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Abstract. The applications of Total Variation (TV) algorithms for Electrical Impedance 
Tomography (EIT) have been investigated. The use of the TV regularisation technique helps to 
preserve discontinuities in reconstruction, such as the boundaries of perturbations and sharp 

changes in conductivity, which are unintentionally smoothed by traditional 
2

l norm 

regularisation. However, the non-differentiability of TV regularisation has led to the use of 
different algorithms. Recent advances in TV algorithms such as Primal Dual Interior Point 
Method (PDIPM), Linearised Alternating Direction Method of Multipliers (LADMM) and 
Spilt Bregman (SB) method have all been demonstrated successfully for EIT applications, but 
no direct comparison of the techniques has been made.  Their noise performance, spatial 
resolution and convergence rate applied to time difference EIT were studied in simulations on 
2D cylindrical meshes with different noise levels, 2D cylindrical tank and 3D anatomically 
head-shaped phantoms containing vegetable material with complex conductivity. LADMM had 
the fastest calculation speed but worst resolution due to the exclusion of the second-derivative; 
PDIPM reconstructed the sharpest change in conductivity but with lower contrast; SB had a 
faster convergence rate than PDIPM and the lowest image error. 
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1.  Introduction 
Electrical Impedance Tomography (EIT) is a method for estimating the internal electrical conductivity 
distribution of an object by injecting current and measuring voltages using electrodes on the surface 
(Holder 2004). EIT usually entails the estimation of a large number of discretised conductivity values 
from a limited number of independent boundary voltage measurements. Therefore, regularisation 
techniques are necessary to obtain a unique solution from the severely ill-posed EIT problem 
(Lionheart 2003). These techniques usually introduce prior information such as the differentiable of 
function (Vauhkonen et al 1998), the statistical distribution of different tissue types (Malone et al 
2014) or other known anatomical features, to the inverse problem, and the weight of prior knowledge 
on the estimated solution can be adjusted by regularisation parameters. 

1.1.  Background 



 
 
 
 
 
 

1.1.1.  Total variation regularisation technique.  Total Variation (TV) is a popular regularisation 
method which has been applied to a range of imaging modalities (Block et al 2007, Chambolle and 
Lions 1997, Werlberger et al 2010,) and which can preserve sharp discontinuities in images while 
removing noise and other unwanted details (Rudin et al 1992). Borsic et al (2010a) demonstrated its 
potential for EIT image reconstruction, which reconstructed sharp boundaries by using both simulated 
and in vivo physiological data. The TV’s ability to preserve edges in reconstructions is due to its use of 

1l norm penalty term, which is discontinuous and therefore not differentiable at every point. 

Consequently, simple gradient-based methods cannot be applied for solving TV regularised problems.   

A number of algorithms have been designed in recent years to overcome the non-differentiability 
of TV and solve it efficiently. For application in EIT, a TV algorithm based on Primal and Dual 
Interior Point Method (PDIPM) was proposed and was able to reconstruct images using in vivo data. 
PDIPM converts the non-differentiable optimisation problem to the approximated differentiable 
formulations by introducing a smoothness parameter and a dual variable using the Cauchy-Schwartz 
inequality (Borsic et al 2010). The Split Bregman (SB) algorithm was proposed (Goldstein and Osher 
2009) with generality for solving 1l norm regularised problems, based on the concept of Bregman 

distance from functional analysis. This algorithm has few parameters to adjust and has been shown to 
have a high convergence rate. Recently, Jung and Yun (2014) presented a first-order TV method, 
Linearised Alternating Direction Method of Multipliers (LADMM), which improves calculation speed 
by not computing the second-order derivative, known as the Hessian matrix.  

