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Abstract

We present the use of innovative machine learning techniques in the understanding of Cor-
onary Heart Disease (CHD) through intermediate traits, as an example of the use of this
class of methods as a first step towards a systems epidemiology approach of complex dis-
eases genetics. Using a sample of 252 middle-aged men, of which 102 had a CHD event in
10 years follow-up, we applied machine learning algorithms for the selection of CHD inter-
mediate phenotypes, established markers, risk factors, and their previously associated
genetic polymorphisms, and constructed a map of relationships between the selected vari-
ables. Of the 52 variables considered, 42 were retained after selection of the most informa-
tive variables for CHD. The constructed map suggests that most selected variables were
related to CHD in a context dependent manner while only a small number of variables were
related to a specific outcome. We also observed that loss of complexity in the network was
linked to a future CHD event. We propose that novel, non-linear, and integrative epidemio-
logical approaches are required to combine all available information, in order to truly
translate the new advances in medical sciences to gains in preventive measures and
patients care.

Introduction

In contrast to Mendelian disorders, complex diseases, such as Coronary Heart Disease (CHD),
are the result of complex interactions between a great number of genetic polymorphisms, each
with a small effect on risk, and a multitude of lifestyle and environmental factors and parame-
ters [1]. Despite this, the methodology used to understand the genetic basis of the disease relies
on the test of the association or linkage between a single nucleotide polymorphism (SNP) and
an intermediate phenotype of CHD or the disease itself. The problem of multiple correlations
between the risk factors is usually considered a hindrance and is not taken into account. Novel
statistical models able to account for the patterns of interconnections between the different pa-
rameters affecting disease risk are required to better understand the mechanisms involved in
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the disease and identify targets for prevention and treatment. These kinds of complex models,
able to consider all the correlations at the same time, are the basis of systems epidemiology.

Machine learning, the construction and study of algorithms able to use previous examples
to provide accurate prediction in new data, has gained popularity in problems where the rela-
tionships between the variables of interest are very complex [2]. Artificial adaptive systems
present an appealing method to address complexity [3,4]. Based on a set of simple rules, the
system attempts to learn using some of the data, and apply its “knowledge” to the rest of the
available information. Their main feature is the ability to modify their internal structure in re-
sponse to the data presented [5]. Compared to the standard statistical methods used in epide-
miology, these models are capable of analyzing all signals at the same time and to account for
non-linear relationships between all the variables considered [6].

Here we present the application of an integrative mathematical approach, based on an artifi-
cial adaptive system, as a first step towards a systems epidemiology approach for CHD. Our
main aims were to capture some of the complexity in the relationships between CHD associat-
ed phenotypes and genotypes, beyond the abilities of current reductionist approaches, and pro-
vide an illustration of the use of machine learning and graphical models for the understanding
of complex diseases in a systems level.

Methods
Population sample and pre-processing

We used the Northwick Park Heart Study II, a prospective study of 3,012 middle aged men,
and information recorded at baseline together, with the 35 genetic variables previously associ-
ated with one or more CHD related phenotypes in the same sample, reported elsewhere [7]. All
SNPs were recoded as indicator variables. The continuous variables were arranged into tertiles,
similar to the three genotypic classes used, and then also recoded as indicator variables. The
analysis with CHD was restricted to participants with complete records for all the phenotypic
variables, resulting in 102 cases and 150 randomly drawn controls to balance the case-control
ratio and make the problem computationally efficient. Our final dataset included 10 circulating
biomarkers associated with CHD, four variables for anthropometric measures also associated
with the risk of disease and 37 genetic polymorphisms associated with the CHD intermediate
phenotypes or the disease (Table 1).

Training with Input Selection and Testing (TWIST)

The TWIST protocol [8,9], a combination of artificial neural networks (ANNs) and a genetic
algorithm for resampling and feature selection was used to select the smallest combination of
indicator variables derived from optimizing the grouping of individuals compared to their ob-
served CHD status in a testing set while making sure that the small number of observations
does not affect the resampling process through an uncharacteristic subset selection. A number
of learning methods, representing the main families of algorithms available, were applied

on the training set in each successive iteration of the algorithm. The solutions better able to
classify the individuals in future CHD cases were considered as fitter and they were overrepre-
sented in the next generation (S1 Appendix).

Graphical representation

Following variable selection, the indicator variables were arranged into an undirected tree
graph, called the minimum spanning tree (MST) [8,10,11] using ANNs to optimize the links
between the most similar indicator variables, and removing connections that produce loops in
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Table 1. Names and abbreviations of phenotypes and polymorphisms included in the analysis.

Variable Abr. used Indicator variable selected

1 2 3
Smoking (yes/no) smoking yes
Age age X X
Body Mass Index bmi X X X
Systolic Blood pressure sysbp X X
Diastolic Blood pressure diabp X X X
Triglycerides tg X
Total Cholesterol chol X X
Low Density Lipoprotein Idl X X
High Density Lipoprotein hdl X X
Apolipoprotein B apob X X
Apolipoprotein A apoa X X
Lipoprotein-associated phospholipase Ippla2
C-reactive protein crp X X
Factor VII coagulant activity viic X X
Fibrinogen fib
ALX homeobox 4 gene rs729287 ALX4 X
Angiopoietin-like 4 gene E40K ANGPTL4 X
Apolipoprotein B gene rs585967 APOB
Apolipoprotein E gene APOE X X
Apolipoprotein-A5-A4-C3-A1 gene cluster rs6589566 ApoA5-A4-C3-A1 X
Arachidonate 5-lipoxygenase-activating protein gene rs3885907 ALOX5AP X
Calpain 10 gene rs4676411 CAPN10
Cathepsin S gene rs11576175 CTSS X
Cholesteryl ester transfer protein gene rs708272 CETP X
Coagulation factor VII gene rs6046 F7 X
Complement component 2 gene rs7746553 Cc2
Complement component 3 gene rs344550 C3
C-reactive protein gene rs3093077 CRP X X X
Cyclin-dependent kinase inhibitor 2A/B (Chr9p21) rs10811661 CDKN X X
Exostosin 2 gene rs3740878 EXT2 X X
Fibrinogen alpha chain gene rs4508864 FGA X X
Glucokinase (hexokinase 4) regulator gene rs780094 GCKR X X
Glutathione S-transferase mu 3 gene rs3814309 GSTM3 X X
Glutathione S-transferase mu 4 gene rs1537236 GSTM4 X X
Hepatic lipase gene rs1800588 LIPC X X X
Insulin gene rs689 INS
Insulin-like growth factor 2 gene 1252T/C Alul IGF2 X X
Interleukin 1 receptor antagonist gene rs397211 ILRN1 X X
Interleukin 18 receptor accessory protein gene rs11465699 IL18RAP X
Interleukin 6 receptor gene rs4075015 IL6R
Lipoprotein lipase gene rs301 LPL X X
Low density lipoprotein receptor gene rs6511720 LDLR
Low density lipoprotein receptor-related protein 5 gene rs11602256 LRP5 X
Nitric oxide synthase 3 gene rs3918232S3 NOS3 X
Phospholipase A2, group VII gene rs1051931 PLA2G7 X X
Platelet/endothelial cell adhesion molecule gene rs1131012 PECAM1 X X X

