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Modelling the Transport of 
Nanoparticles under Blood Flow 
using an Agent-based Approach
Gavin Fullstone1,2,4, Jonathan Wood3, Mike Holcombe4 & Giuseppe Battaglia1,2

Blood-mediated nanoparticle delivery is a new and growing field in the development of therapeutics 
and diagnostics. Nanoparticle properties such as size, shape and surface chemistry can be controlled 
to improve their performance in biological systems. This enables modulation of immune system 
interactions, blood clearance profile and interaction with target cells, thereby aiding effective 
delivery of cargo within cells or tissues. Their ability to target and enter tissues from the blood is 
highly dependent on their behaviour under blood flow. Here we have produced an agent-based 
model of nanoparticle behaviour under blood flow in capillaries. We demonstrate that red blood 
cells are highly important for effective nanoparticle distribution within capillaries. Furthermore, 
we use this model to demonstrate how nanoparticle size can selectively target tumour tissue over 
normal tissue. We demonstrate that the polydispersity of nanoparticle populations is an important 
consideration in achieving optimal specificity and to avoid off-target effects. In future this model 
could be used for informing new nanoparticle design and to predict general and specific uptake 
properties under blood flow.

The blood circulatory system is a dense network of blood vessels that acts to carry vital nutrients and 
signals to the tissues of the body, whilst simultaneously removing waste products. The circulatory sys-
tem is involved in the exchange of gases, ions, macromolecules and even cells between the blood and 
tissue. The ability of the blood to distribute variable payloads to tissues is highly relevant to drug deliv-
ery1. Recent work has focused on utilising nanoparticle-based drug-carrier systems to aid retention and 
specific delivery of a multitude of potential therapeutics to hard-to-access tissues, such as tumours and 
the central nervous system (CNS). Nanoparticles is the general term for a diverse group of nanoscale 
particles designed and modified to improve desirable properties such as immune system evasion, tissue 
penetration, cellular uptake, cellular trafficking and cargo-delivery2,3. Their composition can vary greatly, 
giving different surface chemistries, shapes and sizes. A number of approaches have been taken to better 
understand how such properties of nanoparticles affect their applicability as a drug-delivery system. 
These include classic biological studies using in vitro and in vivo systems as well as in silico approaches4–6.

The use of in silico methodology has opened new avenues in the field of drug discovery and develop-
ment, including in the design of novel chemical inhibitors by protein structural analysis7,8, drug library 
screening using quantitative structure-activity relationship (QSAR) methods9,10 and multi-scale mod-
elling11. Computational fluid dynamics (CFD) is a well known in silico approach used throughout the 
fields of engineering, physics and increasingly biology. It aims to use computational methods to resolve 
the Navier-Stokes equations governing fluid flow, under set conditions and geometry. The Navier-Stokes 
equations refer to three coupled partial differential equations (PDEs) with the vector equation for the 
conservation of momentum being
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where ρ is the density, δt is the time step, ∇ is the del operator, v is the velocity, p is the pressure, τ  is 
the total stress tensor and F is the force. Note: All variables and typical values are included in Supplementary 
Table 1.

The continuity equation describing the conservation of mass can be expressed as:
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where Cρ is the specific heat capacity at constant pressure, T is the absolute temperature, q is the heat 
flux vector, S is the rate of strain tensor and Q is the heat sources. CFD models are obtained by finding a 
solution to the momentum equation (1), which simultaneously satisfies equations (2) and (3). Only in a 
few cases do absolute solutions exist and are limited to conditions where non-linear parameters are equal 
to 0, for example Poiseuille’s flow or Stokes’ creeping flow. In more complex flows, computational meth-
ods to obtain solutions that correlate well with experimental data have been developed. These methods 
include finite volume, finite difference and finite element methods. Finite element methods in particular 
have a history of providing robust solutions over a range of flows. They aim to obtain the equation of 
momentum in a ‘weak form,’ that can be iteratively assessed at mesh points, thus giving an effective 
model of flow12.

