclease inhibitor Angiogenin 

1A4Y_A_B NB68A RIM 0.11781 9050852 Ribonuclease inhibitor Angiogenin 

1A4Y_A_B EB108A COR -0.32272 9050852 Ribonuclease inhibitor Angiogenin 

1A4Y_A_B YA434A COR 3.262015 9050852 Ribonuclease inhibitor Angiogenin 

1A4Y_A_B DA435A COR 3.485544 9050852 Ribonuclease inhibitor Angiogenin 

1A4Y_A_B YA437A COR 0.836312 9050852 Ribonuclease inhibitor Angiogenin 

1A4Y_A_B RA457A RIM -0.22399 10970748 Ribonuclease inhibitor Angiogenin 

1A4Y_A_B IA459A SUP 0.679432 10970748 Ribonuclease inhibitor Angiogenin 

1A4Y_A_B HB84A COR 0.170438 10970748 Ribonuclease inhibitor Angiogenin 

1A4Y_A_B WB89A RIM 0.240219 10970748 Ribonuclease inhibitor Angiogenin 

1A4Y_A_B WA261A COR 0.100657 10970748 Ribonuclease inhibitor Angiogenin 

1A4Y_A_B WA263A COR 1.171374 10970748 Ribonuclease inhibitor Angiogenin 

1A4Y_A_B SA289A SUP 0.042336 10970748 Ribonuclease inhibitor Angiogenin 

1A4Y_A_B WA318A SUP 1.500745 10970748 Ribonuclease inhibitor Angiogenin 

1A4Y_A_B KA320A COR -0.31 10970748 Ribonuclease inhibitor Angiogenin 

1A4Y_A_B EA344A COR 0.17861 10970748 Ribonuclease inhibitor Angiogenin 

1A4Y_A_B WA375A SUP 1.035362 10970748 Ribonuclease inhibitor Angiogenin 

1A4Y_A_B EA401A COR 0.883734 10970748 Ribonuclease inhibitor Angiogenin 

1A4Y_A_B RB5A COR 2.309282 1281426 Ribonuclease inhibitor Angiogenin 

1A4Y_A_B RB32A RIM 0.910251 1281426 Ribonuclease inhibitor Angiogenin 
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1A4Y_A_B RB31A COR 0.250522 1281426 Ribonuclease inhibitor Angiogenin 

1A4Y_A_B HB13A SUP -0.29669 2479414 Ribonuclease inhibitor Angiogenin 

1A4Y_A_B HB114A COR 0.656829 2479414 Ribonuclease inhibitor Angiogenin 

1AHW_AB_C YC157A SUP -1.88986 9480775 Immunoglobulin FAB 5G9 Tissue factor 

1AHW_AB_C TC167A COR -0.07415 9480775 Immunoglobulin FAB 5G9 Tissue factor 

1AHW_AB_C TC170A SUP 1.106266 9480775 Immunoglobulin FAB 5G9 Tissue factor 

1AHW_AB_C LC176A RIM 0.987378 9480775 Immunoglobulin FAB 5G9 Tissue factor 

1AHW_AB_C DC178A RIM -0.48481 9480775 Immunoglobulin FAB 5G9 Tissue factor 

1AHW_AB_C TC197A RIM 1.346485 9480775 Immunoglobulin FAB 5G9 Tissue factor 

1AHW_AB_C VC198A RIM -0.31437 9480775 Immunoglobulin FAB 5G9 Tissue factor 

1AHW_AB_C NC199A RIM 1.078705 9480775 Immunoglobulin FAB 5G9 Tissue factor 

1AK4_A_D PD485A RIM 2.449888 9223641 Cyclophilin A HIV-1 capsid protein 

1AK4_A_D VD486A COR 2.355922 9223641 Cyclophilin A HIV-1 capsid protein 

1AK4_A_D HD487A RIM 2.374152 9223641 Cyclophilin A HIV-1 capsid protein 

1AK4_A_D GD489A COR 3.441638 9223641 Cyclophilin A HIV-1 capsid protein 

1AK4_A_D PD490A COR 3.537182 9223641 Cyclophilin A HIV-1 capsid protein 

1AK4_A_D ID491A RIM 1.60439 9223641 Cyclophilin A HIV-1 capsid protein 

1AK4_A_D PD493A RIM 2.047078 9223641 Cyclophilin A HIV-1 capsid protein 

1BRS_A_D KA27A COR 5.380949 7739054 Barnase Barstar 
 

1BRS_A_D RA59A COR 5.245372 7739054 Barnase Barstar 
 

1BRS_A_D RA87A SUP 5.564701 7739054 Barnase Barstar 
 

1BRS_A_D HA102A COR 6.145795 7739054 Barnase Barstar 
 

1BRS_A_D YD29A RIM 3.470544 7739054 Barnase Barstar 
 

1BRS_A_D DD35A COR 4.50317 7739054 Barnase Barstar 
 

1BRS_A_D DD39A COR 7.650989 7739054 Barnase Barstar 
 

1BRS_A_D TD42A COR 1.85763 7739054 Barnase Barstar 
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1BRS_A_D ED76A RIM 1.364171 7739054 Barnase Barstar 
 

1BRS_A_D EA73A SUP 2.347719 9126847 Barnase Barstar 
 

1BRS_A_D RA59A COR 4.635372 8507637 Barnase Barstar 
 

1BRS_A_D HA102A COR 6.912182 8507637 Barnase Barstar 
 

1BRS_A_D DD35A COR 4.069636 -3, 2004 Barnase Barstar 
 

1BRS_A_D DD39A COR 5.935123 
 

Barnase Barstar 
 

1BRS_A_D ED76A RIM 0.823553 
 

Barnase Barstar 
 

1BRS_A_D KA27A COR 5.409263 8494892 Barnase Barstar 
 

1BRS_A_D NA58A SUP 3.066363 8494892 Barnase Barstar 
 

1BRS_A_D RA59A COR 5.183674 8494892 Barnase Barstar 
 

1BRS_A_D EA60A RIM -0.32588 8494892 Barnase Barstar 
 

1BRS_A_D EA73A SUP 1.897844 8494892 Barnase Barstar 
 

1BRS_A_D RA87A SUP 5.952121 8494892 Barnase Barstar 
 

1BRS_A_D HA102A COR 6.254761 8494892 Barnase Barstar 
 

1BRS_A_D KA27A COR 4.58795 8494892 Barnase Barstar 
 

1BRS_A_D NA58A SUP 3.115762 8494892 Barnase Barstar 
 

1BRS_A_D RA59A COR 4.89059 8494892 Barnase Barstar 
 

1BRS_A_D EA60A RIM 0.514863 8494892 Barnase Barstar 
 

1BRS_A_D EA73A SUP 2.813123 8494892 Barnase Barstar 
 

1BRS_A_D HA102A COR 6.076371 8494892 Barnase Barstar 
 

1CBW_FGH_I TI11A COR 0.221988 8784199 Bovine alpha-chymotrypsin BPTI 
 

1CBW_FGH_I GI12A SUP 0.685735 8784199 Bovine alpha-chymotrypsin BPTI 
 

1CBW_FGH_I PI13A COR -0.05647 8784199 Bovine alpha-chymotrypsin BPTI 
 

1CBW_FGH_I KI15A COR 2.015046 8784199 Bovine alpha-chymotrypsin BPTI 
 

1CBW_FGH_I RI17A COR 0.553533 8784199 Bovine alpha-chymotrypsin BPTI 
 

1CBW_FGH_I II18A COR 1.415721 8784199 Bovine alpha-chymotrypsin BPTI 
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1CBW_FGH_I II19A RIM 0.142877 8784199 Bovine alpha-chymotrypsin BPTI 
 

1CBW_FGH_I VI34A RIM 0.05155 8784199 Bovine alpha-chymotrypsin BPTI 
 

1CBW_FGH_I GI36A SUP 0.96419 8784199 Bovine alpha-chymotrypsin BPTI 
 

1CBW_FGH_I GI37A COR 0.821313 8784199 Bovine alpha-chymotrypsin BPTI 
 

1CBW_FGH_I RI39A RIM 0.221988 8784199 Bovine alpha-chymotrypsin BPTI 
 

1CBW_FGH_I KI15A COR 2.210915 10339415 Bovine alpha-chymotrypsin BPTI 
 

1CHO_EFG_I LI18A COR 4.76622 9047374 Bovine alpha-chymotrypsin Turkey ovomucoid third domain 

1CHO_EFG_I TI17A COR 4.158528 11171964 Bovine alpha-chymotrypsin Turkey ovomucoid third domain 

1CHO_EFG_I EI19A COR 2.333248 11171964 Bovine alpha-chymotrypsin Turkey ovomucoid third domain 

1CHO_EFG_I YI20A COR 2.543463 11171964 Bovine alpha-chymotrypsin Turkey ovomucoid third domain 

1CHO_EFG_I RI21A RIM 3.191768 11171964 Bovine alpha-chymotrypsin Turkey ovomucoid third domain 

1CHO_EFG_I PI14A RIM 0.380623 11171964 Bovine alpha-chymotrypsin Turkey ovomucoid third domain 

1CHO_EFG_I KI13A RIM 0.181043 11171964 Bovine alpha-chymotrypsin Turkey ovomucoid third domain 

1CHO_EFG_I GI32A SUP -1.0918 11171964 Bovine alpha-chymotrypsin Turkey ovomucoid third domain 

1CHO_EFG_I NI36A COR -1.36417 11171964 Bovine alpha-chymotrypsin Turkey ovomucoid third domain 

1CHO_EFG_I GI32A SUP -0.77164 

Stephen 
Ming-teh Lu, 
PhD Thesis, 
Purdue 
University, 
2000 Bovine alpha-chymotrypsin Turkey ovomucoid third domain 

1CHO_EFG_I TI17A COR 4.317521 

Stephen 
Ming-teh Lu, 
PhD Thesis, 
Purdue 
University, 
2000 Bovine alpha-chymotrypsin Turkey ovomucoid third domain 

1CHO_EFG_I LI18A COR 4.932125 

Stephen 
Ming-teh Lu, 
PhD Thesis, 
Purdue 
University, 
2000 Bovine alpha-chymotrypsin Turkey ovomucoid third domain 
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1DAN_HL_UT WT45A COR 1.500008 7756258 Factor VIIa Tissue factor 