(Continued)
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Table 1. (Continued)

Variable Abr. used Indicator variable selected

1 2 3
Proprotein convertase subtilisin/kexin type 9 gene rs11591147 PCSK9 X
Protein C receptor gene rs867186 PROCR X
Toll-like receptor 4 gene rs11536857 TLR4 X X
Transforming growth factor, beta 1 gene rs4803455 TGFB1 X X
Uncoupling protein 2 gene rs11602906 uUcP2
Uncoupling protein 3 gene rs1685354 UCP3 X X

The phenotypes were selected as established risk factors or markers of CHD and their associated polymorphisms. [7]. Only the single top SNP was
included for each gene considered. Before analysis each SNP was recoded as three indicator variables. To maintain the three variables per genotype
coding, the continuous phenotypes were transformed to tertiles (S1 Table). The full list of phenotypic tertiles and indicator variables used can be found in
S2 Table. The three last columns show the generated indicator variables selected from the TWIST procedure as predictive of CHD. Out of the original 150
variables, 75 were retained. Continuous traits in tertiles and genotypes as three genotyping classes. In the abbreviations, index numbers after the gene
names refer to common homozygote (1), heterozygote (2) and rare homozygote (3). The APOE gene polymorphism was coded so that 1 were the E2
carriers, 2 were those within the E3E3 category and 3 were the E4 carriers. Smoking is a dichotomous variables of yes or no smoking.

doi:10.1371/journal.pone.0125876.t001

the graph (S2 and S3 Appendices). The Maximally Regular Graph (MRG) [12] including circu-
lar links between the indicator variables previously eliminated from the MST was also con-
structed. The complexity of the generated MRG was measured using an index of “hubness”
named H, taking into account the presence of highly connected nodes [11], and a measure of
topological entropy [13]. The Meta-MST, is a variant of the MST showing the most stable con-
nections represented in 9 or more of the 10 MSTs constructed after randomly excluding 10%
of the records. A more detailed description of the methods can be found in the appendix and
supporting information.

Results
Variable Selection Using the TWIST Procedure

Table 1 shows all the variables considered during the variable selection procedure. The indica-
tor variables used and their ranges are shown in S1 and S2 Tables. From the 150 indicator vari-
ables included in the analysis, 75 were retained as predictive of a CHD event (Table 1). The
TWIST procedure used excluded a number of phenotypic categories, such as young age, no
smoking (including both ex- and never-), the lowest tertiles of ApoB, total cholesterol, systolic
blood pressure and CRP, and highest tertiles of ApoAl, factor VII complement, triglycerides
and HDL. The intermediate tertiles of LDL and triglyceride levels were also not part of the se-
lected indicator variables. All categories representing both Lp-PLA2 and fibrinogen proteins
were removed during selection. None of the indicator variables for the INS, IL6R, UCP2, C3,
LDLR, CAPNI10, APOB and APOC2 genes were selected. Other genotyping classes removed
were the common homozygous categories for IGF2, associated with higher ApoAI, CDKN2A
locus (Chromosome 9p21), associated with lower CHD risk, and LPL, associated with lower
CHD risk traits, the rare homozygous categories for PCSK9, protective for CHD, the GSTM4,
ILRNI, TGFBI and GSTM3 genes, associated with higher CHD risk traits, and the heterozy-
gous categories for GCKR, EXT2, the fibrinogen locus, PLA2G7, UCP3, and TLR4. Some loci
were represented by a single genotypic class, the common genotype for CETP, F7, ALX4, and
ALOXS5AP, the heterozygote genotype for ILISRAP, and the APOA5-A4-C3-A1 gene cluster,
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Fig 1. Minimum Spanning Tree (MST) for the TWIST selected variables. Minimum Spanning Tree (MST) for variables selected as informative for CHD by
TWIST. Presence or absence of a CHD event during follow-up is included as two separate nodes in the tree. Only positive associations between the nodes,
optimized for all other available connections, are represented in the graph. The numbers on the edges are a measure of similarity between the variables.
Most risk factors considered are situated between the two nodes with paths able to reach either. A smaller number of parameters are characteristic for the
Event or No_Event categories with their paths unable to reach one of the Event nodes without passing the other. Genotypes are coded as 1 for the common
homozygotes, 2 for heterozygotes and 3 for the rate homozygotes. Phenotypes are in tertiles with 1 the tertile of lowest values.

doi:10.1371/journal.pone.0125876.g001

and the rare homozygote category for PROCR, LRP5 and CTSS. The final list of factors retained
can be seen in S3 Table while those removed are in S4 Table.