1.1.2.  Motivation In theory, all TV algorithms should produce the same solution as they are 
processing the same question (Chambolle 2004, Chambolle and Pock 2010, Wu and Tai 2010). 
Nevertheless, in practice, the performance of the different TV algorithms varies widely for specific 
applications because they have different approximations and adjusting parameters. Furthermore, even 
though it has been proven that the SB method is equivalent to the Alternating Direction Method of 
Multipliers (ADMM) (Wu and Tai 2010), which is the prototype of LADMM, but with the second-
order derivative included, it is worthwhile comparing LADMM and SB, as the exclusion of the 
second-order derivative can change the performance of algorithms dramatically.  

The above algorithms all hold potential for reconstructing EIT images, with successful simulated 
and experimental results, but so far there has been no systematic comparison of these TV algorithms, 
particularly for applications on large-scale models with millions of elements, commonly used for EIT 
of brain function. Consequently, a comparison study of these TV algorithms would be useful to aid 
their applications in EIT. 

1.2.  Purpose 

The overall purpose of this study was to evaluate the performance of different TV algorithms for EIT. 
In this study, these algorithms were applied to 2D simulations, cylindrical phantom and a head-shaped 
phantom experiment, using large meshes. Their performance was compared and their potential for use 
in time-difference EIT of brain function was assessed. The questions addressed were as follows: 
(1) Which algorithm gives the best results? 
(2) What are the recommendations for future use in brain EIT? 

1.3.  Experimental design 
Images were reconstructed using three TV regularisation algorithms: PDIPM, SB and LADMM, and 
the first-order Tikhonov algorithm, a traditional quadratic reconstruction algorithm, which was used as 
a reference. This algorithm, sometimes referred to as the Laplace filter algorithm, also measures the 
total amplitude of the differentiable but with 2l norm, and is suitable for comparison with TV 

algorithms to show the preservation of edges. In order to assess the performances of TV algorithms in 



 
 
 
 
 
 

practical geometries, as used in EIT of brain function, phantoms of increasing complexity were used. 
Firstly, a 2D cylindrical mesh was used for simulations with different noise levels, and then 
experiments were carried out on a cylindrical tank and an anatomically realistic head-shaped phantom.  
Experimental data was collected using the UCLH Mark 2.5 system (McEwan et al 2006), and the 
simulations were set to match the specifications of this hardware. This system, based on one module of 
the Sheffield Mk3.5 system, has a wide frequency range from 20Hz to 1.6MHz, with a multiplexer 
that can address up to 64 electrodes. All the tests were undertaken in linear time difference conditions, 
and with zero conductivities as the initial guess under room temperature. All considered meshes were 
quality-checked with the Joe-Liu quality measure (Liu and Joe 1994) with the quality parameter being 
>0.9 for 99.99% elements. 

2.  Methods 

2.1.  General considerations 

2.1.1.  Forward problem. The forward problem requires the determination of the boundary voltages 
for a given object with known conductivity and can be solved using the finite element method (FEM) 
(Calderón 2006). Considering an imaging body  with a sufficiently smooth boundary  and 
conductivity , we have scalar potential  and the electric field  E . Through the continuum 

version of Ohm’ law and continuum Kirchoff’s law, the following partial differential equation is 
obtained (Holder 2004): 

0    in   (1) 

The boundary conditions are introduced by modelling electrodes according to the complete electrode 
model (Somersalo et al 1992). Supposing the subset of the boundary in contact with the electrode is 

lE , we have the boundary with electrodes ll
E  and without electrodes '     . The 

complete electrode model is shown: 

0lz


 


 
n

on   

l
lE

I






 n

 

0



n
 on '  

(2) 

2.1.2.  Inverse problem. The goal of the inverse problem is to estimate the internal conductivity 
distribution by fitting the boundary voltage measurement. The simplest approach is to minimise the 
sum of squares error. 

2|| ( ) ||FV σ  (3) 

where V denotes the measured boundary voltages, σ is the conductivity and F represents the forward 

operator. Usually the norm is a standard 2l norm. Prior information, which also can be treated as 

penalty term, can be added: 
2min f( ) || ( ) || ( )F G  

σ
σ V σ σ  (4) 

 
A standard regularisation is:  

2( ) || ( ) ||refG  σ L σ σ  (5) 

where L , the regularisation matrix, is commonly an identity matrix, partial differentiable matrix and 
diagonal matrix;  denotes the regularisation parameter. The minimisation problem becomes a trade-
off between the fidelity term and regularisation term.  