1DAN_HL_UT ST47A COR -0.12653 7756258 Factor VIIa Tissue factor 

1DAN_HL_UT YT51A RIM -0.12653 7756258 Factor VIIa Tissue factor 

1DAN_HL_UT FT76A COR 1.105437 7756258 Factor VIIa Tissue factor 

1DAN_HL_UT YT78A RIM 0.627639 7756258 Factor VIIa Tissue factor 

1DAN_HL_UT PU92A RIM -0.18583 7756258 Factor VIIa Tissue factor 

1DAN_HL_UT YU94A COR 0.311685 7756258 Factor VIIa Tissue factor 

1DAN_HL_UT QT37A SUP 0.729036 7756258 Factor VIIa Tissue factor 

1DAN_HL_UT GT43A COR 0.064695 7756258 Factor VIIa Tissue factor 

1DAN_HL_UT KT48A SUP 0.920722 7756258 Factor VIIa Tissue factor 

1DAN_HL_UT TT60A SUP 2.224076 7756258 Factor VIIa Tissue factor 

1DAN_HL_UT DT44A RIM 1.379911 7756258 Factor VIIa Tissue factor 

1DAN_HL_UT RH134A COR 0.749025 8962059 Factor VIIa Tissue factor 

1DAN_HL_UT MH164A COR 0.744485 8962059 Factor VIIa Tissue factor 

1DAN_HL_UT KT20A COR 2.438602 7947809 Factor VIIa Tissue factor 

1DAN_HL_UT DT44A RIM 2.387218 7947809 Factor VIIa Tissue factor 

1DAN_HL_UT WT45A COR 2.371096 7947809 Factor VIIa Tissue factor 

1DAN_HL_UT KT46A COR 0.894808 7947809 Factor VIIa Tissue factor 

1DAN_HL_UT QU110A COR 1.305465 7947809 Factor VIIa Tissue factor 

1DAN_HL_UT RU135A RIM 0.986135 7947809 Factor VIIa Tissue factor 

1DAN_HL_UT FU140A COR 2.215453 7947809 Factor VIIa Tissue factor 

1DAN_HL_UT VU207A COR 1.569868 7947809 Factor VIIa Tissue factor 

1DAN_HL_UT ST16A COR -0.12981 8312277 Factor VIIa Tissue factor 

1DAN_HL_UT DT61A COR 0.242044 8312277 Factor VIIa Tissue factor 

1DAN_HL_UT ET62A SUP 0 8312277 Factor VIIa Tissue factor 

1DAN_HL_UT IT63A SUP 0 8312277 Factor VIIa Tissue factor 
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1DAN_HL_UT VT64A COR 0 8312277 Factor VIIa Tissue factor 

1DAN_HL_UT QT69A RIM 0 8312277 Factor VIIa Tissue factor 

1DAN_HL_UT LT72A COR -0.05984 8312277 Factor VIIa Tissue factor 

1DAN_HL_UT EU105A RIM -0.05984 8312277 Factor VIIa Tissue factor 

1DAN_HL_UT TU106A COR -0.05984 8312277 Factor VIIa Tissue factor 

1DAN_HL_UT NU107A RIM 0 8312277 Factor VIIa Tissue factor 

1DAN_HL_UT RU131A RIM 0 8312277 Factor VIIa Tissue factor 

1DAN_HL_UT TU132A SUP 0 8312277 Factor VIIa Tissue factor 

1DAN_HL_UT NU138A RIM 0 8312277 Factor VIIa Tissue factor 

1DAN_HL_UT VU146A COR 0.19954 8312277 Factor VIIa Tissue factor 

1DAN_HL_UT FU147A SUP -0.05984 8312277 Factor VIIa Tissue factor 

1DAN_HL_UT EU208A RIM -0.00483 7654692 Factor VIIa Tissue factor 

1DAN_HL_UT VU207A COR -0.18867 7654692 Factor VIIa Tissue factor 

1DAN_HL_UT TU203A RIM 0.135272 7654692 Factor VIIa Tissue factor 

1DAN_HL_UT SU163A RIM 0.022644 7654692 Factor VIIa Tissue factor 

1DAN_HL_UT FU140A COR 1.281753 7654692 Factor VIIa Tissue factor 

1DAN_HL_UT RU135A RIM 0.519314 7654692 Factor VIIa Tissue factor 

1DAN_HL_UT LU133A COR -0.02756 7654692 Factor VIIa Tissue factor 

1DAN_HL_UT EU128A RIM 0.085805 7654692 Factor VIIa Tissue factor 

1DAN_HL_UT EU99A RIM -0.17559 7654692 Factor VIIa Tissue factor 

1DAN_HL_UT YU94A COR 1.02415 7654692 Factor VIIa Tissue factor 

1DAN_HL_UT KT68A RIM -0.07038 7654692 Factor VIIa Tissue factor 

1DAN_HL_UT DT58A COR 1.989497 7654692 Factor VIIa Tissue factor 

1DAN_HL_UT FT50A COR 0.437911 7654692 Factor VIIa Tissue factor 

1DAN_HL_UT KT48A SUP 0.414491 7654692 Factor VIIa Tissue factor 

1DAN_HL_UT ST47A COR 0.043562 7654692 Factor VIIa Tissue factor 
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1DAN_HL_UT KT46A COR 0.231824 7654692 Factor VIIa Tissue factor 

1DAN_HL_UT DT44A RIM 0.735014 7654692 Factor VIIa Tissue factor 

1DAN_HL_UT ST42A RIM -0.0693 7654692 Factor VIIa Tissue factor 

1DAN_HL_UT KT41A RIM 0.321569 7654692 Factor VIIa Tissue factor 

1DAN_HL_UT QT37A SUP 0.546693 7654692 Factor VIIa Tissue factor 

1DAN_HL_UT ET24A RIM 0.657886 7654692 Factor VIIa Tissue factor 

1DAN_HL_UT IT22A SUP 0.645076 7654692 Factor VIIa Tissue factor 

1DAN_HL_UT TT21A SUP -0.15901 7654692 Factor VIIa Tissue factor 

1DAN_HL_UT KT20A COR 2.587908 7654692 Factor VIIa Tissue factor 

1DAN_HL_UT NT18A COR 0.180215 7654692 Factor VIIa Tissue factor 

1DAN_HL_UT TT17A COR 0.120547 7654692 Factor VIIa Tissue factor 

1DAN_HL_UT KT15A RIM -0.39734 7654692 Factor VIIa Tissue factor 

1DQJ_AB_C YC20A COR 3.28718 10828942 HyHEL-63 Fab HEW Lysozyme 

1DQJ_AB_C RC21A COR 1.169074 10828942 HyHEL-63 Fab HEW Lysozyme 

1DQJ_AB_C WC63A SUP 1.346872 10828942 HyHEL-63 Fab HEW Lysozyme 

1DQJ_AB_C KC97A COR 3.521282 10828942 HyHEL-63 Fab HEW Lysozyme 

1DQJ_AB_C DC101A COR 1.453057 10828942 HyHEL-63 Fab HEW Lysozyme 

1DQJ_AB_C YC20A COR 3.28718 12515535 HyHEL-63 Fab HEW Lysozyme 

1DQJ_AB_C RC21A COR 1.259554 12515535 HyHEL-63 Fab HEW Lysozyme 

1DQJ_AB_C WC62A RIM 0.758418 12515535 HyHEL-63 Fab HEW Lysozyme 

1DQJ_AB_C WC63A SUP 1.346872 12515535 HyHEL-63 Fab HEW Lysozyme 

1DQJ_AB_C LC75A COR 1.453057 12515535 HyHEL-63 Fab HEW Lysozyme 

1DQJ_AB_C TC89A COR 0.84122 12515535 HyHEL-63 Fab HEW Lysozyme 

1DQJ_AB_C NC93A COR 0.650164 12515535 HyHEL-63 Fab HEW Lysozyme 

1DQJ_AB_C KC96A SUP 6.158576 12515535 HyHEL-63 Fab HEW Lysozyme 

1DQJ_AB_C KC97A COR 3.521282 12515535 HyHEL-63 Fab HEW Lysozyme 
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1DQJ_AB_C SC100A COR 0.77593 12515535 HyHEL-63 Fab HEW Lysozyme 

1DQJ_AB_C DC101A COR 1.301276 12515535 HyHEL-63 Fab HEW Lysozyme 

1DQJ_AB_C NA31A COR 2.014335 12515535 HyHEL-63 Fab HEW Lysozyme 

1DQJ_AB_C NA32A SUP 4.092513 12515535 HyHEL-63 Fab HEW Lysozyme 

1DQJ_AB_C YA50A COR 2.679498 12515535 HyHEL-63 Fab HEW Lysozyme 

1DQJ_AB_C SA91A SUP 1.432529 12515535 HyHEL-63 Fab HEW Lysozyme 

1DQJ_AB_C YA96A COR 1.135559 12515535 HyHEL-63 Fab HEW Lysozyme 

1DQJ_AB_C DB32A COR 2.014335 12515535 HyHEL-63 Fab HEW Lysozyme 

1DQJ_AB_C YB33A COR 5.526939 12515535 HyHEL-63 Fab HEW Lysozyme 

1DQJ_AB_C YB50A SUP 6.89111 12515535 HyHEL-63 Fab HEW Lysozyme 

1DQJ_AB_C YB53A COR 1.180807 12515535 HyHEL-63 Fab HEW Lysozyme 

1DQJ_AB_C WB98A COR 4.933734 12515535 HyHEL-63 Fab HEW Lysozyme 

1DVF_AB_CD HA30A RIM 1.650121 8703938 IgG1-kappa D1.3 Fv E5.2 Fv 
 

1DVF_AB_CD YA32A COR 2.031279 8703938 IgG1-kappa D1.3 Fv E5.2 Fv 
 

1DVF_AB_CD YA49A COR 1.629452 8703938 IgG1-kappa D1.3 Fv E5.2 Fv 
 

1DVF_AB_CD YA50A RIM 0.688082 8703938 IgG1-kappa D1.3 Fv E5.2 Fv 
 

1DVF_AB_CD WA92A COR 0.340876 8703938 IgG1-kappa D1.3 Fv E5.2 Fv 
 

1DVF_AB_CD SA93A COR 1.162959 8703938 IgG1-kappa D1.3 Fv E5.2 Fv 
 

1DVF_AB_CD TB30A RIM 0.907919 8703938 IgG1-kappa D1.3 Fv E5.2 Fv 
 

1DVF_AB_CD YB32A COR 1.832291 8703938 IgG1-kappa D1.3 Fv E5.2 Fv 
 

1DVF_AB_CD WB52A COR 4.134849 8703938 IgG1-kappa D1.3 Fv E5.2 Fv 
 

1DVF_AB_CD DB54A RIM 4.283173 8703938 IgG1-kappa D1.3 Fv E5.2 Fv 
 

1DVF_AB_CD NB56A COR 1.162959 8703938 IgG1-kappa D1.3 Fv E5.2 Fv 
 

1DVF_AB_CD DB58A COR 1.600721 8703938 IgG1-kappa D1.3 Fv E5.2 Fv 
 

1DVF_AB_CD EB98A SUP 4.188524 8703938 IgG1-kappa D1.3 Fv E5.2 Fv 
 

1DVF_AB_CD RB99A COR 1.875485 8703938 IgG1-kappa D1.3 Fv E5.2 Fv 
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1DVF_AB_CD DB100A RIM 2.790763 8703938 IgG1-kappa D1.3 Fv E5.2 Fv 
 