The Auto Contractive Map

Following selection, we used the AutoCM to represent the main connections between the indi-
cator variables. Fig 1 shows the MST for the TWIST selected indicator variables, CHD yes
(“Event”) or no (“No Event”) and the structure of the connections between them. Both Event
and No Event were nodes in the graph. The absence of an event was characterized by low dia-
stolic blood pressure, triglycerides, and BMI, and a number of genetic polymorphisms, such as
CETP, CRP, and GSTM4 common homozygotes. The CTSS and CDKN2A loci were also found
in the area but their correlation to the other nodes was weak. In contrast, presence of a CHD
event within the follow up period was characterized by advanced age, smoking, high BMI, sys-
tolic and diastolic blood pressure, and CRP. Genetic polymorphisms present in this part of the
tree included the rare homozygotes of CRP, and the heterozygotes of CDKN2A, while the
NOS3 and UCP3 polymorphisms were weakly connected within this area of the network. Most
of the indicator variables can be found somewhere between the Event and No_Event nodes,
suggesting that these factors are not exclusive to either of the CHD categories. Two polymor-
phisms, one from the fibrinogen cluster and the other from the LIPC gene are situated on the
path linking the two CHD states. The rs4508864 SNP of the fibrinogen beta chain gene is

the center of the graph, the point with the minimum distance to all other nodes. The LIPC
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Fig 2. Meta-MST graph showing the connections represented in at least 9 of the 10 MSTs constructed
after randomly excluding 10% of the records. In contrast to statistical testing, where small sample sizes
lead to loss of statistical power for the identification of associations, the method used here is affected in terms
of the stability of the proposed solution. Despite the smaller Meta-MST graph compared to the full MST, the
main core of the graph with the two event nodes at opposite sides of the LIPC gene and fibrinogen locus
nodes and most variables between them remains unchanged.

doi:10.1371/journal.pone.0125876.9002

polymorphism on the other hand, is the central hub of the entire network with 11 branches ra-
diating away from it. These highly connected nodes are important components of the model
and can either coordinate, or be affected by, the processes around them, and organize the inter-
actions between different parts of the system [14]. The Meta-MST supports the stability of the
fibrinogen and LIPC genes as intermediates between event and no event and the importance of
the CRP and CETP nodes to protection from CHD (Fig 2).

We constructed two further maps of the indicator variable set, for those that went on to de-
velop CHD and those that did not (Fig 3). In this case we focused on the H index (H) and the
topological entropy (Eg) as measures of overall complexity of the network. For the part of the
sample that went on to develop a CHD event (H = 0.373, Eg = 40.5), the MRG shows two dis-
tinct loops, one between the top tertiles of ApoB, total and LDL-cholesterol, and one between
genotypes of the PLA2G7, PECAM1, APOE, LIPC and the fibrinogen cluster of genes. In com-
parison, the MRG of those free of CHD shows an increase of complexity as measured by the
entropy but not the H index (H = 0.375, Eg = 42.6). The previously seen loops are still present,
but now the connections between the SNPs are much more numerous than before. A number
of additional polymorphisms in CRP, GSTM3, GSMT4, GCKR, UCP3, ILRN1, ALX4, and EXT2
are now part of the central diamond-like structure of the MRG.

Discussion

Using a number of CHD classical risk factors and genetic polymorphisms previously associated
with them, we applied a feature selection procedure designed to account for non-linear associa-
tions between the variables. The selected indicator variables were then arranged in a map repre-
senting the connections between all the nodes at the minimum energy state of the network.
The maximum complexity map was considered for cases and controls separately. We propose
that modern machine learning approaches are able to provide information on the complex as-
sociations between risk factors, reveal the complexity in the system, and inform basic science
on testable hypotheses.

TWIST

Selection of the most informative variables from the original set was done using the TWIST
system. All phenotypes were represented by at least a single category in the selected model
except fibrinogen and Lp-PLA2. SNPs directly linked to plasma Fibrinogen (rs4508864) and
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Fig 3. Maximally Regular Graph (MRG) for those that developed CHD and those that remained CHD free during follow-up. Separate Maximally
Regular Graphs (MRG) for those that a) developed or b) remained free from CHD during the study 10 year follow-up. While the Minimum Spanning Tree
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remained healthy.

doi:10.1371/journal.pone.0125876.g003

PLOS ONE | DOI:10.1371/journal.pone.0125876 May 7, 2015 7/16



@’PLOS ‘ ONE

Networks in CHD Genetics

Lp-PLA2 activity (rs1051931), were retained in the model. Both loci have been previously asso-
ciated with a number of cardiovascular related phenotypes and diseases [15], suggesting that
their correlation with CHD is likely due to pleiotropic effects through other, as yet unmapped,
pathways. A number of parameters were also dropped from the final set of indicator variables,
including no-smoking, young age, low ApoB, CRP and systolic blood pressure, and high
ApoAl and HDL. Although, these indicator variables are statistically correlated with CHD,
their removal from the final set and the inclusion of the opposite complementary feature was
due to the redundancy of information between the two classes. In contrast, some of the vari-
ables considered maintain all indicator variables in the selected set, signifying the presence of
interactions with other variables included. In non-linear systems opposite indicator variables
can act differently according to the positive or negative sign of another indicator, explaining
why some variables classes are not redundant as would be the norm in a linear setting.

For a number of genes, all three SNP genotypes were excluded from the model. Although
some of these loci are well established risk factors for CHD, it is possible that the inclusion of
phenotypes through which their effect is manifested leads to their removal. This is not unex-
pected since the genetic variants are more distant to the disease, compared to the intermediate
traits they affect, and their CHD predictive ability can be fully accounted by them. For other
SNPs, both homozygotes were removed from the model but not the heterozygotes. Over-domi-
nance is possible for certain phenotypes, but it is usually considered as arising from chance
when protein levels or action are considered, although marginal effects of interactions, or
memberships of genes in pathways not included in the present analysis is possible.

Of course, a large number of feature selection methods have been proposed [16] making use
of both theoretical and empirical criteria [17]. Here the TWIST system minimizes the classifi-
cation rate within the confusion matrix, although other cost functions can be used, including
the popular root mean square error. The key advantage of the method used is the resampling
of the data in such a way that the assumption for the training and testing set are met, irrespec-
tive of the rather low number of individuals available.