 
 
 
 
 
 

2.1.3.  Total variation regularisation. The 2l  norm is commonly used in regularisation term due to its 

differentiability, but the solution of the minimisation problem (2) will be biased towards smoother 
functions, for which the 2l  norm assumes has a smaller value. The total variation regularisation 

technique still uses the differentiable regularisation matrix but with a 1l  norm measurement, which 

does not penalise image discontinuities. Consequently, the TV regularisation technique is particularly 
suited to reconstructing sharp changes.  For a differentiable function on a domain  , the total 
variation is ( Chan and Wong 1998, Dobson and Vogel 1997, Holder 2004, Rudin et al 1992, Vogel 
and Oman 1996 ): 

( ) | |TV  f f  (6) 

2.2.  TV algorithms 

2.2.1.  PDIPM. An efficient method for solving the non-differentiable TV regularised problem of EIT 
has been proposed, which is based on the primal-dual theory developed by Andersen et al (1999). 

The original TV regularised inverse problem is non-differentiable, so it is modified by the 
introduction of a smoothness parameter: 

2( ) | |TV   σ σ  (7) 

where 0  denotes the smoothness parameter. The origin minimisation problem with the above TV 

regularisation term is labelled as the primal problem. A new dual variable is introduced to the primal 
problem according to the Cauchy-Schwartz inequality. 
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where   represent the dual variable. The above maximisation problem is labelled as the dual 

problem, and the primal and dual problems have the same optimum solution. Therefore, the optimal 
point can null the gap between the two problems:  

| | 0 1,..., .i i i i n  L σ χ L σ  (9) 

which is called the complementarity condition. 
The multi-variable Gauss Newton method can be used to solve the PDIPM problem. The updates 

of primal and dual variables are given by: 
1 1 1[ ] [ ( F( )) ]T T T T         σ J J L E KL J V σ L E Lσ  

2

2
( | | ) (1 )

| |

i i
i

i

diag diag


   


χ L σ
E L σ K

L σ
 

1 1     χ χ E Lσ E KL σ  

 
 

(10) 

where J  denotes the Jacobian matrix. 
The primal problem more closely approximates to the original TV regularised problem if the 

smoothness parameter   is small. Too small a value of   will causes divergence since the TV 

regularised problem is non-differentiable. In this paper, the initial value used for this parameter was 
1e-4, to match the default value given in EIDORs (Adler and Lionheart 2006), and decreased for each 
iteration.  

2.2.2.  SB method. It is first necessary to define the concept of “Bregman Distance”, before we 
describe the SB method. The Bregman Distance associated with a convex function E at the point v is: 

( , ) ( ) ( ) ,ED E E     p u v u v p u v  (11) 

Where p is in the subgradient of E at v .  



 
 
 
 
 
 

We define 2( ) || F( ) ||H  σ V σ  and introduce a variable L( )d σ . The inverse problem with 

regularisation can be written as: 

,
min | | ( ) L( )H subject to 

σ d
d σ d σ  (12) 

If we denote ( , ) | | ( )E H σ d d σ , the above unconstrained problem can be recast by introducing a 

Largangian function and inserting the Bregman distance (Goldstein and Osher 2009).  

1 1 2
2

,
( , ) min | | ( ) || L( ) ||

2
k k kH

      
u d

σ d d σ d σ b  
 

(13) 
1 1 1(L( ) )k k k k    b b σ d  (14) 

It is necessary to decouple the two variables in the (11a), since the computation of (11b) is trivial. 
The updates of σ  and d  can be calculated separately after splitting the 1l norm and 2l norm parts.  