1DVF_AB_CD EB98A SUP 4.188524 8993317 IgG1-kappa D1.3 Fv E5.2 Fv 
 

1DVF_AB_CD DB54A RIM 4.283173 8993317 IgG1-kappa D1.3 Fv E5.2 Fv 
 

1DVF_AB_CD DB58A COR 1.600721 8993317 IgG1-kappa D1.3 Fv E5.2 Fv 
 

1DVF_AB_CD YA49A COR 1.729232 8993317 IgG1-kappa D1.3 Fv E5.2 Fv 
 

1DVF_AB_CD YA32A COR 2.031279 8993317 IgG1-kappa D1.3 Fv E5.2 Fv 
 

1DVF_AB_CD NB56A COR 1.162959 8993317 IgG1-kappa D1.3 Fv E5.2 Fv 
 

1DVF_AB_CD WB52A COR 4.134849 8993317 IgG1-kappa D1.3 Fv E5.2 Fv 
 

1DVF_AB_CD DB100A RIM 2.790763 8993317 IgG1-kappa D1.3 Fv E5.2 Fv 
 

1DVF_AB_CD YD98A COR 4.741557 8993317 IgG1-kappa D1.3 Fv E5.2 Fv 
 

1DVF_AB_CD YC49A COR 1.861434 8993317 IgG1-kappa D1.3 Fv E5.2 Fv 
 

1DVF_AB_CD QD100A COR 1.629452 8993317 IgG1-kappa D1.3 Fv E5.2 Fv 
 

1DVF_AB_CD ND54A RIM 1.861434 8993317 IgG1-kappa D1.3 Fv E5.2 Fv 
 

1DVF_AB_CD RD100bA COR 4.092513 8993317 IgG1-kappa D1.3 Fv E5.2 Fv 
 

1DVF_AB_CD KD30A RIM 1.003967 8993317 IgG1-kappa D1.3 Fv E5.2 Fv 
 

1DVF_AB_CD HD33A COR 1.861434 8993317 IgG1-kappa D1.3 Fv E5.2 Fv 
 

1DVF_AB_CD DD52A SUP 1.683043 8993317 IgG1-kappa D1.3 Fv E5.2 Fv 
 

1DVF_AB_CD ID97A COR 2.682746 8993317 IgG1-kappa D1.3 Fv E5.2 Fv 
 

1EAW_A_B QA38A COR -0.51891 17475279 Membrane-type serine protease 1 BPTI 
 

1EAW_A_B IA41A SUP -0.82251 17475279 Membrane-type serine protease 1 BPTI 
 

1EAW_A_B IA60A RIM -0.19436 17475279 Membrane-type serine protease 1 BPTI 
 

1EAW_A_B DA60bA RIM 1.502775 17475279 Membrane-type serine protease 1 BPTI 
 

1EAW_A_B RA60cA RIM 0.587615 17475279 Membrane-type serine protease 1 BPTI 
 

1EAW_A_B FA60eA SUP -0.42881 17475279 Membrane-type serine protease 1 BPTI 
 

1EAW_A_B YA60gA SUP -0.07894 17475279 Membrane-type serine protease 1 BPTI 
 

1EAW_A_B FA94A SUP 0.728594 17475279 Membrane-type serine protease 1 BPTI 
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1EAW_A_B DA96A RIM 0.65444 17475279 Membrane-type serine protease 1 BPTI 
 

1EAW_A_B FA97A RIM 0.89202 17475279 Membrane-type serine protease 1 BPTI 
 

1EAW_A_B HA143A COR -0.01448 17475279 Membrane-type serine protease 1 BPTI 
 

1EAW_A_B YA146A RIM 0.502154 17475279 Membrane-type serine protease 1 BPTI 
 

1EAW_A_B TA150A RIM 0.089451 17475279 Membrane-type serine protease 1 BPTI 
 

1EAW_A_B QA175A RIM -0.1331 17475279 Membrane-type serine protease 1 BPTI 
 

1EAW_A_B DA217A RIM 2.229134 17475279 Membrane-type serine protease 1 BPTI 
 

1EFN_A_B IA96A COR 1.451027 7588629 Fyn SH3 domain R96I mutant HIV-1 Nef 

1EMV_A_B RB54A COR 1.666447 18471830 Colicin E9 immunity protein Colicin E9 DNase 

1EMV_A_B NB72A COR 1.165191 18471830 Colicin E9 immunity protein Colicin E9 DNase 

1EMV_A_B SB74A COR -0.24113 18471830 Colicin E9 immunity protein Colicin E9 DNase 

1EMV_A_B NB75A SUP 2.335586 18471830 Colicin E9 immunity protein Colicin E9 DNase 

1EMV_A_B SB77A COR -0.23299 18471830 Colicin E9 immunity protein Colicin E9 DNase 

1EMV_A_B SB78A SUP -0.54014 18471830 Colicin E9 immunity protein Colicin E9 DNase 

1EMV_A_B SB84A SUP -0.10947 18471830 Colicin E9 immunity protein Colicin E9 DNase 

1EMV_A_B FB86A COR 3.880681 18471830 Colicin E9 immunity protein Colicin E9 DNase 

1EMV_A_B TB87A SUP 0.158506 18471830 Colicin E9 immunity protein Colicin E9 DNase 

1EMV_A_B QB92A SUP -0.27773 18471830 Colicin E9 immunity protein Colicin E9 DNase 

1EMV_A_B KB97A COR 1.960515 18471830 Colicin E9 immunity protein Colicin E9 DNase 

1EMV_A_B VB98A SUP 1.08934 18471830 Colicin E9 immunity protein Colicin E9 DNase 

1EMV_A_B CA23A COR 0.92197 9425068 Colicin E9 immunity protein Colicin E9 DNase 

1EMV_A_B NA24A RIM 0.139471 9425068 Colicin E9 immunity protein Colicin E9 DNase 

1EMV_A_B TA27A COR 0.72846 9425068 Colicin E9 immunity protein Colicin E9 DNase 

1EMV_A_B SA28A RIM 0.173174 9425068 Colicin E9 immunity protein Colicin E9 DNase 

1EMV_A_B SA29A RIM 0.956433 9425068 Colicin E9 immunity protein Colicin E9 DNase 

1EMV_A_B EA30A RIM 1.416635 9425068 Colicin E9 immunity protein Colicin E9 DNase 



Appendices: SKEMPI Hotspot ΔΔG Dataset 

251 
 

Protein Mutation(s)_PDB Location(s) ΔΔG Reference Protein 1 Protein 2 
 

1EMV_A_B LA33A SUP 3.419279 9425068 Colicin E9 immunity protein Colicin E9 DNase 

1EMV_A_B VA34A COR 2.57945 9425068 Colicin E9 immunity protein Colicin E9 DNase 

1EMV_A_B VA37A SUP 1.664612 9425068 Colicin E9 immunity protein Colicin E9 DNase 

1EMV_A_B TA38A RIM 0.899966 9425068 Colicin E9 immunity protein Colicin E9 DNase 

1EMV_A_B EA41A COR 2.084014 9425068 Colicin E9 immunity protein Colicin E9 DNase 

1EMV_A_B HA46A SUP 0.832184 9425068 Colicin E9 immunity protein Colicin E9 DNase 

1EMV_A_B PA47A RIM 0.437469 9425068 Colicin E9 immunity protein Colicin E9 DNase 

1EMV_A_B SA48A COR 0.007269 9425068 Colicin E9 immunity protein Colicin E9 DNase 

1EMV_A_B GA49A SUP 1.486044 9425068 Colicin E9 immunity protein Colicin E9 DNase 

1EMV_A_B SA50A COR 2.18822 9425068 Colicin E9 immunity protein Colicin E9 DNase 

1EMV_A_B DA51A COR 5.918129 9425068 Colicin E9 immunity protein Colicin E9 DNase 

1EMV_A_B IA53A SUP 0.848125 9425068 Colicin E9 immunity protein Colicin E9 DNase 

1EMV_A_B YA54A COR 4.836801 9425068 Colicin E9 immunity protein Colicin E9 DNase 

1EMV_A_B YA55A RIM 4.636833 9425068 Colicin E9 immunity protein Colicin E9 DNase 

1EMV_A_B PA56A RIM 1.24284 9425068 Colicin E9 immunity protein Colicin E9 DNase 

1F47_A_B DA4A RIM 0.691506 10880432 FtsZ fragment ZipA 
 

1F47_A_B YA5A RIM 0.869367 10880432 FtsZ fragment ZipA 
 

1F47_A_B LA6A COR 0.925431 10880432 FtsZ fragment ZipA 
 

1F47_A_B DA7A RIM 1.733659 10880432 FtsZ fragment ZipA 
 

1F47_A_B IA8A COR 2.516245 10880432 FtsZ fragment ZipA 
 

1F47_A_B PA9A RIM -0.05756 10880432 FtsZ fragment ZipA 
 

1F47_A_B FA11A COR 2.445483 10880432 FtsZ fragment ZipA 
 

1F47_A_B LA12A COR 2.295326 10880432 FtsZ fragment ZipA 
 

1F47_A_B KA14A RIM -0.04264 10880432 FtsZ fragment ZipA 
 

1F47_A_B QA15A RIM -0.0456 10880432 FtsZ fragment ZipA 
 

1FC2_C_D NC147A RIM 0.605702 8588944 Protein A/Z IgG1 MO61 Fc 
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1FC2_C_D IC150A SUP 5.276767 8588944 Protein A/Z IgG1 MO61 Fc 