Many studies have utilised CFD methods to study the behaviour of the blood, predominantly focusing 
on cardiovascular diseases in larger vessels13,14. Much less attention has been paid to the behaviour of the 
blood in capillaries and its role in effective delivery to tissues. The capillary is the smallest of the blood 
vessels, ranging from 5 to 40 μ m in diameter giving it a characteristic high surface area to volume ratio, 
maximising the potential for blood-tissue exchange. Furthermore, the vessel walls of capillaries consist 
of an endothelial cell layer, just one-cell thick, thereby minimising transport times across the vessel wall. 
Blood flow through capillaries is driven by the pressure difference between the pre-capillary pressur-
ised arterioles and the post-capillary low-pressure venules. Capillary flow is laminar, as defined by the 
Reynold’s number (Re), the ratio between viscous and inertial forces:
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where v is the mean velocity and DH is the hydraulic diameter. Capillaries have a Reynold’s number of 
0.001, well below the range of transient flow of ~2400, due to their small length scales and high viscosity. 
Laminar flow is characterised by flow in parallel layers with no mixing. Flow at the vessel wall is vastly 
reduced due to friction with the stationary vessel wall, with the velocity increasing towards the centre of 
the vessel in a parabolic manner. In addition to laminar forces, other forces also act upon nanoparticles 
within the blood. In particular, thermal fluctuations, also known as Brownian motion, causes random 
movement of particles in relation due to the thermal energy of the system. The displacement of particles 
is related to the diffusion coefficient (Dc) calculated from the thermal energy of the system and the Stokes 
drag of the particles by the Stokes-Einstein equation:
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where kB is the Boltzmann constant and r is the particle radius.
At the vessel surface, nanoparticles can interact and traverse the endothelial layer in numerous ways. 

In many tissues, 60 nm pores, called fenestrations, punctuate the microvasculature, which allows free 
exchange of many substrates. However these fenestrations can be considerably larger in vessels supply-
ing tumours, with fenestrations up to 400 nm15. The endothelial cells themselves can also regulate the 
exchange of numerous substrates between blood and tissue by receptor-mediated transport mechanisms 
and cellular trafficking.

Blood, as a fluid, has several properties that must be considered when utilising CFD methods for 
modelling. Most of these properties are a consequence of the high density of cells and cell fragments 
within the blood including red blood cells, white blood cells and platelets. Red blood cells (RBCs) are 
the most numerate blood cell, constituting 38-46% of the volume of blood, a measure referred to as the 
haematocrit. White blood cells and platelets constitute about 1% and < 0.5% of blood volume respec-
tively. In capillaries, the haematocrit is reduced to 10-12%, reflecting the hydrostatic pressure16. In its 
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resting form, the red blood cell is a biconcave disk measuring ~7.8 μ m in diameter, comparable to the 
size of capillaries. However, RBCs deform under shear stress into numerous conformations favourable 
for reduced resistance to flow in restricted geometries17,18. The presence of RBCs creates complications 
in obtaining accurate solutions to Navier-Stokes equations. RBCs confer non-Newtonian properties to 
the fluid. This means that the viscosity will alter under shear stress in a non-predictable way. This can 
be explained by the dependence of viscosity on shear-rate, haematocrit, red blood cell conformation, red 
blood cell aggregation and plasma viscosity19,20. These properties are also simultaneously related to the 
viscosity, therefore making complete solutions very difficult to obtain.

Agent-based modelling is a type of modelling specifically designed for systems analysis. It decon-
structs a system into components, known as agents, and assigns mathematical expressions to describe 
their behaviour. Subsequently, by combining the different agents together in simulations, through 
agent-agent and agent-environment interactions, emerging systems behaviour can be observed. We here 
utilise FLAME (Flexible Large-scale Agent-based Modelling Environment), a generalised agent-based 
modelling framework for flexible modelling whilst simultaneously maintaining parallelisation optimi-
sation (for more details on agent-based modelling and parallelisation with FLAME, see Supplementary 
information).