Step1 1 2
2min ( ) || L( ) ||

2
k k kH

    
σ

σ σ d σ b  

Step2 1 1 2
2min | | || L( ) ||

2
k k k k    

d
d d d σ b  

(15) 

2.2.3.  LADMM. ADMM has been proposed to resolve nondifferentibility in minimisation problem 
(12). This method overcomes the difficulty by introducing splitting scheme and soft thresholding. The 
augmented Lagrangian function is applied in ADMM to convert (12) into an unconstrained problem. 
The augmented Lagrangian function is used to convert (12) into an unconstrained problem. 

2
2( , , ) : ( ) | | , ( ) || ( ) ||

2
F H L L


       σ d p σ d p d σ d σ  (16) 

where p denotes the new introduced variable,   and   are the parameters. The function in (16) is 

linearised and the proximal term 
~

21
|| ||

2
σ σ  is added. The linearised augmented Lagrangian function 

is produced: 
~ ~ ~

21
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           σ d p σ σ d σ σ σ σ σ d p d σ  (17) 

where 
~

σ denotes the approximation of σ ,   is the parameter. LADMM can be expressed in three 
phase form after decoupling variables ( , , )σ d p . The soft thresholding criteria is utilised to further 

simplify the calculation. 
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1/ || ||T T  A A L L is suggested (Jung and Yun 2014), but the value, equivalent to the norm of 

Hessian matrix, is very difficult to calculate for large meshes. Consequently, a group of values were 
tested and the one with the best image quantification was selected.  

2.2.4.  Regularisation parameter. To enable comparison between the different TV algorithms, the 
same regularisation parameter value λ was used for all algorithms in each experiment. The value for λ 
was defined heuristically in each experiment by testing 30 values within the range 1e-9 to 1e-3 and 



 
 
 
 
 
 

selecting the value that produced the best results across all algorithms. The L-curve was used for 
choosing the regularisation parameter for the 1st-order Tikhonov method.  

2.2.5.  Iteration stop criterion. We note that all three TV methods are iterative, so an iteration 
terminating criterion based on the relative decrease of the objective functional was adopted. 

2( ) || ( ) || ( )H F TV  σ V σ σ  (19) 

The iterative algorithms were stopped when the relative decrease of this functional was smaller 
than 1%. 

1( )
[ 1] 0.01

( )
n

n

H

H
  

σ

σ
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However, the terminating criterion was checked after each 100 iterations for LADMM algorithm 
because this first-order TV algorithm converges more slowly than the others for each iteration. 

2.3.  Experimental setup and process 

2.3.1.  Model and phantom. A cylindrical mesh of diameter 19 cm and height 10 cm, with a ring of 32 
electrodes around the centre, was designed, while the boundary voltages were simulated using a mesh 
with 62784 elements. The ground point was fixed at the centre of the base of the mesh. A current of 
peak amplitude 133 A , injected though polar electrodes, was simulated, and the voltage differences 

on all adjacent pairs of electrodes not involved in delivering the current were obtained. The electrodes 
were described with the complete electrode model, and the electrode impedance was set to 1k ohm. To 
evaluate the noise performance of the TV algorithms, boundary voltages were simulated with Signal to 
Noise Ratio (SNR) of 60dB, 40dB and 30dB, generated by adding Gaussian white noise. The 
conductivity of the background was 0.4 Sm-1, to simulate that of the NaCl solution. A cylindrical 
perturbation with conductivity of 0.36 Sm-1, diameter 4 cm and height 10 cm was placed at a point 
with coordinates (x: 5 cm y: 0 cm z: 0 cm), with reference to the centre of the mesh (figure 1).  