1FC2_C_D KC154A RIM 1.526621 8588944 Protein A/Z IgG1 MO61 Fc 

1FC2_C_D NC147A RIM 0.582278 8332602 Protein A/Z IgG1 MO61 Fc 

1FC2_C_D IC150A SUP 2.185484 8332602 Protein A/Z IgG1 MO61 Fc 

1FC2_C_D KC154A RIM 1.231969 8332602 Protein A/Z IgG1 MO61 Fc 

1FCC_A_C TC25A COR 0.240219 10452608 IgG1 MO61 Fc B domain of Protein G 

1FCC_A_C KC28A COR 1.256154 10452608 IgG1 MO61 Fc B domain of Protein G 

1FCC_A_C KC31A COR 3.477555 10452608 IgG1 MO61 Fc B domain of Protein G 

1FCC_A_C NC35A COR 2.365107 10452608 IgG1 MO61 Fc B domain of Protein G 

1FCC_A_C DC40A RIM 0.272251 10452608 IgG1 MO61 Fc B domain of Protein G 

1FCC_A_C EC42A RIM 0.385442 10452608 IgG1 MO61 Fc B domain of Protein G 

1FCC_A_C WC43A COR 3.773184 10452608 IgG1 MO61 Fc B domain of Protein G 

1FFW_A_B EB171A SUP 0.716771 21642453 Chemotaxis protein CheY Chemotaxis protein CheA 

1FFW_A_B EB178A COR 0.639143 21642453 Chemotaxis protein CheY Chemotaxis protein CheA 

1FFW_A_B HB181A RIM 0.033864 21642453 Chemotaxis protein CheY Chemotaxis protein CheA 

1FFW_A_B DB202A RIM -0.07415 21642453 Chemotaxis protein CheY Chemotaxis protein CheA 

1FFW_A_B DB207A RIM 0.096285 21642453 Chemotaxis protein CheY Chemotaxis protein CheA 

1FFW_A_B CB213A RIM 0.204301 21642453 Chemotaxis protein CheY Chemotaxis protein CheA 

1FFW_A_B FB214A COR 3.64594 21642453 Chemotaxis protein CheY Chemotaxis protein CheA 

1FFW_A_B IB216A SUP 0.42783 21642453 Chemotaxis protein CheY Chemotaxis protein CheA 

1GC1_G_C SC23A RIM 0.292682 2402498 gp120 CD4 
 

1GC1_G_C QC25A COR 0.032032 2402498 gp120 CD4 
 

1GC1_G_C HC27A COR 0.282555 2402498 gp120 CD4 
 

1GC1_G_C KC29A SUP 0.536239 2402498 gp120 CD4 
 

1GC1_G_C NC32A RIM 0.182654 2402498 gp120 CD4 
 

1GC1_G_C QC33A RIM 0.105268 2402498 gp120 CD4 
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1GC1_G_C KC35A COR 0.322066 2402498 gp120 CD4 
 

1GC1_G_C QC40A COR -0.41066 2402498 gp120 CD4 
 

1GC1_G_C SC42A COR 0 2402498 gp120 CD4 
 

1GC1_G_C LC44A SUP 1.05602 2402498 gp120 CD4 
 

1GC1_G_C TC45A COR -0.14889 2402498 gp120 CD4 
 

1GC1_G_C KC46A COR 1.431019 2402498 gp120 CD4 
 

1GC1_G_C NC52A COR 0.708338 2402498 gp120 CD4 
 

1GC1_G_C RC59A COR 1.175914 2402498 gp120 CD4 
 

1GC1_G_C SC60A RIM -0.08859 2402498 gp120 CD4 
 

1GC1_G_C DC63A RIM -0.31933 2402498 gp120 CD4 
 

1GC1_G_C QC64A RIM 0.442689 2402498 gp120 CD4 
 

1GC1_G_C EC85A SUP 1.323296 2402498 gp120 CD4 
 

1GCQ_AB_C PC595A COR 0.767836 11406576 
Growth factor receptor-bound 
protein 2 VavS 

 
1GCQ_AB_C PC657A COR 1.316456 11406576 

Growth factor receptor-bound 
protein 2 VavS 

 
1GCQ_AB_C PC608A COR 0.120808 11406576 

Growth factor receptor-bound 
protein 2 VavS 

 
1GCQ_AB_C PC609A SUP 0.08525 11406576 

Growth factor receptor-bound 
protein 2 VavS 

 
1H9D_A_B RB3A RIM 1.162188 10984496 AML1 Runx1 Runt domain Core-binding factor beta 

1H9D_A_B VB4A SUP 1.402407 10984496 AML1 Runx1 Runt domain Core-binding factor beta 

1H9D_A_B GB61A COR 2.077467 10984496 AML1 Runx1 Runt domain Core-binding factor beta 

1H9D_A_B QB67A COR 1.364171 10984496 AML1 Runx1 Runt domain Core-binding factor beta 

1H9D_A_B LB103A SUP 0.940201 10984496 AML1 Runx1 Runt domain Core-binding factor beta 

1H9D_A_B NB104A COR 2.304372 10984496 AML1 Runx1 Runt domain Core-binding factor beta 

1IAR_A_B IA5A COR 1.171374 9050834 Interleukin-4 Interleukin-4 receptor 

1IAR_A_B TA6A SUP -0.10364 9050834 Interleukin-4 Interleukin-4 receptor 

1IAR_A_B QA8A RIM -0.02236 9050834 Interleukin-4 Interleukin-4 receptor 
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1IAR_A_B TA13A SUP 0.978577 9050834 Interleukin-4 Interleukin-4 receptor 

1IAR_A_B QA78A COR 0.124842 9050834 Interleukin-4 Interleukin-4 receptor 

1IAR_A_B RA81A RIM 0.479624 9050834 Interleukin-4 Interleukin-4 receptor 

1IAR_A_B FA82A SUP -0.08647 9050834 Interleukin-4 Interleukin-4 receptor 

1IAR_A_B KA84A COR 0.344976 9050834 Interleukin-4 Interleukin-4 receptor 

1IAR_A_B RA85A COR 0.426889 9050834 Interleukin-4 Interleukin-4 receptor 

1IAR_A_B RA88A COR 3.754718 9050834 Interleukin-4 Interleukin-4 receptor 

1IAR_A_B NA89A SUP 1.558794 9050834 Interleukin-4 Interleukin-4 receptor 

1IAR_A_B WA91A COR 0.729529 9050834 Interleukin-4 Interleukin-4 receptor 

1JCK_A_B TB20A COR 1.654842 9500785 Beta-chain of 14.3.d Staphylococcal enterotoxin C3 

1JCK_A_B YB26A COR 1.774828 9500785 Beta-chain of 14.3.d Staphylococcal enterotoxin C3 

1JCK_A_B NB60A COR 1.642626 9500785 Beta-chain of 14.3.d Staphylococcal enterotoxin C3 

1JCK_A_B YB90A SUP 2.59614 9500785 Beta-chain of 14.3.d Staphylococcal enterotoxin C3 

1JCK_A_B VB91A COR 2.232905 9500785 Beta-chain of 14.3.d Staphylococcal enterotoxin C3 

1JCK_A_B KB103A SUP 0.676638 9500785 Beta-chain of 14.3.d Staphylococcal enterotoxin C3 

1JCK_A_B FB176A RIM 2.133934 9500785 Beta-chain of 14.3.d Staphylococcal enterotoxin C3 

1JRH_LH_I EL27A RIM 0.542858 11123892 mAbs A6 Interferon gamma receptor 

1JRH_LH_I DL28A COR 0.434841 11123892 mAbs A6 Interferon gamma receptor 

1JRH_LH_I YL30A COR 1.108953 11123892 mAbs A6 Interferon gamma receptor 

1JRH_LH_I YL91A COR 0.581094 11123892 mAbs A6 Interferon gamma receptor 

1JRH_LH_I WL92A COR 2.819669 11123892 mAbs A6 Interferon gamma receptor 

1JRH_LH_I SL93A COR -0.65088 11123892 mAbs A6 Interferon gamma receptor 

1JRH_LH_I TL94A COR 0.385442 11123892 mAbs A6 Interferon gamma receptor 

1JRH_LH_I WL96A COR 1.666811 11123892 mAbs A6 Interferon gamma receptor 

1JRH_LH_I YH32A RIM 1.433952 11123892 mAbs A6 Interferon gamma receptor 

1JRH_LH_I WH52A SUP 2.687467 11123892 mAbs A6 Interferon gamma receptor 
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1JRH_LH_I WH53A COR 2.422402 11123892 mAbs A6 Interferon gamma receptor 

1JRH_LH_I DH54A RIM 1.886944 11123892 mAbs A6 Interferon gamma receptor 

1JRH_LH_I DH56A RIM 1.855479 11123892 mAbs A6 Interferon gamma receptor 

1JRH_LH_I YH58A COR 1.256154 11123892 mAbs A6 Interferon gamma receptor 

1JRH_LH_I RH95A SUP 0.542858 11123892 mAbs A6 Interferon gamma receptor 

1JRH_LH_I YH99A RIM 1.061531 11123892 mAbs A6 Interferon gamma receptor 

1JRH_LH_I HH100bA COR 1.698531 11123892 mAbs A6 Interferon gamma receptor 

1JRH_LH_I KI47A SUP 3.578757 9878445 mAbs A6 Interferon gamma receptor 

1JRH_LH_I NI48A SUP -0.29312 9878445 mAbs A6 Interferon gamma receptor 

1JRH_LH_I YI49A COR 3.400763 9878445 mAbs A6 Interferon gamma receptor 

1JRH_LH_I GI50A COR 4.527355 9878445 mAbs A6 Interferon gamma receptor 

1JRH_LH_I VI51A COR 1.88353 9878445 mAbs A6 Interferon gamma receptor 

1JRH_LH_I KI52A COR 2.984793 9878445 mAbs A6 Interferon gamma receptor 

1JRH_LH_I NI53A COR 3.893992 9878445 mAbs A6 Interferon gamma receptor 

1JRH_LH_I SI54A COR 0.297682 9878445 mAbs A6 Interferon gamma receptor 

1JRH_LH_I EI55A RIM -0.43501 9878445 mAbs A6 Interferon gamma receptor 

1JRH_LH_I WI82A COR 4.529326 9878445 mAbs A6 Interferon gamma receptor 

1JRH_LH_I RI84A SUP -0.24642 9878445 mAbs A6 Interferon gamma receptor 

1JRH_LH_I KI98A RIM -0.04264 9878445 mAbs A6 Interferon gamma receptor 

1JRH_LH_I KI47A SUP 3.852295 9878445 mAbs A6 Interferon gamma receptor 

1JRH_LH_I NI48A SUP 0.634185 9878445 mAbs A6 Interferon gamma receptor 

1JRH_LH_I YI49A COR 3.656642 9878445 mAbs A6 Interferon gamma receptor 

1JRH_LH_I GI50A COR 4.377107 9878445 mAbs A6 Interferon gamma receptor 

1JRH_LH_I VI51A COR 1.476288 9878445 mAbs A6 Interferon gamma receptor 

1JRH_LH_I KI52A COR 3.789874 9878445 mAbs A6 Interferon gamma receptor 

1JRH_LH_I NI53A COR 4.709525 9878445 mAbs A6 Interferon gamma receptor 
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1JRH_LH_I SI54A COR 0.458078 9878445 mAbs A6 Interferon gamma receptor 

