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Abstract

Multimodal monitoring of brain state is important both for the investigation of healthy cere-
bral physiology and to inform clinical decision making in conditions of injury and disease.
Near-infrared spectroscopy is an instrument modality that allows non-invasive measure-
ment of several physiological variables of clinical interest, notably haemoglobin oxygenation
and the redox state of the metabolic enzyme cytochrome c oxidase. Interpreting such mea-
surements requires the integration of multiple signals from different sources to try to under-
stand the physiological states giving rise to them. We have previously published several
computational models to assist with such interpretation. Like many models in the realm of
Systems Biology, these are complex and dependent on many parameters that can be diffi-
cult orimpossible to measure precisely. Taking one such model, BrainSignals, as a starting
point, we have developed several variant models in which specific regions of complexity are
substituted with much simpler linear approximations. We demonstrate that model behaviour
can be maintained whilst achieving a significant reduction in complexity, provided that the
linearity assumptions hold. The simplified models have been tested for applicability with
simulated data and experimental data from healthy adults undergoing a hypercapnia chal-
lenge, but relevance to different physiological and pathophysiological conditions will require
specific testing. In conditions where the simplified models are applicable, their greater effi-
ciency has potential to allow their use at the bedside to help interpret clinical data in near
real-time.

Introduction

The cells of the brain make very high energy demands relative to most other body tissues.
These demands must be continuously met by oxidative metabolism, usually of glucose. Even a
brief interruption in oxygen supply can have adverse consequences, including brain damage
and death. Oxygen availability is normally maintained by a complex and robust system of hae-
modynamic regulation, which adjusts the cerebral blood flow (CBF) in response to variations
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in both supply—e.g. arterial pressure and oxygen saturation—and demand—notably energy
consumption due to neuronal activity [1, 2].

These regulatory mechanisms are frequently impaired in disease states. Because of the po-
tential harm that can result from oxygen and metabolic substrate deprivation, monitoring of
cerebral oxygenation and metabolism has been proposed in clinical settings, in particular dur-
ing the neurocritical care management of acute brain injury [3-9]. A range of multimodal neu-
romonitoring is available [9-11] including invasive probes such as brain tissue oxygen tension
and microdialysis [12-14] and imaging techniques such as positron emission tomography [13,
15] and magnetic resonance spectroscopy (MRS) [16-19]. However, the latter are not usually
available at the bedside.

Near-infrared spectroscopy (NIRS), which measures changes in the absorption spectra of
naturally-occurring chromophores [20], provides a cheap, non-invasive and relatively portable
modality that can be used at the bedside [21, 22]. NIRS has been used experimentally in both
healthy and injured human adults [23-26] and neonates [27-35], as well as in animal models,
notably piglets [36-40]. It provides a useful complement to techniques such as MRS in physio-
logical investigations [41, 42]. However, it has yet to be widely adopted in the clinic [9, 43], in
part due to difficulties of interpretation.

We have previously developed several computational models of cerebral physiology to in-
vestigate the relationships between measurable signals and the underlying physiological state.
In particular, the BrainSignals model [44-46] is designed to assist the interpretation of two
major NIRS signals: haemoglobin oxygen saturation [47], and the oxidation state of the meta-
bolic enzyme cytochrome c oxidase [48-52].

Such models are necessarily complex. BrainSignals is a simplification of an earlier model,
BrainCirc [53], eliminating or caricaturing many processes not relevant to the NIRS problem.
Still, it remains complex enough to be computationally expensive and difficult to analyse. Like
most Systems Biology models, it depends on a large number of parameters—135 in the core
model, relative to just 12 state variables—many of which are not accurately known. Some do
not correspond to a measurable physical property. For others, measurements may only exist
for different organisms or in unrealistic conditions, or they may vary significantly
between individuals.

Typically, not all parameters of a model need to be known with perfect accuracy. Sensitivity
analysis [54-57] can help identify parameters for which a lack of precision is acceptable. More-
over, many Systems Biology models exhibit a property known as ‘sloppiness’ [58, 59]. In these
models, the behaviour is dominated by a small number of (so-called ‘stiff’) directions in param-
eter space, while other directions are much less constrained (‘sloppy’). The parameter space
can be thought of as a high-dimensional projection of a lower-dimensional space of model be-
haviour [60, 61]. Since the behaviour arises jointly from the parameter ensemble, individual pa-
rameter values are often uninformative.

To improve interpretability and computational efficiency, we set out to simplify Brain-
Signals further, retaining the essential model structure but reducing the number of parameters
and the complexity of the calculations. We employed a hybrid mechanistic-statistical approach,
whereby some local subsystems in the model were replaced with simpler functional approxi-
mations. Our focus was on preserving the model’s empirical behaviour. Thus, substitution was
attempted where a recognisable behavioural simplicity—in fact, linearity—arose from the
more complex underlying processes. Success was judged on the ability of the new models to
mimic the original over a range of different physiological conditions.
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Methods
Ethics statement

The study was approved by the National Hospital for Neurology and Neurosurgery and Insti-
tute of Neurology Research Ethics Committee, study number 04/Q0512/67. All subjects pro-
vided written informed consent.

Software and modelling

Models were implemented in the open source Brain/Circulation Model Developer (BCMD) en-
vironment, a replacement for the BRAINCIRC interface with which BrainSignals was originally
developed [44]. Like its predecessor, BCMD employs the RADAUS5 library [62] to solve numer-
ically the models’ differential-algebraic equation systems. The software and all model imple-
mentations are freely available from http://tinyurl.com/ucl-bcmd. Details of all model
definitions are included in S1 Text.