A Perspex cylindrical tank study was designed to validate the simulations and test the performance 
of these TV algorithms in 2D. A tank with the same properties as described for the simulations was 
used. Electrodes were stainless steel discs, 1 cm in diameter. A current of peak amplitude 133 A and 

frequency 1 kHz was injected and boundary voltages were measured according to the polar protocol. 
To mimic the properties of living tissues, biological objects were used as a background. The 
background medium was a mixture of 0.1% concentration NaCl solution and carrot cubes of 
approximately 4 mm diameter. The cylindrical potato perturbation of diameter 4.6cm and height 10 
cm was placed at (x: -4cm y: 0cm) in the saline-carrot mixture (figure 6). The conductivities of the 
saline-carrot mixture and potato at a frequency of 1 kHz are 0.1 S/m and 0.02 S/m respectively. 
We designed an anatomical head-shaped phantom to test these algorithms in 3D condition. 32 sliver 
electrodes and a ground electrode were positioned based on the distribution proposed by (Avery 
2014). Electrodes were addressed using the protocol eeg31b, in which current is preferentially applied 
to diametrically opposing electrodes (Tidswell et al 2001). The same potato perturbation was placed in 
posterior (x: 4.5 cm y: 0 cm z: 0 cm), middle (x: 8 cm y: 0 cm z: 0 cm) and anterior (x: 13 cm y: 0 cm 
z: 0 cm) positions, with the origin set to the posterior boundary (figure 7). All phantom experiments 
were undertaken at room temperture.   

2.3.2.  Conversion of large mesh. A coarse mesh, converted from a fine mesh, was employed for 
inverse solution to avoid the “inverse crime” and increase the time resolution. A fine mesh of the 
anatomically realistic head-shaped phantom, with 4 million tetrahedral elements, was used for pre-
calculating the Jacobian matrix and simulating the boundary voltage. A coarse mesh of 79453 
hexahedral elements, matching the tetrahedrons of the fine mesh, was used for the inverse problem 
solution. The Jacobian matrix for the coarse mesh was computed by projecting the Jacobian computed 
for the fine mesh onto the hexahedral elements.  



 
 
 
 
 
 

2.3.3.  Convergence rate. If m represents the number of measurement and e denotes the number of 

elements, the most time consuming calculation of the two second-order TV methods is TJ J , whose 

time complexity for each iteration is 2( )O m e ; the corresponding calculation of the LADMM is 

( )TJ Jσ , whose time complexity for each iteration is (2 )O m e . Thus, it is clear that LADMM is faster 

than SB and PDIPM in our case since 2e . In our experiments the time costs of one iteration of 
PDIPM and SB, which are very close, are comparable to 1000 iterations of LADMM. Therefore, 
LADMM is undoubtedly the fastest TV algorithm of those evaluated here. The time cost of PDIPM 
and SB can be inferred from the number of iteration, as their time consumption of each iteration is 
similar. The iteration number of convergence is dependent on the applications and stop criterion. The 
specific computational time of convergence is found through iteration numbers for each experiment.  

2.4.  Image quantification 
Image quality was assessed quantitatively by three metrics (Fabrizi et al 2009).  Prior knowledge of 
the perturbation conductivity is required before performing the following three metrics. Pixels are 
considered part of the perturbation if their conductivities are higher than 50% of the maximum 
perturbation conductivity for positive perturbations, or lower than 50% of the minimum perturbation 
conductivity for negative perturbations. 

Image noise: inverse of the contrast-to-noise ratio between the perturbation P and background B 

( )

| |

B

P B

std
 



σ

σ σ
 (21) 

where P



σ  and B



σ are the mean intensities of the perturbation and background and std is the standard 

deviation. 
Localisation error: ratio between the norm of the x-y-z displacement of the centre of mass of the 

reconstructed perturbation P from the actual position ( , , )x y z , and the norm of the dimensions of the 

mesh ( , , )
x y z

d d d . The centre of the mass is found where the weighted relative position of the 

distributed conductivity sums to zero. 

|| ( , , ) ( , , ) ||

|| ( , , ) ||

n P n n n

x y z

x y z x y z

d d d

 
 (22) 

where ( , , )n n nx y z  denotes the position of the centre of the nth element.  