The Auto Contractive Map

The MST revealed that most of the indicator variables were between the two states of Event
and No Event. Although these variables are correlated with subsequent presence or absence of
an event, and this correlation can sometimes be high, the relationship is conditional on interac-
tions or other complex processes operating in the organism [18]. The position of the nodes

in the tree is based on the strength of their correlation to all other variables of the tree and how
these arrange to produce single paths that link all the variables. Parameters situated between
the two CHD nodes can reach either, with the weights along the path quantifying how favor-
able the path is. The parameters stemming away from the Event and No Event nodes have

a direct path of association with future disease, sometimes through other related parameters,
and this path can reach only one of the disease nodes without passing through the other.

Two nodes are directly on the path between the Event and No_Event categories, the fibrino-
gen beta chain gene and LIPC. Fibrinogen has been described as a possible factor linking vascu-
lar pathology with Alzheimer’s disease [19]. LIPC encodes hepatic triglyceride lipase and the
variant typed is in the promoter of the gene and is believed functional by affecting transcription
and thus gene expression [20]. Hepatic lipase is considered as a major factor in HDL metabo-
lism and the remodeling of lipoproteins and their uptake by cell surface receptors [21]. The
promoter variation included in the model has been suggested as both pro- and anti-atherogenic
dependent on the underlying lipid profile [22] [23], which supports its position in the tree.
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The common CETP homozygotes and the low diastolic blood pressure category, were di-
rectly associated with the No_Event node. The rare homozygotes of the CTSS gene are found
in the same branch as the low level triglycerides and BMI categories. This gene, is coding for
the cathepsin-S protein, implicated in vascular and metabolic complication of obesity [24],
which our results suggest might also play a role in CHD protection.

Systolic blood pressure is central to the association of events with the other nodes, with
branches linking it to diastolic blood pressure, BMI, and UCP3. The role of pulse pressure in
CHD is well established [25]. The proximal node to UCP3 is the NOS3 gene, coding for the ni-
tric oxide synthase-3 protein, which is believed to affect blood pressure through regulation of
vascular tone [26]. Although no direct relationship between UCP3 and NOS3 has been ob-
served, as proposed here, both are associated with sports performance [27,28] suggesting a
common factor between the two and a link between potential athletic performance and health.

A branch stemming away from the high blood pressure and No_Event nodes contains a
number of inflammation and stress response mechanisms. C-reactive protein (CRP) is an
acute phase protein rising in response to inflammation or tissue damage. GSTM4 codes for a
Mu-Class glutathione S-transferase responsible for detoxification of electrophilic compounds
[29], while the CDKN2A locus works as a cell growth regulator. Neither of the loci has been
previously shown to function in association with CRP, although mRNA expression of inflam-
mation-related genes in leukocytes might be able to upregulate CDKN-1A, at least in pre-
eclampsia [30].

To summarize the MST findings, our results support the idea that low levels of TG, adiposi-
ty and diastolic blood pressure are associated with low risk, as are genes with a favorable re-
sponse to stress. At the opposite end, high blood pressure, especially systolic blood pressure,
and inflammation, or stress in more general terms, are closely related to a CHD event. Most
lipids phenotypes, as well as a number of other factors, are situated somewhere between the
two and their relationship with risk is conditional to other risk factors.

The Maximally Regular Graph

Comparing the dynamics of those that went to develop heart disease to those that remained
CHD free showed that the disease state was characterised by a previous loss of complexity as
measured by the entropy of the graph. The H index though, was very similar between the two,
suggesting that the difference of complexity seen was not due to changes of the graph hubs, but
was based on a more general change in the distribution of connections. In addition to the mea-
sures used here a number of other methods to quantify structural complexity are available.
These range from the most simple, such as counting the number of nodes and edges, to more
complex measures, such as vertex degrees, shortest paths, or the more recent Eigenvalue-based
measures [31-33]. Different measures of complexity do not always agree, even when they be-
long in the same general category [34], and the relationships between them are just starting to
being fully explored [35]. Generally, there is no single best measure to describe complexity in a
graph and the choice usually relies on the application.

In the MRG generated, those that went on to develop the disease show two simple loops,
one between lipid phenotypes and one between genes involved in lipid metabolism and inflam-
mation. Those that remained CHD free exhibit the same loops but much more complex, having
multiple connections per indicator variable and an increased number of SNPs in the central
complex structure. The results obtained suggest that we observe the loss of homeostasis. All liv-
ing systems are balanced with interconnecting and frequently overlapping pathways. These
networks carry the ability to respond to changes of state by attaining a new balance, or return-
ing the system to its initial state through a series of complementary processes. Loss of this
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ability leaves the systems vulnerable to changes that are incompatible with normal function.
The failure of the algorithm to find higher order structures within the data could indicate the
break-down of the coordination of the system and the progressive vulnerability of the organism
to disease.

Limitations

A number of limitations are evident in our study. The biggest limitation was the low number of
events considered. As the problem was approached through an optimization procedure, the
small sample size does not affect our results in terms of statistical power but through the stabili-
ty of the proposed solution. This is evident from the much smaller meta-MST compared to the
original graph, showing only the portion of the MST that remained stable, in at least 9 of the 10
graphs we constructed by resampling. A larger, independent dataset will help with the stability
of the inferred networks and selection, removing some of the noise and any chance links that
might have been included in the graph.

Conclusions

The shift of focus from isolating single causes of disease to the use of complex dynamic models
able to account for the disease at multiple levels of organisation is challenging the current para-
digm of epidemiology, and points towards more integrative methods of a systems epidemiology
approach [36]. Although we focus on CHD, other cardiometabolic diseases, such as type 2 dia-
betes and stroke, could be potentially included in such models [37] in order to study the inter-
actions between them and their common pathways. The use of complex systems models in
epidemiology has been used successfully in infectious diseases source identification [38], sus-
ceptibility, and transmission [39,40], but still has limited application in non-communicable age
related complex diseases. Recent advances on the organisation of complex networks will signif-
icantly help our understanding and interpretation of these models [41], and more importantly,
how changes in a specific biological processes cascade to a disease phenotype and ultimately a
CHD event [42]. Our results suggest that this kind of approach can provide novel insights into
the problem of non-communicable age related complex diseases such as 1) the ability to con-
cisely describe the associations of all risk factors between them and with the disease, 2) the con-
text-dependent link between most risk factors with the disease state and 3) the loss of network
complexity prior to a CHD event. We believe that this approach will contribute to a better un-
derstanding of CHD and provide new testable hypothesis.