1JRH_LH_I EI55A RIM -0.69706 9878445 mAbs A6 Interferon gamma receptor 

1JRH_LH_I WI82A COR 4.332732 9878445 mAbs A6 Interferon gamma receptor 

1JRH_LH_I RI84A SUP 1.032008 9878445 mAbs A6 Interferon gamma receptor 

1JRH_LH_I KI98A RIM 0.667108 9878445 mAbs A6 Interferon gamma receptor 

1JTG_A_B DB49A COR 2.561484 9891008 TEM-1 beta-lactamase BLIP 
 

1JTG_A_B FB142A COR 3.379217 9891008 TEM-1 beta-lactamase BLIP 
 

1JTG_A_B DB49A COR 1.814255 10772866 TEM-1 beta-lactamase BLIP 
 

1JTG_A_B SA235A SUP 1.239083 10772866 TEM-1 beta-lactamase BLIP 
 

1JTG_A_B SA130A SUP 0.791973 10772866 TEM-1 beta-lactamase BLIP 
 

1JTG_A_B RA243A SUP 1.339371 10772866 TEM-1 beta-lactamase BLIP 
 

1JTG_A_B DB49A COR 1.791966 15618400 TEM-1 beta-lactamase BLIP 
 

1JTG_A_B KB74A SUP 3.559509 15618400 TEM-1 beta-lactamase BLIP 
 

1JTG_A_B FB142A COR 2.102992 15618400 TEM-1 beta-lactamase BLIP 
 

1JTG_A_B YB143A COR 0.38203 15618400 TEM-1 beta-lactamase BLIP 
 

1JTG_A_B EA104A COR 1.552953 15618400 TEM-1 beta-lactamase BLIP 
 

1JTG_A_B YA105A COR -0.16837 15618400 TEM-1 beta-lactamase BLIP 
 

1JTG_A_B RA243A SUP 1.265764 15618400 TEM-1 beta-lactamase BLIP 
 

1JTG_A_B SA130A SUP 0.333848 15618400 TEM-1 beta-lactamase BLIP 
 

1JTG_A_B QA99A COR 0.429602 17070843 TEM-1 beta-lactamase BLIP 
 

1JTG_A_B NA100A RIM -0.45581 17070843 TEM-1 beta-lactamase BLIP 
 

1JTG_A_B VA103A SUP 1.910744 17070843 TEM-1 beta-lactamase BLIP 
 

1JTG_A_B EA104A COR 1.767957 17070843 TEM-1 beta-lactamase BLIP 
 

1JTG_A_B PA107A COR -0.38276 17070843 TEM-1 beta-lactamase BLIP 
 

1JTG_A_B EA110A COR 4.061928 17070843 TEM-1 beta-lactamase BLIP 
 

1JTG_A_B MA129A COR 0.738821 17070843 TEM-1 beta-lactamase BLIP 
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1JTG_A_B EA168A RIM -0.07258 17070843 TEM-1 beta-lactamase BLIP 
 

1JTG_A_B VA216A COR -0.40694 17070843 TEM-1 beta-lactamase BLIP 
 

1JTG_A_B FB36A COR 3.20142 17070843 TEM-1 beta-lactamase BLIP 
 

1JTG_A_B HB41A SUP 3.2497 17070843 TEM-1 beta-lactamase BLIP 
 

1JTG_A_B DB49A COR 1.672743 17070843 TEM-1 beta-lactamase BLIP 
 

1JTG_A_B YB50A COR -0.40694 17070843 TEM-1 beta-lactamase BLIP 
 

1JTG_A_B YB53A SUP 2.077467 17070843 TEM-1 beta-lactamase BLIP 
 

1JTG_A_B SB71A SUP 0.358089 17070843 TEM-1 beta-lactamase BLIP 
 

1JTG_A_B KB74A SUP 3.823668 17070843 TEM-1 beta-lactamase BLIP 
 

1JTG_A_B WB112A COR 3.010511 17070843 TEM-1 beta-lactamase BLIP 
 

1JTG_A_B SB113A COR -0.16837 17070843 TEM-1 beta-lactamase BLIP 
 

1JTG_A_B FB142A COR 2.508271 17070843 TEM-1 beta-lactamase BLIP 
 

1JTG_A_B HB148A SUP 2.747889 17070843 TEM-1 beta-lactamase BLIP 
 

1JTG_A_B WB150A COR 4.253562 17070843 TEM-1 beta-lactamase BLIP 
 

1JTG_A_B RB160A RIM 2.222204 17070843 TEM-1 beta-lactamase BLIP 
 

1JTG_A_B WB162A COR 2.340827 17070843 TEM-1 beta-lactamase BLIP 
 

1JTG_A_B DB163A RIM -1.34093 10876236 TEM-1 beta-lactamase BLIP 
 

1KTZ_A_B RA25A RIM 1.481581 19161338 Transforming growth factor beta 3 TGF-beta type II receptor 

1KTZ_A_B RA94A RIM 2.884404 19161338 Transforming growth factor beta 3 TGF-beta type II receptor 

1KTZ_A_B LB27A COR 2.271497 16300789 Transforming growth factor beta 3 TGF-beta type II receptor 

1KTZ_A_B FB30A COR 3.426639 16300789 Transforming growth factor beta 3 TGF-beta type II receptor 

1KTZ_A_B DB32A RIM 1.96819 16300789 Transforming growth factor beta 3 TGF-beta type II receptor 

1KTZ_A_B SB49A RIM 0.773119 16300789 Transforming growth factor beta 3 TGF-beta type II receptor 

1KTZ_A_B IB50A COR 2.343055 16300789 Transforming growth factor beta 3 TGF-beta type II receptor 

1KTZ_A_B TB51A COR 1.96012 16300789 Transforming growth factor beta 3 TGF-beta type II receptor 

1KTZ_A_B SB52A SUP 0.663091 16300789 Transforming growth factor beta 3 TGF-beta type II receptor 
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1KTZ_A_B IB53A COR 1.816812 16300789 Transforming growth factor beta 3 TGF-beta type II receptor 

1KTZ_A_B EB55A RIM 1.663096 16300789 Transforming growth factor beta 3 TGF-beta type II receptor 

1KTZ_A_B VB77A SUP 0.86157 16300789 Transforming growth factor beta 3 TGF-beta type II receptor 

1KTZ_A_B DB118A RIM 1.261316 16300789 Transforming growth factor beta 3 TGF-beta type II receptor 

1KTZ_A_B EB119A COR 1.940852 16300789 Transforming growth factor beta 3 TGF-beta type II receptor 

1LFD_A_B RA20A RIM 1.136044 15197281 RalGSD-RBD H-Ras1 
 

1LFD_A_B KA32A COR 1.326342 15197281 RalGSD-RBD H-Ras1 
 

1LFD_A_B DA51A RIM -0.57906 15197281 RalGSD-RBD H-Ras1 
 

1LFD_A_B KA52A COR 1.179308 15197281 RalGSD-RBD H-Ras1 
 

1LFD_A_B DA56A RIM -0.27968 15197281 RalGSD-RBD H-Ras1 
 

1NMB_N_LH YH99A RIM 2.141579 9579662 Subtype N9 neuraminidase Antibody NC10 

1PPF_E_I LI18A COR 1.071087 9047374 Human leukocyte elastase Turkey ovomucoid third domain 

1PPF_E_I TI17A COR 3.484821 11171964 Human leukocyte elastase Turkey ovomucoid third domain 

1PPF_E_I EI19A COR 1.203289 11171964 Human leukocyte elastase Turkey ovomucoid third domain 

1PPF_E_I YI20A COR 3.210383 11171964 Human leukocyte elastase Turkey ovomucoid third domain 

1PPF_E_I RI21A RIM 0.208053 11171964 Human leukocyte elastase Turkey ovomucoid third domain 

1PPF_E_I PI14A RIM -0.12413 11171964 Human leukocyte elastase Turkey ovomucoid third domain 

1PPF_E_I KI13A RIM 0.756479 11171964 Human leukocyte elastase Turkey ovomucoid third domain 

1PPF_E_I GI32A COR 0.235382 11171964 Human leukocyte elastase Turkey ovomucoid third domain 

1PPF_E_I NI36A RIM -1.64552 11171964 Human leukocyte elastase Turkey ovomucoid third domain 

1PPF_E_I GI32A COR 0.279808 

Stephen 
Ming-teh Lu, 
PhD Thesis, 
Purdue 
University, 
2000 Human leukocyte elastase Turkey ovomucoid third domain 

1PPF_E_I TI17A COR 2.894247 

Stephen 
Ming-teh Lu, 
PhD Thesis, 
Purdue Human leukocyte elastase Turkey ovomucoid third domain 
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 University, 

2000 

1PPF_E_I LI18A COR 0.962834 

Stephen 
Ming-teh Lu, 
PhD Thesis, 
Purdue 
University, 
2000 Human leukocyte elastase Turkey ovomucoid third domain 

1R0R_E_I LI18A COR 0.314609 9047374 Subtilisin Carlsberg Turkey ovomucoid third domain 

1R0R_E_I TI17A COR 1.173231 11171964 Subtilisin Carlsberg Turkey ovomucoid third domain 

1R0R_E_I EI19A COR 2.089436 11171964 Subtilisin Carlsberg Turkey ovomucoid third domain 