To illustrate the model structures, dependency diagrams are presented in several figures
below. These were produced using GraphViz [63], from DOT language descriptions generated
by BCMD. Several node types are distinguished in these graphs. The reader is not expected to
unpick these in detail—the minutiae of the model are more easily understood via the imple-
mentation files referenced above—but we briefly outline the differences here as an aid to
interpretation:

« Circular nodes with a double border are the internal state variables. These are further sepa-
rated into those defined via a differential equation (depicted in orange) and those defined via
an algebraic relation (green). An example of the former is the membrane potential y in Eq
10, while the vessel radius r in Eq Bl is an example of the latter.

Circular nodes with a single border (and blue fill) are ‘temporary’ variables. These represent
intermediate expressions that must be computed en route to solving for the state variables.
There is some implementation leeway in how these are defined, so they provide only an ap-
proximate metric of complexity, but they indicate the presence of a non-trivial, usually non-
linear, calculation. The variables G and y in Eqs 2 and 3 are examples of temporary variables.

Rectangular nodes are values external to the model. These may be input values (red), vari-
ables from other submodels (pale green) or parameters. (The latter are omitted from the
main body figures as they make the graphs excessively complicated. However, they are in-
cluded in S1-S7 Figs)

« Dependencies are represented by arrows, indicating the direction of data flow: the arrowhead
points to the dependent variable.

Variable names in these figures are those used in the model implementations. In most cases
the relationship to the mathematical notation used in the text should be obvious. Both forms
are given for all variables in the model definitions in S1 Text.

Parameters for simplified submodels were fitted using the following procedure, illustrated
schematically in Fig 1. Data were simulated from the full BrainSignals model, using a range of
synthetic input signals designed to explore different aspects of the model behaviour. The inputs
were generated in R [64], and included noise, simple oscillations, slow ramps, large step
changes, and combinations of the above, across plausible physiological ranges for each input
parameter. Since the full set of simulations was very large (and highly redundant), fits were per-
formed with randomly-sampled subsets of 10,000 data points; consequently the exact fit values
could vary somewhat, but these variations were typically small. In some cases, notably the P,
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Fig 1. Fitting procedure for the simplified parameters. A variety of synthetic signals, including oscillations, noise and step changes, were used as inputs
to the BrainSignals model, generating a large number of simulated time series for the model variables. A subset of 10,000 data points was randomly sampled
from the full set of simulation data, and parameters for the simplified linear models were estimated from the sampled values by ordinary least-

squares regression.

doi:10.1371/journal.pone.0126695.g001

dependence in the blood flow variants, additional steady state data for more extreme parameter
ranges were also included to improve the fitted behaviour. Parameters were estimated using
the standard R linear modelling function 1m. The complete set of synthetic data files and the R
script used to generate them are available from http://dx.doi.org/doi:10.5281/zenodo.16776.

Sensitivity analyses were performed with the extended Fourier amplitude sensitivity test
(eFAST) [55, 65], implemented using the SALib Python library (http://jdherman.github.io/
SALib/).

Instrumental data were filtered, detrended and resampled in MATLAB. Data analysis, visu-
alisation and parameter fitting for linear models were performed in R. Figures were prepared
in Adobe Illustrator CS3 and Adobe PhotoShop CS3.

Experimental data

The experimental datasets used for model testing are described in more detail in a previous
paper [52]. In brief, hypercapnia was induced in healthy adult volunteers by supplementing the
inhaled gas mixture with carbon dioxide and observing the induced change in cerebral blood
flow and oxygenation. Monitoring included broadband NIRS [66], transcranial Doppler ultra-
sound-derived flow velocity in the middle cerebral artery, continuous arterial blood pressure,
pulse oximetry and end tidal CO,, captured at 125 Hz. Data were low-pass filtered at 0.1 Hz
with a 5th-order Butterworth filter and resampled to a uniform 3.2 s sampling interval to
match the integration time of the NIRS. Only individual data recordings were used, not group
averages. Experimental data used are available from http://dx.doi.org/doi:10.5281/zenodo.
16776.
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Model reduction

Our strategy for simplifying the model may be summarised in the following steps:

1. Decomposition The model was first decomposed into weakly-connected submodels. This
partitioning was done manually, guided by structural information from the BCMD tools to-
gether with a priori knowledge of the model design.

2. Algebraic simplification Where feasible without altering their substantive meaning, model
expressions were restructured and rearranged to simplify their terms.

3. Refactoring Model implementation code was cleaned up and refactored, removing super-
fluous elements and unreached contingencies.

4. Lumping Where multiple unknown parameters contributed to an expression in broadly-
unidentifiable ways, these were substituted with lumped parameters. Our criteria for such
lumping were pragmatic rather than strict: some parameters might in principle be identifi-
able given sufficient data, but the quantity and quality required are unrealistic.

5. Functional substitution Local functional relationships were isolated and replaced with fit-
ted approximators. Candidate relationships were identified by inspection, using knowledge
of the model structure. The approximating functions were (in the general sense) linear mod-
els, allowing parameters to be estimated from data by standard regression methods.

Steps 1-3 concern implementation details and do not materially alter the model, although
they can involve a substantial reduction in the apparent complexity. Their application should
be uncontroversial, and indeed they might be considered ‘not worth mentioning’. Nevertheless,
they form an important part of the simplification process. Steps 4 and 5 constitute ‘model re-
duction” more properly, in the sense that they result in a new and different model that only ap-
proximates the original. Inevitably this raises questions of validity and applicability, which we
shall address in the Discussion section, below.