Additional Methods
Study Design and Phenotypic Measures

The Northwick Park Heart Study II is a prospective study of 3 012 middle aged men, sampled
from nine UK general practices between 1989 and 1994. All men were free from disease at the
time of recruitment and aged between 50-64 years[43]. Information on lifestyle habits, BMI,
blood pressure, and more than 15 circulating blood factors associated with CHD risk were re-
corded at baseline, and for some, on subsequent prospective follow-ups. DNA was obtained at
the time of recruitment from 2 775 men. In the first 10 years of follow-up, 296 definite fatal or
non-fatal CHD events had occurred. Details of recruitment, measurements, follow-up and
definitions of incident disease have been reported elsewhere [43]. The study was approved by
a UCL review committee and the subjects gave informed consent.
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Genotyping

A customized Illumina 768 SNP genotyping array was assembled to comprehensively capture
common genetic variation in more than 76 genes involved in pathways linked to CHD risk as
described previously [7]. These were supplemented with information on 173 SNPs in a further
82 genes previously typed in this data set. Missing genotypes were imputed using PHASE with
the most likely genotype considered as the true genotype for the individual [44].

Associations and Data Recoding

After filtering for deviation from Hardy Weinberg equilibrium (p<5x107) and minor allele
frequency 0.1%, 614 SNPs were tested for associations with 12 blood biomarkers of which six
were protein phenotypes (CRP, fibrinogen, apoAl, apoB, Lp-PLA2 and factor VII) and six
were non-protein metabolic phenotypes (total-cholesterol, HDL- and calculated LDL-choles-
terol, triglycerides, homocysteine and folate), identifying 140 SNP-phenotype associations in
37 different genetic loci [7]. Testing for independence between the signals, we found that the
number of independent signals was very close to the number of genes in which the signals were
located [7]. For simplicity, and to avoid the fragmentation of information per gene locus, we
kept a single SNP per locus even if multiple SNPs showed evidence for independent associa-
tions. Therefore, the number of signals was reduced by selecting only the SNP with the smallest
p-value of each locus, giving us a total of 37 genotypic variables. Full description of the associa-
tion between all the available polymorphisms and the phenotypes considered can be found in
Drenos et al 2009 [7].

All SNPs were subsequently recoded as indicator variables, thus generating three new vari-
ables for each SNP. Similarly, the continuous phenotypic variables were first arranged into ter-
tiles, to correspond to the three genotypic classes used, and then also recoded as indicator
variables of low intermediate and high levels of the trait with 1 denoting membership of the in-
dividual in this category and 0 otherwise. The choice of coding was based on the properties of
the algorithms used and the specific features of the graph that we wanted to emphasize. The
analysis with CHD was restricted to those participants with complete records for all the pheno-
typic variables considered, thus giving us a set of 102 cases (mean age = 56.96 25-75% = 54-60
years of age) and a randomly drawn subset of 150 controls (mean age = 55.8 25-75% = 53-59
years of age) for a more balanced dataset.

Analysis
TWIST

All analysis was completed using algorithms and applications developed by Semeion Research
Centre of Sciences of Communication in Rome. To include only the most informative of the
available variables we used a genetic algorithm, called the Genetic Doping Algorithm [45],
which uses the principles of evolution to optimize the training and testing sets and to select the
minimum number of variables capturing the maximum amount of available information in the
data. Contrary to statistical linear models using indicator variables, TWIST does not require
the omission of a reference category. This is due to the focus of the artificial neural network on
prediction rather than estimation. If some of the indicator variables can completely account for
the predictive ability of the others, those will be excluded by the algorithm during the selection
process. The method is called the TWIST protocol and has been previously applied successfully
in similar problems [8,9]. The advantages of the approach are the sub-setting of the data in

two representative sets for training and testing, which is problematic in small datasets, and the
use of a combination of criteria to determine the fit of the model. TWIST is comprised of two
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systems, the T&T for resampling of the data and the IS for feature selection, both using artifi-
cial neural networks (ANNs). The T&T system splits the data into training and testing sets in
such a way that each subset is statistically representative of the full sample. This non-random
selection of subsets is crucial when small samples are considered and the selection of non-
characteristic and extreme subsets is likely. The training phase is making use of a combination
of 13 learning machines representing the main methodologies in the field including logistic re-
gression, random forests, support vector machines and naive Bayes (a full list can be found in
S1 Appendix). The IS system uses the training and testing subsets produced to identify a vector
of 0s and 1s, describing the absence or presence of an indicator variable, that is able to optimize
the categorization of the individuals in cases and controls compared to their observed CHD
status. For this, a population of vectors, with each vector a combination of the indicator vari-
ables, is allowed to “evolve” through a number of generations in order optimize the prediction
of CHD, as a natural population evolves to optimize fitness under a specific set of environmen-
tal conditions. The vectors with the best predictive ability are overrepresented in the next gen-
eration while a smaller number of sub-optimal vectors are maintained to give rise to the
following generation. Some instability, in the form of low predictive ability vectors, is intro-
duced in the process to avoid the problem of finding a solution which is optimal under a nar-
row set of conditions, also known as a local optimum. This step ensures that the attributes do
not include redundant information or noise variables that will decrease the accuracy of the
map and increase both the computing time and the amount of examples necessary during
learning. In addition, feature selection permits the easier interpretation of the graph of relation-
ships between the variables in respect to their arrangement compared to the CHD nodes. The
TWIST approach is described in detail in S1 Appendix