Shape error: mean ratio of the difference between the dimensions of the simulated and 

reconstructed perturbations, respectively ( , , )
x y z

l l l and ' ' '( , , )
x y z

l l l  , and the dimensions of the mesh. 

The size of perturbations is found by calculating the difference of the maximal and minimal in each 
direction.  

'' '| || | | |1
( )

3

y yx x z z

x y z

l ll l l l

d d d

 
   (23) 

3.  Results 

3.1.  Noise performance 
All TV algorithms showed good noise immunity in simulations. The boundaries of the perturbation 
reconstructed by the TV algorithms could still be distinguished, even though the resolutions 
deteriorated for increasing noise levels. (Image error values: PDIPM 60dB: 0.508, 40dB: 0.519, 30dB: 
0.696; SB 60dB: 0.426, 40dB: 0.463, 30dB: 0.612; LADMM 60dB: 0.687, 40dB: 0.721, 30dB: 0.987). 
It was not possible to precisely locate the internal boundary of the reconstructed images using 1st-
order Tikhonov regularisation with 30dB SNR. The minimum conductivities of perturbations 
reconstructed by this algorithm were approximately 0.02 to 0.004 for SNR of 60dB to 30dB. TV 



 
 
 
 
 
 

algorithms produced similar conductivity values of perturbations across all noise levels. Artefacts in 
reconstructed images using PDIPM and SB for lower SNR conditions appeared near the positions of 
electrodes as the iterations increased. PDIPM reconstructed the most uniform conductivities of 
background and perturbation, and produced the steepest change in boundaries. The conductivity value 
using SB was the closest to the real value -0.04 Sm-1 compared to other TV algorithms. The 
reconstruction using SB was the only one where the perturbation did not overlap with the boundary of 
the mesh for 30 dB of noise, as shown in figure 2(c). LADMM did not reconstruct the uniform 
conductivities as other second-order TV algorithms and the location of its reconstructed perturbation 
had a distinct error. Figure 3 demonstrate that the 1st order Tikhonov had the lowest image errors in 
60dB SNR and marginally higher errors than SB when noise was increased. LADMM had the highest 
image errors across all noise levels, and the image noise of PDIPM was larger than the SB.   

 
(a) (b) 

Figure 1. Simulation model: (a) 2D slice at z=5 cm, (b) profile plots at y 0 cm 
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(b) 40dB 

 

 
(c) 30dB 

Figure 2. Illustration of the noise performance of the algorithms: 2D slice at z=5 cm and profile at y 0 
cm of (a) 60 dB SNR, (b) 40 dB SNR, (c) 30 dB SNR 
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(a) 60dB (b) 40dB (c) 30dB 

Figure 3. Image error of (a) 60 dB SNR, (b) 40 dB SNR, (c) 30 dB SNR 

3.2.  Iteration time 
SB converged faster than PDIPM (figure 4). PDIPM and SB both needed more iterations to converge 
as the noise increased, and fewer iterations of SB were required than PDIPM in all simulations. 
LADMM quickly produced the overall characteristics and sharpened the edge slowly after several 
hundred iterations. The image error curve of PDIPM reconstruction became flat after 2 iterations with 
30 dB SNR, while the curve of SB descended until the 7th iteration.  

      
(a) 60dB (b) 40dB (c) 30dB 

Figure 4. (a) Convergence performance of 60 dB SNR, (b) convergence performance of 40 dB SNR, 
(c) convergence performance of 30 dB SNR 

3.3.  Cylinder tank results 
All four algorithms reconstructed the position of the potato perturbation. PDIPM had the most uniform 
reconstruction which can be seen in profiles of figure 5. However, the area of the reconstructed 
perturbation of this TV algorithm was larger than the actual perturbation in figure 6(a). The shape and 
conductivity value of the reconstruction of SB were more accurate compared to PIDPM, even though 
the interior boundary was not as steep. There was a clear difference between the boundary of 
perturbation near the centre and the edge for LADMM. It generated severe artefacts in the areas near 
the centre which can be seen in the slice and profile. The reconstructed perturbation of LADMM was 
biased towards the surface by around 10 mm, as seen in the simulations. The iteration numbers for SB 
and PDIPM were 5 and 6, while LADMM used 700 iterations to convergent.  