1R0R_E_I YI20A COR 5.474549 11171964 Subtilisin Carlsberg Turkey ovomucoid third domain 

1R0R_E_I RI21A RIM -0.09605 11171964 Subtilisin Carlsberg Turkey ovomucoid third domain 

1R0R_E_I PI14A RIM -0.63891 11171964 Subtilisin Carlsberg Turkey ovomucoid third domain 

1R0R_E_I KI13A RIM -0.61 11171964 Subtilisin Carlsberg Turkey ovomucoid third domain 

1R0R_E_I GI32A SUP 1.298157 11171964 Subtilisin Carlsberg Turkey ovomucoid third domain 

1R0R_E_I NI36A RIM -0.03315 11171964 Subtilisin Carlsberg Turkey ovomucoid third domain 

1R0R_E_I GI32A SUP 1.331018 
 

Subtilisin Carlsberg Turkey ovomucoid third domain 

1R0R_E_I TI17A COR 0.787094 
 

Subtilisin Carlsberg Turkey ovomucoid third domain 

1R0R_E_I LI18A COR 0.525685 
 

Subtilisin Carlsberg Turkey ovomucoid third domain 

1REW_AB_C QC86A COR 2.658561 15064755 Bone morphogenetic protein-2 BMPR-IA receptor 

1S1Q_A_B VA43A COR 0.670753 12006492 
Tumor susceptibility gene 101 
protein Ubiquitin 

 
1S1Q_A_B FA44A RIM 0.199344 12006492 

Tumor susceptibility gene 101 
protein Ubiquitin 

 
1S1Q_A_B NA45A RIM 1.231969 12006492 

Tumor susceptibility gene 101 
protein Ubiquitin 

 
1S1Q_A_B DA46A RIM 0.965521 12006492 

Tumor susceptibility gene 101 
protein Ubiquitin 

 
1S1Q_A_B WA75A SUP 0.280782 12006492 

Tumor susceptibility gene 101 
protein Ubiquitin 

 
1S1Q_A_B FA88A SUP 0.77525 12006492 

Tumor susceptibility gene 101 
protein Ubiquitin 

 
1SMF_E_I EI16A RIM 1.012809 20656696 Bovine trypsin Mung bean inhibitor peptide 
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1SMF_E_I SI12A COR 1.899972 20656696 Bovine trypsin Mung bean inhibitor peptide 

1SMF_E_I TI10A COR 2.046052 20656696 Bovine trypsin Mung bean inhibitor peptide 

1SMF_E_I II13A COR 3.511419 20656696 Bovine trypsin Mung bean inhibitor peptide 

1TM1_E_I YI61A COR 2.17953 10065709 Subtilisin BPN Chymotrypsin inhibitor 2 

1TM1_E_I RI65A SUP 3.07986 10065709 Subtilisin BPN Chymotrypsin inhibitor 2 

1TM1_E_I RI67A SUP 2.923439 10065709 Subtilisin BPN Chymotrypsin inhibitor 2 

1TM1_E_I TI58A COR 2.572396 7947796 Subtilisin BPN Chymotrypsin inhibitor 2 

1TM1_E_I EI60A COR 2.924655 7947796 Subtilisin BPN Chymotrypsin inhibitor 2 

1TM1_E_I TI58A COR 2.728342 15865427 Subtilisin BPN Chymotrypsin inhibitor 2 

1TM1_E_I EI60A COR 3.054218 15865427 Subtilisin BPN Chymotrypsin inhibitor 2 

1TM1_E_I RI62A RIM 1.256154 15865427 Subtilisin BPN Chymotrypsin inhibitor 2 

1TM1_E_I RI65A SUP 3.75601 15865427 Subtilisin BPN Chymotrypsin inhibitor 2 

1TM1_E_I RI67A SUP 3.098124 15865427 Subtilisin BPN Chymotrypsin inhibitor 2 

1TM1_E_I MI59A COR 1.027668 15504027 Subtilisin BPN Chymotrypsin inhibitor 2 

1TM1_E_I YI61A COR 2.981582 15504027 Subtilisin BPN Chymotrypsin inhibitor 2 

1UUZ_A_D HA62A RIM 1.774828 17405861 Inhibitor of vertebrate lysozyme HEW Lysozyme 

1UUZ_A_D CA64A COR 0.650875 17405861 Inhibitor of vertebrate lysozyme HEW Lysozyme 

1VFB_AB_C HA30A COR 0.845261 8703938 IgG1-kappa D1.3 Fv HEW Lysozyme 

1VFB_AB_C YA32A COR 1.339986 8703938 IgG1-kappa D1.3 Fv HEW Lysozyme 

1VFB_AB_C YA49A COR 0.797899 8703938 IgG1-kappa D1.3 Fv HEW Lysozyme 

1VFB_AB_C YA50A COR 0.388012 8703938 IgG1-kappa D1.3 Fv HEW Lysozyme 

1VFB_AB_C WA92A COR 2.728342 8703938 IgG1-kappa D1.3 Fv HEW Lysozyme 

1VFB_AB_C SA93A RIM 0.343278 8703938 IgG1-kappa D1.3 Fv HEW Lysozyme 

1VFB_AB_C TB30A RIM -0.05587 8703938 IgG1-kappa D1.3 Fv HEW Lysozyme 

1VFB_AB_C YB32A COR 0.460352 8703938 IgG1-kappa D1.3 Fv HEW Lysozyme 

1VFB_AB_C WB52A COR 0.364468 8703938 IgG1-kappa D1.3 Fv HEW Lysozyme 
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1VFB_AB_C DB54A RIM 0.638906 8703938 IgG1-kappa D1.3 Fv HEW Lysozyme 

1VFB_AB_C DB58A RIM -0.2071 8703938 IgG1-kappa D1.3 Fv HEW Lysozyme 

1VFB_AB_C EB98A SUP 1.157075 8703938 IgG1-kappa D1.3 Fv HEW Lysozyme 

1VFB_AB_C RB99A RIM -0.09978 8703938 IgG1-kappa D1.3 Fv HEW Lysozyme 

1VFB_AB_C DB100A COR 3.07162 8703938 IgG1-kappa D1.3 Fv HEW Lysozyme 

1VFB_AB_C DC18A COR 0.340283 9609690 IgG1-kappa D1.3 Fv HEW Lysozyme 

1VFB_AB_C NC19A COR 0.396264 9609690 IgG1-kappa D1.3 Fv HEW Lysozyme 

1VFB_AB_C YC23A SUP 0.410656 9609690 IgG1-kappa D1.3 Fv HEW Lysozyme 

1VFB_AB_C SC24A COR 0.851346 9609690 IgG1-kappa D1.3 Fv HEW Lysozyme 

1VFB_AB_C KC116A COR 0.71377 9609690 IgG1-kappa D1.3 Fv HEW Lysozyme 

1VFB_AB_C TC118A COR 0.765438 9609690 IgG1-kappa D1.3 Fv HEW Lysozyme 

1VFB_AB_C DC119A RIM 0.953515 9609690 IgG1-kappa D1.3 Fv HEW Lysozyme 

1VFB_AB_C VC120A SUP 0.91736 9609690 IgG1-kappa D1.3 Fv HEW Lysozyme 

1VFB_AB_C QC121A COR 2.878286 9609690 IgG1-kappa D1.3 Fv HEW Lysozyme 

1VFB_AB_C IC124A SUP 1.231969 9609690 IgG1-kappa D1.3 Fv HEW Lysozyme 

1VFB_AB_C RC125A RIM 1.837722 9609690 IgG1-kappa D1.3 Fv HEW Lysozyme 

1VFB_AB_C LC129A RIM 0.171622 9609690 IgG1-kappa D1.3 Fv HEW Lysozyme 

1VFB_AB_C YA32A COR 1.717649 9609690 IgG1-kappa D1.3 Fv HEW Lysozyme 

1VFB_AB_C YA50A COR 0.524568 9609690 IgG1-kappa D1.3 Fv HEW Lysozyme 

1VFB_AB_C WA92A COR 3.350074 9609690 IgG1-kappa D1.3 Fv HEW Lysozyme 

1VFB_AB_C YB32A COR 1.123715 9609690 IgG1-kappa D1.3 Fv HEW Lysozyme 

1VFB_AB_C WB52A COR 0.91736 9609690 IgG1-kappa D1.3 Fv HEW Lysozyme 

1VFB_AB_C DB54A RIM 0.992047 9609690 IgG1-kappa D1.3 Fv HEW Lysozyme 

1VFB_AB_C DB100A COR 2.941075 9609690 IgG1-kappa D1.3 Fv HEW Lysozyme 

1XD3_A_B KB6A RIM 1.344086 10518943 UCH-L3 Ubiquitin 
 

1XD3_A_B KB27A SUP -0.06242 10518943 UCH-L3 Ubiquitin 
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1XD3_A_B DB39A RIM -0.41066 10518943 UCH-L3 Ubiquitin 
 

1XD3_A_B LB8A COR 2.676792 10518943 UCH-L3 Ubiquitin 
 

1XD3_A_B IB44A SUP 0.265981 10518943 UCH-L3 Ubiquitin 
 

1Z7X_W_X YW434A COR 5.955931 9050852 Ribonuclease inhibitor RNase A 
 

1Z7X_W_X DW435A COR 3.662431 9050852 Ribonuclease inhibitor RNase A 
 

1Z7X_W_X YW437A COR 2.624135 9050852 Ribonuclease inhibitor RNase A 
 

1Z7X_W_X RW457A RIM 0.848247 10970748 Ribonuclease inhibitor RNase A 
 

1Z7X_W_X IW459A SUP 0.337421 10970748 Ribonuclease inhibitor RNase A 
 

1Z7X_W_X EW206A SUP 1.018685 10970748 Ribonuclease inhibitor RNase A 
 

1Z7X_W_X WW261A COR 1.335954 10970748 Ribonuclease inhibitor RNase A 
 

1Z7X_W_X WW263A SUP 2.212418 10970748 Ribonuclease inhibitor RNase A 
 

1Z7X_W_X EW287A RIM 1.321325 10970748 Ribonuclease inhibitor RNase A 
 

1Z7X_W_X SW289A SUP 0.814384 10970748 Ribonuclease inhibitor RNase A 
 

1Z7X_W_X WW318A SUP 0.99347 10970748 Ribonuclease inhibitor RNase A 
 

1Z7X_W_X KW320A COR 1.321325 10970748 Ribonuclease inhibitor RNase A 
 

1Z7X_W_X EW344A SUP 1.561543 10970748 Ribonuclease inhibitor RNase A 
 

1Z7X_W_X WW375A COR 1.66956 10970748 Ribonuclease inhibitor RNase A 
 

1Z7X_W_X EW401A RIM 1.306325 10970748 Ribonuclease inhibitor RNase A 
 

2B42_A_B HA374A COR 1.638458 16279951 TAXI-I B. subtilis endoxylanase 

2BTF_A_P FP59A COR 1.595741 9788869 Bovine beta-actin Bovine profilin 

2BTF_A_P KP125A COR 0.460056 9788869 Bovine beta-actin Bovine profilin 

2FTL_E_I GI12A COR 4.392778 8784199 Bovine trypsin BPTI 
 

2FTL_E_I KI15A COR 10.1592 8784199 Bovine trypsin BPTI 
 

2FTL_E_I II18A COR 5.021843 8784199 Bovine trypsin BPTI 
 

2FTL_E_I GI36A SUP 2.21439 8784199 Bovine trypsin BPTI 
 

2FTL_E_I KI15A COR 10.63893 10339415 Bovine trypsin BPTI 
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2G2U_A_B EB31A RIM 0.650875 15284234 SHV-1 beta-lactamase BLIP 
 