Auto-CM

Following feature selection, the indicator variables considered as informative were arranged
into an undirected map of connections using an adaptive model, the Auto Contractive Map
(AutoCM) [8,10,11]. The AutoCM produces a matrix of the correlations between the variables
in the dataset, including information on the complex dynamics of adaptive interactions in the
form of weights (w) between the variables [10]. In this case correlation does not refer to a linear
relationship between the variables, as in the Pearson product-moment correlation, but to the
similarity between the binary vectors of the indicator variables described as the degree of mem-
bership of the two nodes in the same fuzzy set. The relationship between the two variables can
be said to be null or very low when w <.33, quite low when 0.33 < w < 0.66, quite high when
0.66 < w < 0.84, and very high when w > 0.84. Based on this definition of correlation, only
positive associations between the nodes are presented in the graphs. Starting from a connected,
weighted graph, linking all variables to all others, the algorithm constructs a tree with variables
as nodes and their distances as edges, called the minimum spanning tree (MST) [46]. This in-
cludes all the variables considered, linked in a way that the energy structure of the system is
minimized, or if weights are correlation measures, in a way that these are maximized for all the
connections in the graph [47,48]. The MST algorithm does not map all the correlations present
in the data but only the simplest view of the strongest correlations present between the nodes
in the system in a way that all the nodes are connected to another node and only a single path
is available to travel between two nodes (no loops). Also, each connection between nodes is ad-
justed for all the other connections between all the nodes included in the graph through an op-
timization of the square matrix containing all correlations between the indicator variables. In
the MST, every link able to generate a cycle into the graph is eliminated, irrespective of its
strength of association, resulting in a simplified graph [11]. All three algorithms for graphs
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construction are based on the architecture of ANNs with a number of unique features. A de-
tailed description of the algorithm and its comparison with other methods can be found in S2
and S3 Appendices.

MRG

The Maximally Regular Graph (MRG) [12] is the graph of highest complexity among all the
graphs generated during calculation of the MST. With the MRG, links, previously removed
from the MST, are now re-introduced in the graph. The number of these new links is propor-
tional to the overall number of associations between the variables and hence an indicator of its
overall complexity. In this case the complexity is measured though the H function reflecting
the “hubness” of the graph (S4 Appendix) and a topological entropy taking into account the
mean topological complexity, as the ratio of the number of the arcs to the number of the prun-
ing cycles necessary to delete the graph, and the information contribution of each node to the
global information of the graph [11]. The MRG is built in a process that maximizes the
number of added connections while maintaining the structure of the original tree and pro-
duces structures where each node has the same number of other connected nodes (details in
S4 Appendix).

Meta-MST

The Meta-MST, is a variant of the MST showing the most stable connections represented in at
least 9 out of 10 times the MST was reconstructed after randomly excluding 10% of the records.
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S$2 Appendix. Auto Contractive Map (Auto-CM).
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(XLSX)

PLOS ONE | DOI:10.1371/journal.pone.0125876 May 7, 2015 13/16


http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0125876.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0125876.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0125876.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0125876.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0125876.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0125876.s006
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0125876.s007
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0125876.s008

@’PLOS ‘ ONE

Networks in CHD Genetics

Author Contributions

Conceived and designed the experiments: FD EG MB SH. Performed the experiments: FD EG
MB. Analyzed the data: FD EG MB. Contributed reagents/materials/analysis tools: MB SH.
Wrote the paper: FD EG MB SH.

References

10.

11.

12

13.

14.

15.

16.

17.

18.

19.

Swami M (2009) Systems genetics: Networking complex traits. Nat Rev Genet 10: 219-219.

Almeida JS (2002) Predictive non-linear modeling of complex data by artificial neural networks. Current
opinion in biotechnology 13: 72—-76. PMID: 11849962

Buscema MGE (2009) Artificial Adaptive Systems in Medicine: New Theories and Models for New Ap-
plications: Bentham Science Publishers.

Tastle WJ (2013) Data Mining Applications Using Artificial Adaptive Systems. Springer Science+Busi-
ness Media New York

Hunt KJ, Sbarbaro D, Zbikowski R, Gawthrop PJ (1992) Neural networks for control systems—A sur-
vey. Automatica 28: 1083-1112.

Grossi E (2010) Artificial Adaptive Systems and predictive medicine: a revolutionary paradigm shift. Im-
munity & Ageing 7: S3.

Drenos F, Talmud PJ, Casas JP, Smeeth L, Palmen J, Humphries SE, et al. (2009) Integrated associa-
tions of genotypes with multiple blood biomarkers linked to coronary heart disease risk. Human Molecu-
lar Genetics 18: 2305—-2316. doi: 10.1093/hmg/ddp159 PMID: 19336475

Buscema M, Grossi E, Intraligi M, Garbagna N, Andriulli A, Breda M (2005) An optimized experimental
protocol based on neuro-evolutionary algorithms—Application to the classification of dyspeptic patients
and to the prediction of the effectiveness of their treatment. Artificial Intelligence in Medicine 34:
279-305. PMID: 16023564

Grossi E, Buscema M (2007) Introduction to artificial neural networks. European Journal of Gastroen-
terology & Hepatology 19: 1046-1054 1010.1097/MEG.1040b1013e3282f1198a1040. doi: 10.1007/
s00535-009-0024-z PMID: 19308310

Buscema M, Grossi E (2008) The semantic connectivity map: an adapting self-organising knowledge
discovery method in data bases. Experience in gastro-oesophageal reflux disease. International Jour-
nal of Data Mining and Bioinformatics 2: 362—404. PMID: 19216342

Buscema M, Grossi E, Snowdon D, Antuono P (2008) Auto-Contractive Maps: An Artificial Adaptive
System for Data Mining. An Application to Alzheimer Disease. Current Alzheimer Research 5: 481-vii.
PMID: 18855590

Buscema MBM, Sacco PL (2010) Auto-contractive Maps, the H Function, and the Maximally Regular
Graph (MRG): A New Methodology for Data Mining; Capecchi V, Buscema M, Contucci P, Damore B,
editors. Dordrecht: Springer. 227-275 p.

Buscema M, Penco S, Grossi E (2012) A Novel Mathematical Approach to Define the Genes/SNPs
Conferring Risk or Protection in Sporadic Amyotrophic Lateral Sclerosis Based on Auto Contractive
Map Neural Networks and Graph Theory. Neurology Research International 2012: 13.