Our interest in nanoparticle delivery has prompted us to further explore the role of fluid dynamics in 
the distribution of nanoparticles within capillaries and their subsequent uptake across the vessel walls. 
Here we describe the building of an agent-based model using the FLAME framework, which models the 
behaviour of nanoparticles at the capillary level in the presence of RBCs. We demonstrate the use of this 
model by illustrating the role that RBCs play in improving the distribution of nanoparticles within the 
vessel. Furthermore, we establish the use of this model in aiding nanoparticle design by showing how 
nanoparticle size and polydispersity are important considerations in conferring selectivity for tumour 
delivery.

Results and Discussion
Building an Agent-based Model of Blood Flow. Agent-based modelling has previously proven to 
be a powerful tool for predictive biological modelling. Its integration with more classic CFD approaches 
allows great potential for testing the blood flow dependent behaviour of nanoparticles. Blood flow 
dynamics in capillaries are integral for distribution and subsequent uptake of blood-borne molecules. 
We aimed to create a simple core model that simulates blood flow with the intention of studying a vari-
ety of other processes, including but not limited to, nanoparticle distribution studies, receptor binding 
dynamics, the effect of ligand density, and cellular trafficking, plus the effect of varying flow conditions 
on all of the aforementioned. A summary of this is provided in the schematic in Supplementary Figure 2.

In the microvasculature, where blood cell and capillary diameter are comparable, blood cells severely 
influence the fluid dynamics of blood flow. Whilst white blood cells and platelets are present in the 
microvasculture, the reduced number of both cells compared to red blood cells and the small size of 
platelets limits the influence of these cells. Therefore, we concentrate on red blood cells as the major 
driver of fluid dynamical changes in the microvasculature. Whilst inclusion of RBCs is important to 
flow modelling, direct modelling of red blood cell behaviours, such as deformation and aggregation, has 
been largely omitted. Previous studies have utilised several techniques, most notably immersed finite 
element methods, to incorporate red blood cell deformation and red blood cell interactions within flow 
models21–23. Although a similar approach could be utilised within the model described, the additional 
computational burden required would limit the capabilities of the model to include much of the desired 
additional functionality. In these theoretical studies and experimental observations, a number of red 
blood cell conformations have been described, including, the slipper-like, the parachute, bullet-like and 
disk conformations. A number of these papers also produced phase-diagrams relating the conformation 
to other properties of the flow, such as shear rate, confinement and flow velocity22,23. The slipper phase, 
according to the work of Fedosov and colleagues22,23, occurs when both shear rates and confinement 
are low, however the shear rates and confinement parameters of our simulations favour the parachute 
conformation23.

Several studies have demonstrated that both specific and non-specific interaction with proteins can 
affect the nanoparticle residency in the blood24,25. Protein interactions are dictated by the surface chem-
istry and charge. A common solution to this is to use a coating that limits protein adsorption such 
as polyethylene glycol (PEG) or similar26. This generally improves the systemic half-life and reduces 
immune cell interaction properties, thus increasing the potential therapeutic load at target tissues27,28. 
Therefore, in our simulations we can assume that such nanoparticles will be inert. In previous studies, it 
has been demonstrated that certain compositions of nanoparticles can interact with both themselves and 
red blood cells, with varying effects on distribution and cellular interactions29. However, these properties 
are likely to be individual to the nanoparticle formulation used and therefore have been omitted from our 
model, except for a simple rule that neither can occupy the same space. However, specific interactions 
are easily implementable within the model at a later stage if appropriate. A diagrammatic summary of 
the model built is provided in Fig. 1.

Brownian Forces become the Dominant Force at the Vessel Wall Interface. To validate the 
correct operation of the finite element method used, heat maps were produced of flow velocity in 
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longitudinal (Fig.  2A) and latitudinal (Fig.  2B,C) vessel slices at a physiologically relevant haematocrit 
of 10.7%. The heat maps demonstrate a clear relationship between proximity to the vessel wall and a 
decrease in flow velocity (Fig. 2B). In regions containing RBCs, flow velocity is increased around the cells 
as they move at slower rates than the fluid phase (Fig. 2C). Next, a comparison of the various influences 
of Brownian motion and laminar flow on final nanoparticle movement was made in different regions 
of the vessel. Typical nanoparticle traces for Brownian motion (Figs.  3A,3B) alone, laminar flow alone 
(Figs. 3C,3D) and laminar flow with Brownian motion (Fig. 3E-H) are shown for a 100 nm nanoparti-
cle at the centre of the vessel and the edge of the vessel. At the centre of the vessel, laminar forces are 
expected to be high (ν =  5500 μm s−1) as it is furthest away from the non-slip boundary. The relative 
impact of Brownian forces (Fig. 3A) is therefore consequently very small, relative to the laminar forces 