2G2U_A_B SB35A RIM -0.9509 15284234 SHV-1 beta-lactamase BLIP 
 

2G2U_A_B FB36A COR 2.763951 15284234 SHV-1 beta-lactamase BLIP 
 

2G2U_A_B SB39A SUP -0.95614 15284234 SHV-1 beta-lactamase BLIP 
 

2G2U_A_B HB41A SUP 1.717049 15284234 SHV-1 beta-lactamase BLIP 
 

2G2U_A_B GB48A COR -0.4266 15284234 SHV-1 beta-lactamase BLIP 
 

2G2U_A_B YB50A COR -2.07572 15284234 SHV-1 beta-lactamase BLIP 
 

2G2U_A_B YB51A COR -0.62875 15284234 SHV-1 beta-lactamase BLIP 
 

2G2U_A_B YB53A SUP 2.301744 15284234 SHV-1 beta-lactamase BLIP 
 

2G2U_A_B SB71A SUP -0.51221 15284234 SHV-1 beta-lactamase BLIP 
 

2G2U_A_B EB73A COR -1.97944 15284234 SHV-1 beta-lactamase BLIP 
 

2G2U_A_B KB74A SUP -0.21734 15284234 SHV-1 beta-lactamase BLIP 
 

2G2U_A_B WB112A COR 0.958735 15284234 SHV-1 beta-lactamase BLIP 
 

2G2U_A_B SB113A SUP -0.61231 15284234 SHV-1 beta-lactamase BLIP 
 

2G2U_A_B GB141A SUP -0.41381 15284234 SHV-1 beta-lactamase BLIP 
 

2G2U_A_B FB142A COR 0.275827 15284234 SHV-1 beta-lactamase BLIP 
 

2G2U_A_B YB143A COR -1.84724 15284234 SHV-1 beta-lactamase BLIP 
 

2G2U_A_B RB144A RIM -0.34239 15284234 SHV-1 beta-lactamase BLIP 
 

2G2U_A_B HB148A SUP 1.118951 15284234 SHV-1 beta-lactamase BLIP 
 

2G2U_A_B WB150A COR 1.785222 15284234 SHV-1 beta-lactamase BLIP 
 

2G2U_A_B RB160A RIM 0.669794 15284234 SHV-1 beta-lactamase BLIP 
 

2G2U_A_B WB162A COR 0.53121 15284234 SHV-1 beta-lactamase BLIP 
 

2GOX_A_B RB131A COR 2.24674 18687868 Complement C3d Fibrinogen-binding protein Efb-C 

2GOX_A_B NB138A COR 1.56953 18687868 Complement C3d Fibrinogen-binding protein Efb-C 

2GOX_A_B RB131A COR 1.519609 18687868 Complement C3d Fibrinogen-binding protein Efb-C 

2GOX_A_B NB138A COR 1.333782 18687868 Complement C3d Fibrinogen-binding protein Efb-C 
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2HRK_A_B KA159A RIM 0.953515 17976650 GluRS Arc1p 
 

2I9B_A_E RE137A RIM -0.28764 10864923 
Urokinase-type plasminogen 
activator 

Urokinase plasminogen activator 
receptor 

2I9B_A_E KE139A RIM 0.674278 10864923 
Urokinase-type plasminogen 
activator 

Urokinase plasminogen activator 
receptor 

2J0T_A_D VD4A RIM 0 12515831 MMP1 Interstitial collagenase Metalloproteinase inhibitor 1 

2J0T_A_D SD68A COR 2.106373 12515831 MMP1 Interstitial collagenase Metalloproteinase inhibitor 1 

2J0T_A_D TD2A COR 4.289029 9268350 MMP1 Interstitial collagenase Metalloproteinase inhibitor 1 

2J0T_A_D MD66A RIM 1.642626 9268350 MMP1 Interstitial collagenase Metalloproteinase inhibitor 1 

2J1K_C_T RC384A COR 0.764846 16923808 CAV-2 CAR D1 domain 

2JEL_LH_P TP62A SUP 0 1711212 Jel42 antibody Histadine-containing protein HPr 

2JEL_LH_P EP68A RIM 0.410656 1711212 Jel42 antibody Histadine-containing protein HPr 

2JEL_LH_P EP70A SUP 2.728342 1711212 Jel42 antibody Histadine-containing protein HPr 

2JEL_LH_P HP76A RIM -0.41066 1711212 Jel42 antibody Histadine-containing protein HPr 

2O3B_A_B EB24A COR 5.474915 17138564 NucA nuclease NuiA nuclease inhibitor 

2O3B_A_B QB74A RIM 3.232964 17138564 NucA nuclease NuiA nuclease inhibitor 

2O3B_A_B WB76A COR 4.073704 17138564 NucA nuclease NuiA nuclease inhibitor 

2PCC_A_B DA34A COR -0.89705 11148036 Cytochrome C peroxidase Cytochrome C 

2PCC_A_B VA197A COR 2.102682 11148036 Cytochrome C peroxidase Cytochrome C 

2PCC_A_B EA290A RIM 6.202555 11148036 Cytochrome C peroxidase Cytochrome C 

2PCC_A_B KB87A RIM 0.901871 11148036 Cytochrome C peroxidase Cytochrome C 

2PCC_A_B KB72A RIM 0.303669 11148036 Cytochrome C peroxidase Cytochrome C 

2SIC_E_I MI73A COR 0.217859 8276767 Subtilisin BPN Streptomyces subtilisin inhibitor 

2VLJ_ABC_DE DE32A COR 1.573201 18275829 HL-A2-flu JM22 
 

2VLJ_ABC_DE NE55A RIM 1.129622 18275829 HL-A2-flu JM22 
 

2VLJ_ABC_DE DE56A COR 0.132202 18275829 HL-A2-flu JM22 
 

2VLJ_ABC_DE QE58A COR 0.495437 18275829 HL-A2-flu JM22 
 

2VLJ_ABC_DE SE99A SUP -0.03521 18275829 HL-A2-flu JM22 
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2VLJ_ABC_DE YE101A COR 0.232574 18275829 HL-A2-flu JM22 
 

2VLJ_ABC_DE SD31A COR 0.627639 18275829 HL-A2-flu JM22 
 

2VLJ_ABC_DE SD32A COR 1.038295 18275829 HL-A2-flu JM22 
 

2VLJ_ABC_DE QD34A SUP 0.975874 18275829 HL-A2-flu JM22 
 

2WPT_A_B EA30A RIM 1.733953 9718299 Colicin E2 immunity protein Colicin E9 DNase 

2WPT_A_B DA33A SUP -0.1322 9718299 Colicin E2 immunity protein Colicin E9 DNase 

2WPT_A_B NA34A COR -0.37987 9718299 Colicin E2 immunity protein Colicin E9 DNase 

2WPT_A_B VA37A SUP 3.8093 9718299 Colicin E2 immunity protein Colicin E9 DNase 

2WPT_A_B RA38A RIM -1.11093 9718299 Colicin E2 immunity protein Colicin E9 DNase 

2WPT_A_B EA41A COR 4.50317 9718299 Colicin E2 immunity protein Colicin E9 DNase 

2WPT_A_B SA50A COR 2.425703 9718299 Colicin E2 immunity protein Colicin E9 DNase 

2WPT_A_B PA56A SUP 2.927686 9718299 Colicin E2 immunity protein Colicin E9 DNase 

2WPT_A_B RB54A COR 1.134343 18471830 Colicin E2 immunity protein Colicin E9 DNase 

2WPT_A_B NB72A COR 0.917825 18471830 Colicin E2 immunity protein Colicin E9 DNase 

2WPT_A_B SB74A COR -0.84931 18471830 Colicin E2 immunity protein Colicin E9 DNase 

2WPT_A_B NB75A SUP 1.237639 18471830 Colicin E2 immunity protein Colicin E9 DNase 

2WPT_A_B SB77A COR -0.61164 18471830 Colicin E2 immunity protein Colicin E9 DNase 

2WPT_A_B SB78A SUP -0.14954 18471830 Colicin E2 immunity protein Colicin E9 DNase 

2WPT_A_B SB84A SUP -0.09361 18471830 Colicin E2 immunity protein Colicin E9 DNase 

2WPT_A_B FB86A COR 1.170181 18471830 Colicin E2 immunity protein Colicin E9 DNase 

2WPT_A_B TB87A SUP 0.52622 18471830 Colicin E2 immunity protein Colicin E9 DNase 

2WPT_A_B QB92A SUP 0.900139 18471830 Colicin E2 immunity protein Colicin E9 DNase 

2WPT_A_B KB97A COR 0.497408 18471830 Colicin E2 immunity protein Colicin E9 DNase 

2WPT_A_B VB98A SUP 0.119302 18471830 Colicin E2 immunity protein Colicin E9 DNase 

2WPT_A_B RB54A COR 0.61 18471830 Colicin E2 immunity protein Colicin E9 DNase 

2WPT_A_B NB72A COR 0.48481 18471830 Colicin E2 immunity protein Colicin E9 DNase 
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2WPT_A_B SB74A COR 0.581094 18471830 Colicin E2 immunity protein Colicin E9 DNase 