Barabasi A-L, Gulbahce N, Loscalzo J (2011) Network medicine: a network-based approach to human
disease. Nat Rev Genet 12: 56—68. doi: 10.1038/nrg2918 PMID: 21164525

Becker KG, Barnes KC, Bright TJ, Wang SA (2004) The genetic association database. Nat Genet 36:
431-432. PMID: 15118671

Saeys Y, Inza |, Larrafiaga P (2007) A review of feature selection techniques in bioinformatics. Bioinfor-
matics 23: 2507-2517. PMID: 17720704

Smith AJP, Palmen J, Putt W, Talmud PJ, Humphries SE, Drenos F (2010) Application of statistical and
functional methodologies for the investigation of genetic determinants of coronary heart disease bio-
markers: lipoprotein lipase genotype and plasma triglycerides as an exemplar. Human Molecular Ge-
netics 19: 3936-3947. doi: 10.1093/hmg/ddq308 PMID: 20650961

Lawson HA, Cady JE, Partridge C, Wolf JB, Semenkovich CF, Cheverud JM (2011) Genetic Effects at
Pleiotropic Loci Are Context-Dependent with Consequences for the Maintenance of Genetic Variation
in Populations. PLoS Genet 7: e1002256. doi: 10.1371/journal.pgen.1002256 PMID: 21931559
Cortes-Canteli M, Paul J, Norris EH, Bronstein R, Ahn HJ, Zamolodchikov D, et al. (2010) Fibrinogen

and beta-Amyloid Association Alters Thrombosis and Fibrinolysis: A Possible Contributing Factor to
Alzheimer's Disease. Neuron 66: 695—-709. doi: 10.1016/j.neuron.2010.05.014 PMID: 20547128

PLOS ONE | DOI:10.1371/journal.pone.0125876 May 7, 2015 14/16


http://www.ncbi.nlm.nih.gov/pubmed/11849962
http://dx.doi.org/10.1093/hmg/ddp159
http://www.ncbi.nlm.nih.gov/pubmed/19336475
http://www.ncbi.nlm.nih.gov/pubmed/16023564
http://dx.doi.org/10.1007/s00535-009-0024-z
http://dx.doi.org/10.1007/s00535-009-0024-z
http://www.ncbi.nlm.nih.gov/pubmed/19308310
http://www.ncbi.nlm.nih.gov/pubmed/19216342
http://www.ncbi.nlm.nih.gov/pubmed/18855590
http://dx.doi.org/10.1038/nrg2918
http://www.ncbi.nlm.nih.gov/pubmed/21164525
http://www.ncbi.nlm.nih.gov/pubmed/15118671
http://www.ncbi.nlm.nih.gov/pubmed/17720704
http://dx.doi.org/10.1093/hmg/ddq308
http://www.ncbi.nlm.nih.gov/pubmed/20650961
http://dx.doi.org/10.1371/journal.pgen.1002256
http://www.ncbi.nlm.nih.gov/pubmed/21931559
http://dx.doi.org/10.1016/j.neuron.2010.05.014
http://www.ncbi.nlm.nih.gov/pubmed/20547128

@’PLOS ‘ ONE

Networks in CHD Genetics

20.

21,

22,

23.

24,

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

Isaacs A, Sayed-Tabatabaei FA, Njajou OT, Witteman JCM, van Duijn CM (2004) The -514C -> T he-
patic lipase promoter region polymorphism and plasma lipids: A meta-analysis. Journal of Clinical En-
docrinology & Metabolism 89: 3858—-3863.

Bensadoun A, Berryman DE (1996) Genetics and molecular biology of hepatic lipase. Curr Opin Lipidol
7:77-81. PMID: 8743899

Brunzell JD, Zambon A, Deeb SS (2012) The effect of hepatic lipase on coronary artery disease in hu-
mans is influenced by the underlying lipoprotein phenotype. Biochimica Et Biophysica Acta-Molecular
and Cell Biology of Lipids 1821: 365-372.

Ordovas JM, Corella D, Demissie S, Cupples LA, Couture P, Coltell O, et al. (2002) Dietary Fat Intake
Determines the Effect of a Common Polymorphism in the Hepatic Lipase Gene Promoter on High-
Density Lipoprotein Metabolism: Evidence of a Strong Dose Effect in This Gene-Nutrient Interaction in
the Framingham Study. Circulation 106: 2315-2321. PMID: 12403660

Naour N, Rouault C, Fellahi S, Lavoie M-E, Poitou C, Keophiphath M, et al. (2010) Cathepsins in
Human Obesity: Changes in Energy Balance Predominantly Affect Cathepsin S in Adipose Tissue and
in Circulation. Journal of Clinical Endocrinology & Metabolism 95: 1861—-1868.

Lewington S, Clarke R, Qizilbash N, Peto R, Collins R, Prospective Studies C (2002) Age-specific rele-
vance of usual blood pressure to vascular mortality: a meta-analysis of individual data for one million
adults in 61 prospective studies. Lancet 360: 1903—1913. PMID: 12493255

Matsunaga T, Gu N, Yamazaki H, Tsuda M, Adachi T, Yasuda K, et al. (2009) Association of UCP2 and
UCP3 polymorphisms with heart rate variability in Japanese men. Journal of Hypertension 27:
305-313. doi: 10.1097/HJH.0b013e32831ac967 PMID: 19155787

Dhamrait SS, Williams AG, Day SH, Skipworth J, Payne JR, World M, et al. (2012) Variation in the un-
coupling protein 2 and 3 genes and human performance. Journal of Applied Physiology 112:
1122-1127. doi: 10.1152/japplphysiol.00766.2011 PMID: 22241057

Gomez-Gallego F, Ruiz JR, Buxens A, Artieda M, Arteta D, Santiago C, et al. (2009) The-786 T/C poly-
morphism of the NOS3 gene is associated with elite performance in power sports. European Journal of
Applied Physiology 107: 565-569. doi: 10.1007/s00421-009-1166-7 PMID: 19701646

Comstock KE, Johnson KJ, Rifenbery D, Henner WD (1993) Isolation and analysis of the gene and
cDNA for a human Mu class glutathione S-transferase, GSTM4. Journal of Biological Chemistry 268:
16958-16965. PMID: 8349586

Lok CAR, Jebbink J, Nieuwland R, Faas MM, Boer K, Sturk A, et al. (2009) Leukocyte Activation and
Circulating Leukocyte-Derived Microparticles in Preeclampsia. American Journal of Reproductive Im-
munology 61: 346-359. doi: 10.1111/j.1600-0897.2009.00701.x PMID: 19341385

Kraus V, Dehmer M, Emmert-Streib F (2014) Probabilistic inequalities for evaluating structural network
measures. Information Sciences 288: 220-245.