Figure 1. Model Summary Schematic. The model focuses on a single capillary (ii) taken from the capillary 
bed (i). The model includes the effect of laminar flow (A) on red blood cells in their native biconcave disk 
shape (B) causing the deformation of red blood cells into a parachute conformation (C). This subsequently 
affects distribution and fluid dynamics of particles in the fluid-phase of the blood, which will in turn affect 
interactions at the vessel wall (D). At the interface of blood and vessel wall (iii), particles proximal to the 
vessel wall can pass through cellular junctions between cells or fenestrations within cells and therefore freely 
exchange with the interstitial fluid according to the diffusion gradient (E). Particles may bind corresponding 
proximal receptors on the endothelial cells (F) they may then be released or internalised and subjected to 
various cellular trafficking systems (G).
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(Fig.  3C), leading to only minor fluctuations from laminar flow (Figs.  3E,3G). However at the vessel 
wall (Fig. 3D), the flow velocity is vastly reduced (ν =  440 μm s−1), thus making Brownian forces more 
significant to the displacement of the particle (Figs. 3B,3F,3H). This is summarised by the relative contri-
butions of Brownian and laminar forces to the total mean squared displacements (MSD) of nanoparticles 
at low and high shear flow (Fig. 3I). At low laminar forces, Brownian forces contribute almost equally to 
laminar forces in the displacement of the particle, where as the relative contribution of Brownian forces 
at high laminar forces is negligible. The dominance of Brownian forces and reduction in laminar forces 
allows maximum contact time between potential substrates and the vessel wall interface. It also allows 
nanoparticles proximal to the vessel wall but not within binding range to diffuse closer to the vessel wall, 
thereby permitting binding. Although not included in our current model, the significance of Brownian 
forces at the vessel wall is likely to be further increased by the presence of a gel-like layer at the cell wall 
called the glycocalyx. This layer consists of glycosylated proteins (glycoproteins) and lipids (glycolipids) 
that can project 200-500 nm within the vessel. It can also regulate accessibility of various blood compo-
nents to the wall based on particle properties such as charge and size30.

Red Blood Cells enhance Nanoparticle Dispersion. In order to see the effect that RBCs have 
on flow dynamics and subsequent nanoparticle dispersion, the behaviour of nanoparticles at varying 
haematocrits was studied. State and process order graphs for the parallel execution of these simulations 
are provided in Supplementary Figure 3. The haematocrit range used was from acellular (0%) to whole 
blood (45%), including a high density of simulations at the physiologically relevant range for a capillary 
(10-12%). The viscosity used in resolving the Navier-Stokes equations was related to the haematocrit 
in order to account for the non-linear increase in viscosity usually observed with higher haematocrit 
(Supplementary Figure 4). Supplementary Figure 5A shows the average position of a nanoparticle relative 
to the centre of a 4000 nm vessel, as a function of haematocrit. At haematocrits of 0%, an even dispersion 
of nanoparticles would be expected, giving a theoretical average of ~2700-2800 nm with a nanoparticle 
diameter of 100 nm. However, it would be expected that this value would increase due to volume exclusion 
with increasing amount of RBCs located towards the centre of the vessel, as observed in Supplementary 
Figure 5A. Furthermore, to correlate this with likelihood of increased delivery, the percentage of all 
nanoparticles that would be within a binding range of the vessel wall (Fig.  4A), given as 20 nm from 
the proximal edge of the nanoparticle to the vessel wall, was quantified. A marked increase is observed 
with increasing haematocrit, particularly across the physiologically relevant range, further demonstrating 