Model structure

All model variants retain the gross structure of BrainSignals, illustrated in Fig 2, with the same
inputs, outputs and state variables. There are four constituent submodels, representing blood
flow, oxygen transport from blood to tissue, oxidative metabolism within the tissue, and mea-
surement. Although the submodels are not wholly decoupled, the boundaries were chosen to
minimise interdependence. A single state variable, the vessel radius r, feeds forward from the
blood flow submodel to the oxygen transport submodel, while another, the capillary oxygen
concentration O, , feeds back. Similarly, one output from the oxygen transport submodel, the
oxygen flux ] , feeds forward to the metabolic submodel, and one variable, the tissue oxygen
concentration O,, feeds back.

All submodels underwent rationalisation of implementation, corresponding to steps 2 and 3
of the strategy discussed in the previous section, but only the haemodynamic and metabolic
submodels were substituted with multiple simplified alternatives. The measurement submodel
is purely an output layer, translating the model state into forms comparable with instrumental
data, and thus has no effect on the model behaviour. The oxygen transport model is already
heavily simplified, and there is little scope for further reduction without loss of utility.

Blood flow

Oxygen delivery to the brain is dependent on cerebral blood flow (CBF), which carries oxygen
bound to haemoglobin and, to a lesser extent, dissolved in plasma. The flow is driven by the
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Fig 2. Overall structure shared by BrainSignals and the simplified models. Systemic measurements of mean arterial blood pressure, arterial oxygen
saturation and partial pressure of CO,, together with a parameter specifying the relative demand, serve as model inputs. A blood flow submodel represents
the delivery of oxygenated blood from the arteries through the capillary bed to the veins, and an oxygen transport submodel estimates diffusion of dissolved
O, from the capillary blood to the brain tissue. Delivered oxygen is utilised by a metabolic submodel, with an external dependence on the demand. Finally, a
measurement submodel translates the internal states of the blood flow and metabolic submodels into observable outputs. Circles within each submodel
indicate the local state variables—note that the measurement submodel has no state of its own.

doi:10.1371/journal.pone.0126695.9002

pressure difference across the cerebral blood vessels, and depends on the vessels” conductance,
which is passively affected by factors such as intracranial pressure but also actively regulated in
response to various physiological stimuli to maintain oxygen supply [1].

The BrainSignals blood flow submodel is based on a substantial simplification of a popular
series of models developed by Ursino and Lodi [67, 68]. A number of model features are omit-
ted, notably compartmental compliances, the distinction between distal and proximal vessels
and the production and absorption of cerebrospinal fluid. The rationale for these omissions is
that the model is designed for the simulation of longer time scale changes such as those in-
duced in the experimental challenges described below, rather than those occurring on the time-
scale of individual heart beats.

Intracranial pressure and venous sinus pressure (P,) are not modelled explicitly, but are in-
cluded as parameters. There are three nominal conductive compartments, but only the cerebral
arterial-arteriolar compartment is modelled in detail. CBF is a function of the conductance of
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this compartment, G, and the arterial blood pressure, P,;:
CBF = (P,—P,)G (1)

Conductance is taken to be determined by a shared vessel radius, r, which is uniform through-
out the compartment, according to a version of Poiseuille’s Law

G=K,r (2)

where the parameter K subsumes the unknown (and in this context fairly meaningless) values
of length and viscosity. Blood is non-Newtonian and the capillary bed is a non-uniform net-
work, so this is obviously a crude approximation, but it is widely adopted in the literature and
provides a useful conceptual relationship between blood flow and volume. Since the vessel
walls are not rigid, the radius is affected passively by the pressure, but is also subject to

active autoregulation.

Four autoregulatory stimuli are admitted: arterial pressure, blood partial pressure of CO,,
capillary O, concentration and metabolic demand. Each stimulus is passed through a first
order filter with its own characteristic time constant, representing differences in the time
course of the regulatory responses, and a linear combination of the filtered values is taken as
the overall stimulus level, 7.

Autoregulation is commonly assumed to manifest as shown in Fig 3A, with supply being
maintained approximately constant over a range of ‘normal’ conditions but control failing
when conditions become more extreme. This bounded range of response effectiveness is mod-
elled using a sigmoidal transformation of 7:

e —1
'u_e’7—|—1

(3)

Autoregulation is often impaired following acute brain injury [69, 70], so an important control
parameter, kg, is introduced to represent the level of functional autoregulatory response. The
central relationship of the blood flow submodel can then be summarised as:

r= f(Pa7 lu’ kaut) (4)

Here and subsequently, f() stands for some unknown function.

Following Ursino and Lodi, BrainSignals defines r through the balance of pressures inside
and outside the vessel and the tension in the vessel wall. The latter is in turn broken down into
a passive elastic component, T,, and a muscular component, T,,, which is under autoregulatory
control. The relationship is formulated implicitly, requiring the simultaneous solution of sever-
al non-linear equations, and cannot be directly expressed in the form of Eq 4. Although there is
an underlying biophysical justification for the model structure, the equations are opaque and
shaped by a number of tuning parameters with no straightforward physiological meaning. The
relationship is thus an obvious choice for substitution.