 
 
 
 
 
 

 
Figure 5. 2D slice at z=5 cm and profile plots at y=0 cm of the four algorithms for the cylindrical tank 
experiment 

 
(a) (b) 

Figure 6. (a) Cylindrical tank experiment setup, (b) image error of cylindrical tank experiment 

3.4.  Head-shaped phantom results 

 
(a) posterior (b) middle (c) anterior 

Figure 7. Anatomically head-shaped phantom experiment setup: (a) posterior, (b) middle, (c) anterior 
 
All algorithms could reconstruct the images for three different perturbation locations, although the 
images obtained for the posterior position were the most accurate (figure 8). The smoothest 
reconstructed images were obtained by the 1st order Tikhonov algorithm, with large artefacts in 
background. The PDIPM and SB reconstructions showed a greater sharpness for the localised 
conductivity change and a greater uniformity for the background and perturbation. The reconstructed 

1st 



 
 
 
 
 
 

images in figure 8 show that the reconstructed perturbation of LADMM is enlarged and that the 
position was biased towards the edge of the phantom. The shapes of reconstructed perturbations 
obtained using PDIPM and SB were clearly distorted towards a square. In terms of image errors, 
figure 9 illustrates that SB had the lowest image errors while the image errors of LADMM were the 
highest. The localisation error of LADMM for all experiments was worse than other algorithms. The 
image noise of PDIPM was larger than SB, matching the lower contrast of the reconstructions of 
PDIPM. In terms of iteration numbers, SB employed 8, 11 and 9 iterations to find the optimum in 
posterior, middle and anterior placement, fewer than 8, 13, 10 iterations used by PDIPM. The iteration 
numbers of LADMM were 1100, 1700, 1400.    

 
(a) posterior 

 
(b) middle 

1st 

1st 



 
 
 
 
 
 

 
(c) anterior 

Figure 8. Reconstruction of the three perturbation positions in the head-shaped tank for each 
algorithm: 2D slice at z=7 cm and profile at z=0 cm of (a) posterior perturbation, (b) middle 
perturbation, (c) anterior perturbation 

 
(a) posterior (b) middle (c) anterior 

Figure 9. (a) Image error of posterior perturbation, (b) image error of middle perturbation, (c) image 
error of anterior perturbation 

4.  Discussion 

4.1.  Summary of results 
The image reconstructions revealed significant difference between these TV algorithms for all the 
experiments. 

(1) The TV class algorithms were superior to 1st order Tikhonov algorithm with respect to noise 
immunity as they reconstructed similar conductivity values across all noise levels. PDIPM and 
SB demonstrated better artefact resistance with SNR of 40dB. Of the TV algorithms, SB 
showed the best noise immunity. The reconstructed perturbation of PDIPM and LADMM 
enlarged as SNR was decreased, whereas SB reconstructed a similar shape for all noise levels.  

(2) LADMM produced an approximate reconstruction rapidly and later decreased the image error 
slowly. The iterations of SB were fewer than PDIPM but this advantage disappeared when the 
noise was high. 

(3) With regards to the spatial resolution of the reconstructions, SB and PDIPM produced similar 
conductivity distributions and image errors, and furthermore the images of PDIPM 
reconstructed sharper edges of perturbations with lower contrast than SB; the 1st order 

1st 



 
 
 
 
 
 

Tikhonov method reconstructed EIT images better than LADMM but worse than the other two 
TV algorithms. The cylindrical experiment revealed that PDIPM was able to reconstruct the 
most uniform image but enlarged the perturbation. LADMM cannot reconstruct the parts of 
perturbation near the centre from the head-shaped phantom experiment. 