Figure 2. Heat Mapping of Laminar Forces. Longitudinal cross-section (A) demonstrating velocity of 
blood flow along the vessel, with subsequent latitudinal cross-sections proximal to the red blood (B) cell and 
distal to the red blood cell (C).
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that RBCs aid the dispersion of nanoparticles to the vessel wall. The increase in haematocrit also had 
an effect on the average velocity of nanoparticles across the whole vessel (Supplementary Figure 5B) and 
for nanoparticles within 20 nm of the vessel wall (Supplementary Figure 5C). It can be expected that this 

Figure 3. Balance of Brownian to Laminar Forces. 100 nm nanoparticle traces under only Brownian 
motion (A and B), only laminar flow (C and D) and both Brownian and laminar forces (E and F [single 
nanoparticle], G and H [ten nanoparticles]) at the edge and centre of the vessel. The relative contribution of 
laminar (FL) and Brownian (FB) forces to the mean squared displacement at low laminar and high laminar 
force is demonstrated (I). (Time =  0.003 s, δt =  0.0001 s).
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would influence both the motion of particles at the vessel wall, as it alters the laminar-Brownian force 
ratio and their subsequent transport at the vessel surface, due to increased wall shear stress.

Similar conclusions, demonstrating improved nanoparticle distribution with higher haematocrit, were 
made by Tan and colleagues31. Whilst their conclusions are similar, they focus on scenarios in the pres-
ence or absence of RBCs, using a haematocrit of 38%, which is considerably higher than the 10-12% 
expected in capillaries. Therefore, it is unclear from this work whether this observation would be as 
significant in more physiological conditions. Furthermore, the vessels used in their study were bigger 
than that described here (20 μ m and 11 μ m compared to 8 μ m), making immediate comparison of data 
difficult.

To further study the flow dynamics with differing haematocrits, an average dispersion factor was 
calculated for vessels with varying haematocrit. The dispersion factor is the ratio between radial velocity 
(towards the vessel edge) and the longitudinal velocity (towards the end of the vessel) with the Radial 
Velocity (Vr) being.

Figure 4. The Effect of Haematocrit on Nanoparticle Distribution and Motion.The increased dispersion 
of nanoparticles to the vessel edge as a function of increasing haematocrit is demonstrated by the percentage 
of nanoparticles within 20 nm of the vessel wall (A). The average dispersion factor is then shown as a 
function of haematocrit (B). Typical ranges for capillary and whole blood haematocrits are indicated. 
Streamlines of different types of flow observed and heatmaps of the velocity in the y-plane are shown with 
respect to haematocrit, at no haematocrit (H% =  0) a one phase Poiseuille’s flow (C), at 10.7% representative 
of intermediate haematocrits (0 <  H% <  20) an interacting flow between cellular and cell-free layers (D) 
and a haematocrit of 38% representative of high haematocrits (H% >  20) separate cellular and cell-free 
layers (E).
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where En is the number of elements.
A dispersion factor of 0 would indicate that flow is parallel to the vessel wall, giving no dispersion, 

where as, any increase in dispersion factor would show trajectories away from parallel to the vessel wall. 
Figure  4B demonstrates an initial increase in dispersion factor as a function of haematocrit. However, 
above haematocrits of 20-25%, this then falls and tends back towards 0. This would indicate that an 
intermediate range of haematocrit could be better for allowing maximum dispersion of nanoparticles 
towards the edge of the vessel. To understand why the average dispersion factor shows increased disper-
sion with lower haematocrits to higher, further observation of flow dynamics was performed using heat 
mapping of the dispersion factor at individual elements. Figures  4C,4D,4E are schematics of the three 
dominant flow streamlines observed throughout the simulations imposed on heatmaps of the velocity in 
the y-axis (perpendicular to the vessel). In Fig. 4C, in the absence of RBCs, flow can be considered to be 
a Poiseuille’s flow and will result in an expected and observed average dispersion factor of 0. Figure 4D 
demonstrates that flow, in the presence of an intermediate haematocrit, will manoeuvre around the RBCs 
and will lead to the observed increase in average dispersion factor. However, at higher haematocrits, the 
space between RBCs is significantly reduced, and as such, two separate phases are formed (Fig. 4E). A 
cellular-phase is formed where, due to the reduced space between RBCs, flow between RBCs occurs at 
the same velocity as that of the RBCs. A separate cell-free phase is created at the edge of the vessel; the 
flow of this phase occurs such that the cellular-phase resembles flow past a cylinder moving at a rate 
equal to the red blood cell velocity. Interaction between the two phases becomes minimal as the space 
between RBCs is reduced, consequently resulting in the decline of average dispersion factor observed 
with increasing haematocrit above 20-25% in Fig. 4B. A similar but less defined pattern in flow is also 
apparent in the work of Tan and co-workers and McWhirter and colleagues18,31.