Since y and kg, jointly define the strength of the autoregulatory response, we merge these
into a single term, i = k,,,u, for the purposes of fitting. A coarse examination of the equations
for r indicates that, while y enters in the numerator, P, does so via the denominator, so we use
the reciprocal of the latter term. Simulation data from BrainSignals is shown in Fig 3C. The pla-
nar form suggests the relationship can indeed be approximated as linear over a reasonable
range of values for these variables. We note that, since arterial pressure is also one of the regula-
tory stimuli, the terms are not independent. Nevertheless, we adopt the following linear model,
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Fig 3. Simplifying the blood flow submodel. A Expected shape of the autoregulatory response. An approximately constant supply is maintained for
variations in blood pressure, until conditions exceed the body’s capacity to regulate. B Main variables and dependencies of the BrainSignals blood flow
submodel and the simplified equivalent. C BrainSignals simulations exhibit a nearly planar response to ‘normal’ values of y and F%ﬁ

doi:10.1371/journal.pone.0126695.g003

which we call B1, as our initial candidate:

p p

a

A A QL
= ir‘f' r,P_’_)v”“a_’_ r,Pw,u (Bl)

The four A coefficients are parameters to be estimated from the synthetic data: A, is the inter-
cept term, A,, and A, estimate linear dependences on ;- and ji respectively, while 4,.,, , repre-
sents an interaction between both factors. Since it is possible that one or more of these terms is
negligible, we also define three simpler variants, B2-B4, with terms omitted:

A
r=2+ 1;"’ + 0t (B2)
r= A’r + /Ir.;ua (B3)
A
r=A +-r (B4)

P

a

For comparison, the core structure of the original bloodflow submodel and the simplified ver-
sion B1 are depicted in graphical form in Fig 3B. Diagrams of the full structures, including pa-
rameters, can be found in S1 and S2 Figs. The relative sizes of the blood flow variants, in terms
of parameters and temporary variables, are given in Table 1.
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Table 1. Relative sizes of the different variants of the blood flow submodel.

Model

BrainSignals (blood flow)
B1
B2
B3
B4

doi:10.1371/journal.pone.0126695.t001

State Variables Parameters Temporary Variables
5 45 8
5 27 3
5 26 3
5 25 3
5 25 3
Metabolism

Oxidative metabolism represents the ‘consumption’ portion of the model, where the delivered
oxygen is used in the satisfaction of energy demand. Only a small fraction of the real biochemi-
cal network involved in metabolism is modelled, concentrating on the final portion of the mito-
chondrial electron transport chain. This focus is motivated by the fact that near-infrared
absorption spectrum of cytochrome ¢ oxidase (CCO) is dependent on the oxidation state of the
Cuy, centre, providing a marker of metabolic activity that can be measured by NIRS [48].

The modelled portion of the reaction network is illustrated in Fig 4. We assume a constant
total concentration of mitochondrial CCO, with varying oxidation states for the a; and Cuy,
centres. Mitochondrial H* and O, are consumed or exported as a result of the three electron
transport reactions, summarised in the following formulae:

4cuA,ox +p1H+£) (5)
p2H+£4cuA.ox + 4a3,red (6)
02 + 4a3.red + pSI_I+£> (7)

Rates f;, f, and f; are for the transfer of 4 electrons, corresponding to the consumption of 1
molecule of O,. The parameters p;, p, and p; represent the proton ‘cost’ of each reaction, al-
ways set to 12, 4 and 4, respectively. Two supply reactions model the return of protons to the
mitochondrial matrix and the delivery of oxygen from the blood:

SH' 8)
Jo.
"0, 9)

Finally, the proton current out of the mitochondria affects the inner membrane potential by
way of the membrane capacitance C;,,;:
A pufi +pofy tpafs — L (10)
dt C

im

While the reactions are apparently straightforward, a great deal of complexity is wrapped
within the definition of the rate terms, which are dependent on the species concentrations and
membrane potential in intricately-parameterised ways. This network of relations is illustrated
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0.

Pifi+P2fa+psfy o, inner membrane

Fig 4. The modelled part of the mitochondrial electron transport chain. The electron transfer is indicated by red arrows, while the grey arrows show
corresponding species changes. Quantities enclosed in unfilled circles are not explicitly modelled. The CCO Cup and as centres are assumed present at
constant concentration, so any change in the oxidised form implies an opposite change in the reduced form. The initial reducing substrate (denoted CC) is
neglected on the assumption that O, and H* are limiting, and the H,O product vanishes into an effectively-infinite background. Protons are exported from the
matrix by each electron transport step, returning at rate L, and the membrane potential y is affected by the net proton flux.

doi:10.1371/journal.pone.0126695.g004

in Fig 5A; for the full details see the original description [44] (also summarised in S1 Text). The
equations resist algebraic simplification, but we can consolidate the main functional dependen-
cies of the rate constants as follows:

fi =f(Ap,[Cuy, ], u) (11)
f, =£(Ap, [Cuy ). [ay ) (12)
fy = £(Ap,[Os], [a3,4]) (13)
L = (0, Ap) (14)

where Ap = f([H"], v) is the driving force for protons and 6 = f(Ap, u) is the driving force for
Complex V.

By inspection of the original model equations we expect the dependencies on species con-
centrations and demand to be approximately logarithmic. Simulation data are plotted in Fig 6,
using log values where appropriate. The relationships appear strongly linear, suggesting a
model of the following form, which we will refer to as variant MO:

fi =44 + 4 Ap 4 Jog[Cuy ] + 4, logu (M0.1)
fo =y, + 2 ,Ap + A og[Cuy | + 4, , log [ay ] (M0.2)
fo =44 + 2, AP + A o log[O,] + 2 , logay ] (M0.3)
L= Jy + 2y, Ap+ 70,0 (M0.4)

PLOS ONE | DOI:10.1371/journal.pone.0126695 May 11,2015 10/28
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NADNADHTrat

Fig 5. Simplifying the metabolic submodel. A The main structure of the BrainSignals metabolic submodel, with parameters omitted. Although the number
of species is small and the reactions apparently simple, the reaction rates are governed by a complex network of interactions. B, C, D, E Progressively
simplified submodel variants MO—M3, corresponding to Egs M0.1-M3.2 in the text.