4.2.  Technical issues 
The parameters of these algorithms were selected by a heuristic method, and could be improved by 
using a more accurate algorithm, such as cross validation. The iteration stop criterion was 
implemented, but in principle the best results would be obtained by removing any limit on the 
computation time. The diameter and location of the perturbations in the head-shaped phantom 
experiment were not precise, and the image quality of anterior placement was poorer than posterior 
placement. This may have been because of the arrangement of electrodes and the eeg31 protocol, 
which may be addressed by optimising the measurement protocol. 

Selection of the optimal parameters for TV algorithms is a difficult task which has not yet been 
solved in the literature. Addressing this was outside the scope of this work. Thus, the parameters were 
therefore chosen heuristically (Borsic et al 2010, Jung and Yun 2014) and made the same for all cases 
( Jung and Yun 2014). 

In this study, we undertook experimental work with the simplified case of an anatomically realistic 
tank without the skull, as this presents a lower bound for the first evaluation of the comparison of 
these TV approaches. In future studies, we plan to re-evaluate the methods of the more demanding 
case of a tank containing a skull, as SNR is lower.  

 

4.3.  Assessment of the TV algorithms  
With regard to the image error, SB method is the best, mainly due to its more accurate conductivity 
value reconstruction. PDIPM can reconstruct the sharpest change and gives the flattest interior of 
perturbation and background but with lower contrast conductivities than SB. Initial, rough 
reconstructions can be obtained by LADMM, but it cannot converge to the optimum solution and 
always has a position bias.  

 The TV algorithms have better noise resistance than the first-order Tikhonov algorithm, which is 
evident in the difference in spatial resolution. The reconstructions of perturbation are quite similar for 
LADMM in all noise conditions, and are more stable than SB and PDIPM. We suppose that this is 
because the first-order algorithm avoids the calculation of the approximated Hessian matrix, which 
may be more likely to be contaminated by noise.  SB can reconstruct similar conductivities of 
perturbation across all noise levels compared to the 10 times change of the first-order Tikhonov 
algorithm, shown in figure 2. 

In term of calculation time, LADMM is undoubtedly the fastest algorithm due to the exclusion of 
the second-order derivative. When comparing only the second-order derivative algorithms, the SB 
method converges faster than PDIPM. Nevertheless, the two algorithms have similar time 
consumptions when SNR is low. 

We suppose that the advantage of the SB method over PDIPM is because the latter introduces the 
smoothness parameter. The larger the smoothness parameter, the greater the efficiency will be at the 
expense of accuracy. Consequently, the selection of smoothness parameter become a trade-off 
between the accuracy and the efficiency (Wu and Tai 2010) and only can be processed using a 
heuristic method.  

As the mesh size increases, the number of unknown conductivities becomes larger, but the amount 
of information obtained through measurements remains the same, which means the ill-posedness of 
the inverse problem becomes more severe. Due to the lack of information included in second-order 
derivative, the spatial resolution of LADMM deteriorates as the problem become more ill-posed.  

The resolution and noise resistivity are more of a concern for brain EIT, since the inclusion of skull 
and scalp make the reconstruction more difficult. The SB method recommended for EIT of brain 



 
 
 
 
 
 

function owing to its high resolution, noise resistivity and relatively fast convergence rate, when 
compared to PDIPM. In terms of other EIT applications, LADMM may be a promising choice for 
some lung and breast applications requiring a fast algorithm, especially when small mesh sizes are 
used. For other applications, the SB method may be a suitable choice for its stability and relatively 
high spatial resolution.  

4.4.  Recommendations for future work 
The TV algorithms, different than conventional 

2
l  norm regularised algorithms, usually have more 

than one parameters to be selected, which induce more computational time and hardware. This 
drawback has become one signification bottleneck for applying the TV methods on EIT, so the 
parameter selection methods of the TV algorithms will be investigated.  ADMM is an alternative TV 
method. It was not studied in this work because it has been shown to be equivalent to SB in math. 
However, it might have practical advantages and it may be valuable to compare this method in any 
future studies. 
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