The consequence of a low average dispersion factor is that only nanoparticles already proximal to the 
vessel edge can be transported across the vessel wall. However with higher average dispersion factors, 
nanoparticles at the centre of the vessel will be transiently dispersed from the centre to the vessel edge 
and vice versa with flow. This permits a greater number of nanoparticles the opportunity to be trans-
ported at the vessel wall.

Nanoparticle Size Selectively Targets Delivery to Tumour Tissues. A key factor in nanoparti-
cle efficacy is their ability to selectively target the tissue of interest, whilst avoiding potential off-target 
effects at other tissues. In order to demonstrate the capability to increase specificity of nanoparticles for 
tumours, the ability of different sized nanoparticles to traverse fenestrations with pore size correspond-
ing to both normal vessels (60 nm) and those associated with tumours (240 nm), was tested (Fig.  5A). 
The core model described previously was utilised using a haematocrit of 10.7%, with the inclusion of 
a fenestration agent and function to add fenestrations to the vessel wall. The relevant state and process 
order graphs, generated by FLAME, for this model is included in Supplementary Figure 6.

Nanoparticle sizes used were 10 nm, 20 nm, 50 nm, 70 nm, 80 nm, 100 nm and 160 nm. Polydisperse 
samples with an average diameter corresponding to 20 nm, 50 nm, 70 nm, 100 nm and 160 nm (Fig. 5B) 
were also trialled to compare data with that expected from corresponding biological experiments. These 
simulated polydisperse populations were generated to correspond to nanoparticle populations measured 
using dynamic light scattering (DLS) analysis (Supplementary Figure 7). Figure  5C demonstrates that 
across all size ranges, delivery across tumour vessel fenestrations is vastly increased compared to normal 
capillaries. Furthermore efficient delivery is still achieved with nanoparticles at 50 nm, 70 nm, 80 nm and 
100 nm, where little or no delivery is achieved in normal fenestrations, suggesting that this size range can 
improve specific delivery to tumour tissue. This concept forms part of the enhanced permeability and 
retention (EPR) effect or passive-targeting, that has been proven previously in many studies32,33. The EPR 
effect is based on the combination of the increased permeability of the vasculature supplying tumours 
and reduction or absence of lymphatic vessels that form a drainage network from tissues back to the 
blood. Therefore nanoparticles accumulate more readily in these regions and are not cleared as effectively 
as other tissues given a prolonged therapeutic response. In these studies an important feature was the 



www.nature.com/scientificreports/

9Scientific RepoRts | 5:10649 | DOi: 10.1038/srep10649

half-life of the nanoparticle, which is related to size, shape and surface chemistry. Generally sizes between 
40-100 nm have previously been demonstrated to persist in the blood due to reduced loss due to blood 
extravasation and filtration by the reticuloendothelial systems of the liver, spleen and kidneys15,34,35. Our 
results for specific delivery to a tumour fall within this range, thus making the data more significant with 
respect to translation from simulation to experimental data. Nanoparticle mechanical properties will 
also influence the EPR effect. Flexible nanoparticles, such as liposomes and polymersomes, have been 
demonstrated to translocate across pores considerably smaller than themselves36,37. Therefore, flexible 
nanoparticles may perform differently than more rigid nanoparticles, such as gold. The addition of active 
targeting domains, such as iRGD, to nanoparticles can also improve uptake properties of nanoparticles 
from the blood38,39. It should be noted that whilst irregular and larger fenestrations have been reported 