doi:10.1371/journal.pone.0126695.g005
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Fig 6. Dependencies between the reaction rate constants and variables in the metabolic submodel. All rate constants exhibit a very nearly linear
relationship to the model variables on which they are primarily dependent, suggesting that a good approximation can be obtained with a linear model.
However, the relationships are also very highly correlated, implying the model is overdetermined and further reduction is required.

doi:10.1371/journal.pone.0126695.g006
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As in the previous section, the 4, coefficients are simply weights for each linear term,
which we can estimate from the simulation data by linear regression. The model structure is il-
lustrated in Fig 5B. However, it is obvious from the plots in Fig 6 that the relationships are very
highly correlated. If the model is fitted with parameters for all degrees of freedom, the resulting
system is overdetermined, with no feasible solution. We therefore seek a less connected model
with fewer parameters. One approach to this reduction is simply to eliminate some of the com-
peting dependencies from the above equations. A variety of choices for removal are possible.
We show one such in Fig 5C, denoted variant M1 and defined as follows:

fi =4, + 4 log[Cuy |+ 4, logu (M1.1)
fo =4y, + 4, log EN (M1.2)
fo = 4, + 24,010 [0,] (M1.3)
L =12y + 2 ,Ap+ 72,40 (M1.4)

In this variant, each dependency is included directly for only one of the rates. The terms are
still not independent, since the demand parameter u enters the system via multiple routes, both
directly in Eq M1.1 and also via the Complex V term 6, which in turn also depends on Ap. A
further simplification (variant M2, Fig 5D), eliminates the dependency of f; on u, replacing Eq
MI.1 with:

fl = Af1 + }"fl-a log [CuA‘ox] (MZI)

An alternative approach to reducing model M0 may be made by first noting that the three rates
f1,f2 and f; are, by design, identical under baseline conditions. We can make this into an explic-
it constraint by merging these into a single shared rate, f*. This is a significant structural
change, implying that the three metabolic reactions proceed in step—a questionable assump-
tion. Nevertheless, we trial this as the further variant M3 (Fig 5E):

fr =24 + 25 ,Ap + Ay o 10g [O,] + 4., log[Cu, ] (M3.1)

L=y + 7y, Ap+ iy 40 (M3.2)

Diagrams of the full structures of all the metabolic submodel variants, including parameters,
can be found in S3-S7 Figs Table 2 lists the relative sizes in terms of numbers of parameters
and temporary variables.

Results
Fitting and testing the variant models

Fitting was performed to synthetic data as described in the Methods section. For all variants
discussed here, the fitting indicated the existence of a non-zero dependent relationship with
high significance: p < 2 x 10~'° for both individual parameter ¢ tests and overall model F tests,
with standard errors < 1% on all parameter estimates. However, this is in part due to the large
simulated sample sizes and does not imply model correctness. As explicit simplifications, the
variant models are, by definition, not correct.
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Table 2. Relative sizes of the different variants of the metabolic submodel.

Model

BrainSignals (metabolism)
MO
M1
M2
M3

doi:10.1371/journal.pone.0126695.t002

State Variables Parameters Temporary Variables
5 74 20
5 30 7
5 25 7
5 24 7
5 22 5
Blood flow

Although fitting to all the variants B1-B4 confirmed highly significant dependencies on their
respective variables, B3 and B4 were unable adequately to explain the data variance (R” = 0.75
and R® = 0.52, respectively), consistent with our analysis of the model structure. The models in-
cluding both P, and ji each had R* > 0.99, with inclusion of the interaction term in B1 provid-
ing a marginal additional improvement.

Comparisons of the original BrainSignals steady-state behaviour with that of each blood
flow variant, with all other model components kept unchanged, are shown in Fig 7A. Compari-
sons of dynamic behaviour for inputs from a representative experimental subject are shown in
Fig 7B, while summary results for all subjects are given in Table 3. Predictably, variants B3 and
B4 produce very poor approximations for both dynamic and steady state simulations, in partic-
ular B4, which is unable to capture autoregulation since it lacks any dependence on fi. It can be
seen that variant B1 mimics BrainSignals almost exactly in all cases. B2 is close in most cases,
but fails notably in the P, steady state simulation. We can attribute this failure to the conflicting
roles of P, on the active and passive changes to r, which cannot be readily captured without the
interaction term.

We can further investigate this by considering the interaction between blood pressure auto-
regulation and the other regulatory factors. Although all the stimuli in BrainSignals contribute
to the single term 7, blood pressure also participates in the elastic tension response. Interaction
can therefore occur in the model, as it is known to do physiologically. This is illustrated in
Fig 8A, which shows the BrainSignals steady state for CBF with variations in both P, and
P,CO,. Corresponding results for the simplified models are shown in panels B-E of Fig 8. It
can be seen that only the blood flow variant B1 is able to reproduce this behaviour, confirming
that the interaction term is needed.

Metabolism

As might be suspected from the graphs in Fig 6, our linear models readily fitted the data, and
all three variants M1-M3 explained the variance well, with R* > 0.99.