2WPT_A_B NB75A SUP 1.265559 18471830 Colicin E2 immunity protein Colicin E9 DNase 

2WPT_A_B SB77A COR -0.30264 18471830 Colicin E2 immunity protein Colicin E9 DNase 

2WPT_A_B SB78A SUP -0.04087 18471830 Colicin E2 immunity protein Colicin E9 DNase 

2WPT_A_B SB84A SUP -0.04087 18471830 Colicin E2 immunity protein Colicin E9 DNase 

2WPT_A_B FB86A COR 0.945562 18471830 Colicin E2 immunity protein Colicin E9 DNase 

2WPT_A_B TB87A SUP 0.226905 18471830 Colicin E2 immunity protein Colicin E9 DNase 

2WPT_A_B QB92A SUP -0.1322 18471830 Colicin E2 immunity protein Colicin E9 DNase 

2WPT_A_B KB97A COR 0.801228 18471830 Colicin E2 immunity protein Colicin E9 DNase 

2WPT_A_B VB98A SUP 0.410656 18471830 Colicin E2 immunity protein Colicin E9 DNase 

3BK3_A_C LC1A RIM 0 18477456 Bone morphogenetic protein-2 Crossveinless 2 

3BK3_A_C IC2A RIM 1.038654 18477456 Bone morphogenetic protein-2 Crossveinless 2 

3BK3_A_C IC18A COR 0.486392 18477456 Bone morphogenetic protein-2 Crossveinless 2 

3BK3_A_C IC21A COR 1.307704 18477456 Bone morphogenetic protein-2 Crossveinless 2 

3BK3_A_C IC27A COR 1.261516 18477456 Bone morphogenetic protein-2 Crossveinless 2 

3BN9_B_CD IB41A COR 0 17475279 Membrane-type serine protease 1 E2 Fab 
 

3BN9_B_CD IB60A COR 0.835589 17475279 Membrane-type serine protease 1 E2 Fab 
 

3BN9_B_CD DB60aA RIM 0.422577 17475279 Membrane-type serine protease 1 E2 Fab 
 

3BN9_B_CD DB60bA RIM 0.311247 17475279 Membrane-type serine protease 1 E2 Fab 
 

3BN9_B_CD RB60cA RIM -0.04502 17475279 Membrane-type serine protease 1 E2 Fab 
 

3BN9_B_CD FB94A SUP 0.639528 17475279 Membrane-type serine protease 1 E2 Fab 
 

3BN9_B_CD NB95A COR 0.773691 17475279 Membrane-type serine protease 1 E2 Fab 
 

3BN9_B_CD TB98A COR 1.13256 17475279 Membrane-type serine protease 1 E2 Fab 
 

3BN9_B_CD HB143A COR 0.085101 17475279 Membrane-type serine protease 1 E2 Fab 
 

3BN9_B_CD YB146A RIM 1.085138 17475279 Membrane-type serine protease 1 E2 Fab 
 

3BN9_B_CD QB174A RIM -0.03471 17475279 Membrane-type serine protease 1 E2 Fab 
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3BN9_B_CD QB175A COR 2.510108 17475279 Membrane-type serine protease 1 E2 Fab 
 

3BN9_B_CD DB217A COR 0.566465 17475279 Membrane-type serine protease 1 E2 Fab 
 

3BN9_B_CD QB221aA RIM 0.706027 17475279 Membrane-type serine protease 1 E2 Fab 
 

3BN9_B_CD KB224A COR 0.78532 17475279 Membrane-type serine protease 1 E2 Fab 
 

3BP8_A_C FA136A SUP 0.708987 18319344 Mlc transcription regulator PTS glucose-specific enzyme EIICB 

3HFM_HL_Y YY20A COR 4.878217 10338006 HyHEL-10 HEW Lysozyme 

3HFM_HL_Y NL32A SUP 5.109633 10338006 HyHEL-10 HEW Lysozyme 

3HFM_HL_Y KY96A SUP 6.991293 10338006 HyHEL-10 HEW Lysozyme 

3HFM_HL_Y NL31A COR 5.216466 10338006 HyHEL-10 HEW Lysozyme 

3HFM_HL_Y YL50A COR 4.559636 10338006 HyHEL-10 HEW Lysozyme 

3HFM_HL_Y KY97A COR 6.169981 10338006 HyHEL-10 HEW Lysozyme 

3HFM_HL_Y YH33A COR 6.037779 10338006 HyHEL-10 HEW Lysozyme 

3HFM_HL_Y WH98A COR 5.513151 10338006 HyHEL-10 HEW Lysozyme 

3HFM_HL_Y DH32A COR 1.899077 10338006 HyHEL-10 HEW Lysozyme 

3HFM_HL_Y RY21A COR 1.027668 10338006 HyHEL-10 HEW Lysozyme 

3HFM_HL_Y SH31A COR 0.170438 10338006 HyHEL-10 HEW Lysozyme 

3HFM_HL_Y YH50A SUP 7.322839 10338006 HyHEL-10 HEW Lysozyme 

3HFM_HL_Y QL53A COR 0.953515 10338006 HyHEL-10 HEW Lysozyme 

3HFM_HL_Y YL96A COR 2.708257 10338006 HyHEL-10 HEW Lysozyme 

3HFM_HL_Y YH53A COR 3.198175 7629185 HyHEL-10 HEW Lysozyme 

3HFM_HL_Y YH58A COR 1.649124 7629185 HyHEL-10 HEW Lysozyme 

3HFM_HL_Y DY101A COR 1.208733 7683415 HyHEL-10 HEW Lysozyme 

3HFM_HL_Y RY21A COR 0.821313 9761467 HyHEL-10 HEW Lysozyme 

3HFM_HL_Y KY97A COR 5.558082 9761467 HyHEL-10 HEW Lysozyme 

3HFM_HL_Y DY101A COR 1.52264 9761467 HyHEL-10 HEW Lysozyme 

3HFM_HL_Y HY15A SUP -0.44552 9761468 HyHEL-10 HEW Lysozyme 
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3HFM_HL_Y YY20A COR 4.273437 9761468 HyHEL-10 HEW Lysozyme 

3HFM_HL_Y RY21A COR 0.862188 9761468 HyHEL-10 HEW Lysozyme 

3HFM_HL_Y WY63A SUP 0.31933 9761468 HyHEL-10 HEW Lysozyme 

3HFM_HL_Y RY73A RIM -0.33155 9761468 HyHEL-10 HEW Lysozyme 

3HFM_HL_Y LY75A COR 0.704771 9761468 HyHEL-10 HEW Lysozyme 

3HFM_HL_Y TY89A RIM 0 9761468 HyHEL-10 HEW Lysozyme 

3HFM_HL_Y NY93A COR 0.211313 9761468 HyHEL-10 HEW Lysozyme 

3HFM_HL_Y IY98A SUP 0 9761468 HyHEL-10 HEW Lysozyme 

3HFM_HL_Y SY100A COR 0.267779 9761468 HyHEL-10 HEW Lysozyme 

3HFM_HL_Y DY101A COR 0.953515 9761468 HyHEL-10 HEW Lysozyme 

3NPS_A_BC IA41A COR 0.64183 17475279 Membrane-type serine protease 1 S4 Fab 
 

3NPS_A_BC DA60aA RIM 0.340139 17475279 Membrane-type serine protease 1 S4 Fab 
 

3NPS_A_BC DA60bA RIM 1.067948 17475279 Membrane-type serine protease 1 S4 Fab 
 

3NPS_A_BC RA60cA RIM -1.06322 17475279 Membrane-type serine protease 1 S4 Fab 
 

3NPS_A_BC DA96A RIM 1.507709 17475279 Membrane-type serine protease 1 S4 Fab 
 

3NPS_A_BC FA97A COR 0.463747 17475279 Membrane-type serine protease 1 S4 Fab 
 

3NPS_A_BC TA98A RIM 0.724136 17475279 Membrane-type serine protease 1 S4 Fab 
 

3NPS_A_BC HA143A COR 1.875931 17475279 Membrane-type serine protease 1 S4 Fab 
 

3NPS_A_BC YA146A COR 1.775668 17475279 Membrane-type serine protease 1 S4 Fab 
 

3NPS_A_BC TA150A RIM 0.175048 17475279 Membrane-type serine protease 1 S4 Fab 
 

3NPS_A_BC QA174A RIM -0.05925 17475279 Membrane-type serine protease 1 S4 Fab 
 

3NPS_A_BC QA175A COR 0.741239 17475279 Membrane-type serine protease 1 S4 Fab 
 

3NPS_A_BC QA221aA COR -0.04094 17475279 Membrane-type serine protease 1 S4 Fab 
 

3SGB_E_I LI18A COR 2.98916 9047374 Streptomyces griseus proteinase B Turkey ovomucoid third domain 

3SGB_E_I TI17A COR 3.591963 11171964 Streptomyces griseus proteinase B Turkey ovomucoid third domain 

3SGB_E_I EI19A RIM 1.019236 11171964 Streptomyces griseus proteinase B Turkey ovomucoid third domain 
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3SGB_E_I YI20A COR 1.943608 11171964 Streptomyces griseus proteinase B Turkey ovomucoid third domain 

3SGB_E_I RI21A RIM 0.053752 11171964 Streptomyces griseus proteinase B Turkey ovomucoid third domain 

3SGB_E_I PI14A RIM -0.1895 11171964 Streptomyces griseus proteinase B Turkey ovomucoid third domain 

3SGB_E_I KI13A COR -2.57214 11171964 Streptomyces griseus proteinase B Turkey ovomucoid third domain 

3SGB_E_I GI32A COR 1.222797 11171964 Streptomyces griseus proteinase B Turkey ovomucoid third domain 

3SGB_E_I NI36A RIM 0.331072 11171964 Streptomyces griseus proteinase B Turkey ovomucoid third domain 

3SGB_E_I GI32A COR 1.364171 
 

Streptomyces griseus proteinase B Turkey ovomucoid third domain 

3SGB_E_I TI17A COR 3.229379 
 

Streptomyces griseus proteinase B Turkey ovomucoid third domain 

3SGB_E_I LI18A COR 2.956299 
 

Streptomyces griseus proteinase B Turkey ovomucoid third domain 

4CPA_A_I VI38A COR 2.325533 8063780 Carboxypeptidase A Potato carboxypeptidase inhibitor 
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