Cao S, Dehmer M, Shi Y (2014) Extremality of degree-based graph entropies. Information Sciences
278:22-33.

Dehmer M, Mowshowitz A, Shi Y (2014) Structural Differentiation of Graphs Using Hosoya-Based Indi-
ces. Plos One 9: e102459. doi: 10.1371/journal.pone.0102459 PMID: 25019933

Dehmer M, Mowshowitz A (2011) A history of graph entropy measures. Information Sciences 181:
57-78. doi: 10.1016/j.plantsci.2011.03.011 PMID: 21600398

Dehmer M, Emmert-Streib F, Shi Y (2014) Interrelations of Graph Distance Measures Based on Topo-
logical Indices. Plos One 9: €94985. doi: 10.1371/journal.pone.0094985 PMID: 24759679

Galea S, Riddle M, Kaplan GA (2010) Causal thinking and complex system approaches in epidemiolo-
gy. International Journal of Epidemiology 39: 97-106. doi: 10.1093/ije/dyp296 PMID: 19820105

Sanz J, Xia C-Y, Meloni S, Moreno Y (2014) Dynamics of Interacting Diseases. Physical Review X 4:
041005. PMID: 24827181

Buscema M, Grossi E, Breda M, Jefferson T (2009) Outbreaks source: A new mathematical approach to
identify their possible location. Physica A: Statistical Mechanics and its Applications 388: 4736—4762.

Xia C-y, Wang Z, Sanz J, Meloni S, Moreno Y (2013) Effects of delayed recovery and nonuniform trans-
mission on the spreading of diseases in complex networks. Physica A: Statistical Mechanics and its Ap-
plications 392: 1577—-1585.

Keeling MJ, Eames KTD (2005) Networks and epidemic models. Journal of the Royal Society Interface
2:295-307. PMID: 16849187

Barabasi A-L, Albert R (1999) Emergence of Scaling in Random Networks. Science 286: 509-512.
PMID: 10521342

Buldyrev SV, Parshani R, Paul G, Stanley HE, Havlin S (2010) Catastrophic cascade of failures in inter-
dependent networks. Nature 464: 1025—1028. doi: 10.1038/nature08932 PMID: 20393559

PLOS ONE | DOI:10.1371/journal.pone.0125876 May 7, 2015 15/16


http://www.ncbi.nlm.nih.gov/pubmed/8743899
http://www.ncbi.nlm.nih.gov/pubmed/12403660
http://www.ncbi.nlm.nih.gov/pubmed/12493255
http://dx.doi.org/10.1097/HJH.0b013e32831ac967
http://www.ncbi.nlm.nih.gov/pubmed/19155787
http://dx.doi.org/10.1152/japplphysiol.00766.2011
http://www.ncbi.nlm.nih.gov/pubmed/22241057
http://dx.doi.org/10.1007/s00421-009-1166-7
http://www.ncbi.nlm.nih.gov/pubmed/19701646
http://www.ncbi.nlm.nih.gov/pubmed/8349586
http://dx.doi.org/10.1111/j.1600-0897.2009.00701.x
http://www.ncbi.nlm.nih.gov/pubmed/19341385
http://dx.doi.org/10.1371/journal.pone.0102459
http://www.ncbi.nlm.nih.gov/pubmed/25019933
http://dx.doi.org/10.1016/j.plantsci.2011.03.011
http://www.ncbi.nlm.nih.gov/pubmed/21600398
http://dx.doi.org/10.1371/journal.pone.0094985
http://www.ncbi.nlm.nih.gov/pubmed/24759679
http://dx.doi.org/10.1093/ije/dyp296
http://www.ncbi.nlm.nih.gov/pubmed/19820105
http://www.ncbi.nlm.nih.gov/pubmed/24827181
http://www.ncbi.nlm.nih.gov/pubmed/16849187
http://www.ncbi.nlm.nih.gov/pubmed/10521342
http://dx.doi.org/10.1038/nature08932
http://www.ncbi.nlm.nih.gov/pubmed/20393559

@’PLOS ‘ ONE

Networks in CHD Genetics

43.

44,

45.

46.

47.

48.

Cooper JA, Miller GJ, Bauer KA, Morrissey JH, Meade TW, Howarth DJ, et al. (2000) Comparison of
novel hemostatic factors and conventional risk factors for prediction of coronary heart disease. Circula-
tion 102: 2816—2822. PMID: 11104738

Stephens M, Smith NJ, Donnelly P (2001) A new statistical method for haplotype reconstruction from
population data. Am J Hum Genet 68: 978-989. PMID: 11254454

Buscema M (2004) Genetic doping algorithm (GenD): theory and applications. Expert Systems 21:
63-79.

Buscema M, Grossi E, leee (2007) A novel adapting mapping method for emergent properties discov-
ery in data bases: experience in medical field. 2007 leee International Conference on Systems, Man
and Cybernetics, Vols 1-8. New York: leee. pp. 1495-1501.

Kruskal JB Jr (1956) On the Shortest Spanning Subtree of a Graph and the Traveling Salesman Prob-
lem. Proceedings of the American Mathematical Society 7: 48-50.

Fredman ML, Willard DE (1990) Trans-dichotomous algorithms for minimum spanning trees and short-
est paths; 1990 22—24 Oct 1990. pp. 719-725 vol.712.

PLOS ONE | DOI:10.1371/journal.pone.0125876 May 7, 2015 16/16


http://www.ncbi.nlm.nih.gov/pubmed/11104738
http://www.ncbi.nlm.nih.gov/pubmed/11254454