Once again BrainSignals was compared with models in which the metabolic variants were
substituted, keeping the remaining components the same. Steady state plots are shown in Fig
9A, using the metabolically-relevant output value CMRO, rather than CBF. (The latter is dom-
inated by the unchanged blood flow submodel and so does not satisfactorily reveal behavioural
differences between the variants.) The steady state values for model variants M1 and M2
are essentially identical to those for the original BrainSignals metabolic model. By contrast,
variant M3 diverges markedly, suggesting that the unification of rates is a bad choice of
approximation.
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Fig 7. Comparing behaviour of simplified blood flow submodels to BrainSignals. A Steady state simulations of blood flow for different levels of arterial
blood pressure (P,), oxygen saturation (S;0,) and partial pressure of carbon dioxide (P,CO.). Model variant B4 lacks a dependence on p, and so does not
autoregulate. Variants B1-B3 do so to varying degrees, with B1 providing the best approximation of the BrainSignals behaviour. B2 is very similar for
changes in S0, and P,CO,, but fails for P,. B Time courses of model outputs driven by real experimental data. All three plots show a representative example
of output signals simulated using inputs recorded from a healthy adult undergoing a hypercapnia challenge. Blood flow variant B1 is again able to replicate
BrainSignals almost exactly, and B2 also approximates quite closely. Variants B3 and B4 do not. (Average output distances for simulations from all

experimental subjects are given in Table 3.)

doi:10.1371/journal.pone.0126695.9g007

Table 3. Summary output distances for the different model variants.

Model

B1

B2

B3

B4

M1
M2
M3
B1M1
B1M2
B2M1
B2M2

CBF (uly mly, ' s7)
26+25
9.3+7.0
175+7.2
37.6+6.3
0.0£0.0
0.0£0.0
0.6+ 0.1
26+25
26+25
9.3+7.0
9.3+7.0

CMRO, (uMs™)

1.1+£15
20+22
27+1.9
71+4.0
0.3+0.1
0.3+0.1
54+1.0
12+1.3
12+13
1.9+21
1.9+21

AoxCCO (uM)

02+0.3
04+04
05+0.3
1.3+0.7
0.2+0.1
0.1+0.0
19+04
0.3%0.1
0.2+0.2
0.3+0.2
0.4+0.4

Outputs from the different model variants were compared to those from BrainSignals for simulations with 10
sets of hypercapnia input data. Euclidean distance was used as the metric of dissimilarity; higher values
indicate a worse fit. Results are shown as median + median absolute deviation.

doi:10.1371/journal.pone.0126695.t003
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Fig 8. Interaction between blood pressure autoregulation and CO,. Steady state simulations of blood flow with varying levels of both arterial blood
pressure (P,) and partial pressure of carbon dioxide (P,CO,). Identical inputs were used with each model. A BrainSignals. B B1. C B2. D B3. E B4. ltis
evident that only blood flow variant B1, which includes an explicit interaction term for both ;i and - i able to reproduce the behaviour seen in the
original model.

doi:10.1371/journal.pone.0126695.9008

This is borne out by the evidence of dynamic simulations (Fig 9B). Again, many model out-
puts are not strongly affected by changes to the metabolic submodel, since their behaviour is al-
most entirely determined by the blood flow model. An example of CBF output is shown in

the lowest panel. The failure of variant M3 is obvious, however, in metabolically-relevant out-
puts. Importantly, the AoxCCO prediction (representing changes in CCO oxidation state) is
completely abolished—if oxidation and reduction always occur at the same rate, the level of ox-
idised CCO cannot change—rendering M3 useless for this NIRS quantity of interest. Variants
M1 and M2 again follow BrainSignals behaviour closely, with M2 producing slightly better re-

sults. As it is also simpler and performs equivalently at steady state, it would appear to be the
best metabolic substitute of those presented here.

Combined variants

Having tested the variant models individually, we proceeded to check their behaviour in com-
bination. For these purposes variants B3, B4 and M3 were discarded, since they had already
proved inadequate substitutes. Simulations from the remaining submodel combinations are

shown in Fig 10. It is evident from the steady state results in panel Fig 10A that, even using a
metabolic output signal like CMRO,, the blood flow submodel dominates behaviour. In all
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Fig 9. Comparing behaviour of simplified metabolic submodels to BrainSignals. A Steady state simulations of CMRO, for different levels of arterial
blood pressure (P,), oxygen saturation (S,0,) and partial pressure of carbon dioxide (P,CO.). Model variants M1 and M2 reproduce the BrainSignals
behaviour closely, whereas M3 exhibits substantial deviations. B Time courses of model outputs driven by real experimental data. The three plots show
values simulated from the same adult hypercapnia data as in Fig 7. For estimation of some output values, such as CBF (bottom), behaviour is dominated by
the blood flow submodel and the impact of swapping the metabolic submodels is negligible. More metabolically-relevant outputs such as CMRO, and
AoxCCO again show good correspondence for variants M1 and M2, while M3’s behaviour is very poor. (Average output distances for simulations from all

experimental subjects are given in Table 3.)

doi:10.1371/journal.pone.0126695.g009

three plots, the differences between the models with metabolic variant M1 and their counter-
parts with M2 are negligible.

For dynamic simulations, the situation is similar. The blood flow submodels again dominate
the results for most outputs. Unsurprisingly, this is best seen in the CBF trace, but even here
the distinction is less pronounced than for the steady state simulations. Differences between
the metabolic submodels are most apparent in the AoxCCO output, which is directly affected
by the rate constant values. Consistent with the tests of the metabolic models in the previous
section, the simpler variant M2 reproduces the BrainSignals behaviour slightly better than the
more complex M1. Overall, the BIM2 combination is the most successful simplified version.

For comparison, Table 4 lists the relative sizes of the combined model variants, along with
estimates of the average improvement in execution speed.

Sensitivity analysis
Sensitivity analyses were performed to compare the parameter dependencies of the original

model with those of the best simplified variant, BIM2. The models were driven with inputs re-
corded from 10 healthy adults undergoing a hypercapnia challenge. The sensitivities were
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Fig 10. Comparing submodel combinations. A Steady state simulations of CMRO, for different levels of arterial blood pressure (P,), oxygen saturation

(S20>) and partial pressure of carbon dioxide (P,CO,). Behaviour is dominated by the blood flow submodel, with different metabolic submodels producing no
discernible effect. As in the isolated tests, variant B1 is clearly superior for P, autoregulation. B Time courses of model outputs driven by real experimental
data. The three plots show values simulated from the same adult hypercapnia data as in previous figures. All models produce rather similar dynamic results.
CBF and CMRO; are both largely determined by blood flow. AoxCCO varies also with choice of metabolic submodel, although the deviations are generally
small. (Average output distances for simulations from all experimental subjects are given in Table 3.)

doi:10.1371/journal.pone.0126695.9010

Table 4. Relative sizes of the different variants of the full model.

Model State Variables Parameters Temporary Variables Speed Increase (%)
BrainSignals 12 135 40 4

B1M1 12 70 22 17

B1M2 12 69 22 19

B2M1 12 69 22 18

B2M2 12 68 22 19

Execution speed increases are calculated relative to a direct translation of the original BrainSignals model into the BCMD framework. Thus, some
improvements are seen from refactoring and optimisation even with no model reduction. Values were averaged over 1400 simulations for each model
(100 repetitions for each of 10 sets of volunteer input data and 4 steady state simulations).

doi:10.1371/journal.pone.0126695.t004
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Fig 11. Sensitivity comparison between BrainSignals and the combined variant model B1M2. Results are shown for the metabolic output AoxCCO and
the haemodynamic output V... Extended Fourier amplitude sensitivity tests (eéFAST) [55] were performed using input data recorded from 10 healthy adults
undergoing a hypercapnia challenge. Plotted points represent the median values across all 10 data sets, while error bars show the median absolute
deviation, indicating variability between subjects. Parameter names written in black are shared by both models, while those in blue are specific to
BrainSignals and those in purple to B1M2. Definitions of all parameters can be found in S1 Text.

doi:10.1371/journal.pone.0126695.g011

calculated for each subject using the eFAST method [55], which estimates both a first order
sensitivity index (how much a parameter affects model output when varied alone) and a total
sensitivity index (how influential the parameter is when interactions with all other parameters
are considered). Simulated outputs were compared against real experimental signals recorded
by NIRS and Trans-Cranial Doppler, using Euclidean distance as the measure of effect.

Results are shown in Fig 11 for the 20 most influential parameters on the output signals
AoxCCO and V., (mean blood velocity in the middle cerebral artery, a measure of blood
flow) for both models over all 10 volunteer data sets.

The simplified model has fewer parameters and its sensitivity distribution is compressed,
with more influence aggregated in the lumped parameters of the fitted linear subsystems. The
sensitivity distributions are skewed and first order effects much smaller than total, suggesting
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that the models remain ‘sloppy’. Many parameters are not well aligned with the dimensions of
behavioural variability.

It is notable that the BrainSignals V., output variance is especially poorly attributed to any
individual parameter. Many of the parameters affecting this behaviour are evidently not identi-
fiable. However, this is also in part due to degeneracy of the parameter space. There are many
infeasible combinations of these parameters, leading to failed simulations and inadequate sam-
pling of individual contributions. Once again, by compressing the parameter space, the simpli-
fied model reduces this problem and improves identifiability, though it cannot solve the
problem completely.

Discussion
Simplified models can reproduce the behaviour of BrainSignals

We have shown that it is possible to mimic the behaviour of one physiological model, Brain-
Signals, by replacing some of its more intractable subsystems with simpler approximations.
The simplification is pragmatic, and we have prioritised behavioural similarity over biophysical
correctness. Nevertheless, the model is not simply a black-box, as might be obtained by training
an artificial neural network or similar machine learning model [71]. We retain the overall
model structure, state variables and key relationships, because they represent features of the
system that we are interested in.

The ability to obtain similar behaviour in simpler ways suggests that some of the complexity
in the full model is superfluous. While that may sometimes be true, it depends on the applica-
tion for which the model is intended. Where a model detail relates to instrumental outputs or
therapeutic interventions, then its inclusion can be important. Even discovering that it does
not contribute significantly may itself be a valuable result. However, where complex models
with many difficult-to-measure parameters give rise to simple behaviour, it can make sense to
model the behaviour directly rather than being distracted by misleading precision.

In the case of BrainSignals, the ability to construct a smaller and more tractable model that
still captures important aspects of the problem structure opens up new application opportuni-
ties. For example, we are investigating the possibility of running the simplified model in near-
real time in an embedded system environment, providing dynamically-updated information to
clinicians to assist the interpretation of complex datasets and aid clinical decision making.

Validity

The simplification of BrainSignals raises concerns of validity in two key ways.

First, the abstraction away from mechanisms to behaviour risks a loss of explanatory power.
If the model only replicates observable features of the system without telling us anything about
the internal state, then it is of little value. Our simplified models preserve the state variables,
but they omit numerous details of the internal processes. We may be discarding information
that could contribute to the physiological interpretation. However, these details were removed
in part because their intractability made them difficult to interpret. Since the system evolution
is captured by the state variables, it would in principle be possible to reconstruct the other de-
tails from them. That would, of course, entail the same problems of parameterisation as were
present in the original model.

The second, and more serious, concern is that a simplified model might fail empirically. If
the assumptions used to make the simplifications are violated, then the behaviour of the model
is likely to be wrong. In particular, even though it adequately reproduces cases similar to those
from which it was fitted, it may fail in unanticipated scenarios. This would be clinically relevant
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because the injured brain is, almost by definition, in abnormal physiological states with marked
regional and temporal heterogeneity.

Eliminating detail from the model can certainly result in loss of behaviour. Several of our
candidate models exhibit such loss, notably metabolic variant M3, in which the CCO signal is
abolished, and blood flow variant B4, which does not autoregulate. We cannot guarantee that
important behaviour has not also been lost from the apparently more viable variants.

On the other hand, we also cannot guarantee that the original model behaviour was correct
in all cases—in fact, we can be confident it was not. Any model can exhibit questionable
behaviour, especially at the edge cases where the underlying assumptions fail or the parameter
uncertainties come into play. Such cases proliferate with model complexity. The BrainSignals
behaviour space is complex and fragile, with many degenerate regions. This is less true of the
reduced models, because several loci of complexity have been removed. There is thus a trade-
off between detail and stability, with no single correct point of balance in between.

Modelling complex biological systems always requires compromises, so it is important to
ensure that the assumptions made are taken into account when the model is used. This is true
for the simplified variants just as for BrainSignals and its predecessors. We can identify some
limitations a priori, when the corresponding model features have been explicitly removed. For
example, none of the simplified blood flow variants would be suitable for applications requiring
estimation of the blood vessel muscular tension. However, a more important class of errors are
those that cannot be easily predicted. These can only be assessed by testing the model against a
wide range of inputs, and being cautious about using it in situations very different from those
tested. At present the models have been tested with a range of synthetic inputs, but with physi-
ological data only from healthy adults. Extensive testing with data from patients with a range
of different pathologies is necessary before the model could be applied in a clinical setting.

A further possible objection to the simplification involves the collapsed parameters. Even if
the behaviour is correct, these parameters are divorced from reality and may not provide useful
information. We can fit generic values that give the desired ‘normal’ behaviour, but we cannot
relate these to experimental measurements, because they do not correspond to real physical
quantities. Similarly, we can fit the model to experimental or clinical data to obtain estimates of
such parameters for an individual, but the results may not have a useful interpretation.

Once again, context is paramount. In situations where the missing detail is important, the
simplified models cannot be used. However, given the uncertainties attendant upon parameter
estimates from ‘sloppy’ models [59], it may be unwise to attach too much significance to them
in any case. We have previously found that attempts to explain observations through individual
parameter fitting can lead to unrealistic predictions [72, 73]. Using simpler models should
allow for a more coherent overall picture, at the cost of a loss of detail.

Generalisation

While our simplification approach worked for BrainSignals, it is not clear that it generalises.
We expect there will be some wider applicability, but it will vary for different models. We can-
not make strong assertions without more empirical testing, but we offer the

following observations.

The initial decomposition step was useful in the case of BrainSignals because the model was
already a composite, drawing on elements of previous models to inform different functional
compartments. Aggregation of interacting subsystems is common in Systems Biology [74], and
such models often have an intuitive decomposition. For models that do not, it is unlikely that
imposing an arbitrary division will be productive.

PLOS ONE | DOI:10.1371/journal.pone.0126695 May 11,2015 21/28



@’PLOS ‘ ONE

BrainSignals Revisited

Algebraic simplification and code refactoring provide obvious benefits, but both are often
neglected in practice. The multi-scale, multi-disciplinary nature of Systems Biological model-
ling can encourage compartmentalisation rather than simplification. The language, units and
conventions appropriate for one part of a model may differ significantly from those employed
elsewhere. It is often beneficial to use a representation that accords with the ‘local language’ of
the modelled domain. On the other hand, rationalising calculations across these conceptual
boundaries can identify redundancies and lead to more efficient and comprehensible models.
This is especially so when considered in conjunction with the lumping of parameters—the
identification of parameters that can usefully be collapsed together is easier when they are ex-
pressed in commensurable terms.

Large and complex models typically build on previous code rather than implement every-
thing from scratch. There are obvious benefits to such an approach, and improving the capacity
for model reuse has been an important topic of research in recent years [75-77]. However, leg-
acy implementations can also include details that were relevant for a previous purpose but
have since been obviated, or relics of modelling strategies that failed, or features that people
now working on the code do not fully understand and are reluctant to alter. Identifying and
eliminating such redundancies demands a significant effort, for which there is typically
little incentive.

BrainSignals is conceptually simple enough for manual identification and fitting of simpli-
fied subsystems to be practical. Generalising the process to larger and more highly-connected
models may prove challenging. The choice of approximating functions is dependent on the
characteristics of the model, but the fitting process should be as transparent as possible. This is
an advantage of using linear models—there is no confusion as to what is actually being fitted.
Using a ‘black box’ function such as a neural network or kernel method [71] risks merely shift-
ing the complexity from an explicit and visible site to an implicit, hidden one.

Conclusion

The approach outlined here has allowed us to create simpler versions of our model Brain-
Signals, and may be applicable to other physiological models. Simplification makes the model
more tractable and comprehensible, and reduces the number of parameters that need to be ob-
tained or estimated. By compressing the parameter space, it may also improve the alignment
between the parameters and the behavioural variability in the model.

However, simplification also risks loss of usefulness because of the reduced detail. The lin-
earity assumptions underlying the simplification may not hold in other physiological condi-
tions. The applicability of reduced models to any particular problem must be considered with
care. The goal is always to improve physiological understanding and aid interpretation. Our
simplified models do not supplant the original model or others of even greater complexity that
may be necessary in other contexts—the very process of model reduction implies a prior re-
quirement for un-reduced models. Rather they expand the range of tools available.

Supporting Information

S1 Text. Model Definitions. Specification of all model variants used, including the defining
equations, reactions and parameter values.
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