Figure 5. Specific Nanoparticle Targeting of Tumour Tissue. The delivery across fenestrations was 
accessed for normal fenestration sizes and larger fenestrations resembling vasculature of cancer tissue (A). 
Polydisperse (Pd) nanoparticle populations generated from DLS size data were used alongside monodisperse 
(Md) populations of the average sizes, fenestration sizes are indicated by dashed lines (B). The percentage 
uptake after 0.5 s is compared between normal fenestrations and tumour fenestrations (C). Polydisperse 
populations are compared to their sized matched monodisperse populations for uptake in fenestrations 
at 0.5 s; a dashed baseline is used in place of the normalised monodisperse populations but error bars are 
included used (D). A comparison was then made between the average size of the nanoparticles within 
fenestrations and those within the vessel for the polydisperse populations (E). Finally the relative volume 
of nanoparticle mass delivered across fenestrations was compared between polydisperse populations and 
their equivalent monodisperse population at 0.5 s; a dashed baseline is used in place of the normalised 
monodisperse populations but error bars are included used (F). * P <  0.01, ** P <  0.005, *** P <  0.001.
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at tumour vasculature, fenestration density, irregular flow and poor cellular junction formation also are 
characteristic of tumour vasculature, inevitably influencing overall uptake into tumour tissues35. This 
experiment also demonstrates the importance of the inclusion of Brownian fluctuations within laminar 
flow models, as no delivery could be achieved without its consideration.

Whilst a similar effect was demonstrated using both monodisperse and polydisperse populations, 
delivery using 100 nm and 160 nm populations was significantly (P <  0.01) reduced in the polydisperse 
samples (Fig.  5D), likely reflecting the presence of a minority of nanoparticles of greater size than the 
tumour vessel fenestrations. In parallel, in polydisperse populations corresponding to 70 nm, a small but 
critical increase is observed in the delivery to normal tissue (P =  0.00007), reflecting presence of particles 
below the 60 nm cut off. Therefore, polydispersity is a key consideration in the design of nanoparticles 
for improved specificity using the EPR effect. In order to measure the effect of size and polydispersity on 
specificity for tumour tissue, we measured the ratio of nanoparticles delivered to tumours against those 
delivered to normal tissue:

=
( )

Specificity Ratio
Tumour Delivery
Normal Delivery 9

Furthermore, to establish a measure that accounts for both the specificity and the overall delivery effi-
ciency we also calculated a value we refer to as the specificity score and is calculated as:

=
( )

( )
Specificity Score

Tumour Delivery
Normal Delivery 10

2

Supplementary Figure 8 demonstrates the change in specificity ratio and score with increasing nano-
particle size. The specificity ratio increases dramatically from 80 nm and above, reflecting the low deliv-
ery into normal tissue for larger size nanoparticles. The most efficient size for obtaining specificity is 
at 160 nm, reflecting the fact that very few nanoparticles in the population will be able to successfully 
translocate across 60 nm fenestrations. However, whilst it has high specificity, it has relatively low delivery 
efficiency to the tumour tissues. It is expected that the amount of nanoparticles in the bloodstream will 
decline over time due to blood clearance routes such as the reticuloendothelial system. Therefore, the 
100 nm sample may be more suitable for optimal delivery to provide only marginally reduced specificity 
(1.08 fold decrease) but greater delivery efficiency (1.65 fold increase). This is reflected in the greater 
specificity score observed for 100 nm compared to 160 nm in Supplementary Figure 8.

In the analysis of polydisperse nanoparticle uptake, we observed a marked difference in size between 
those entering fenestrations and those in the vessel (Fig.  5E), with smaller sizes being taken up more 
readily as would be expected from the previous data. To quantify a potential effect of this on cargo 
delivery we then compared the volume of nanoparticle delivered between the polydisperse samples and 
their respective monodisperse samples (Fig.  5F), based on the assumption that the volume of a nan-
oparticle is directly related to the amount of cargo it can carry. Across all samples, the polydisperse 
populations delivered significantly less volume across the fenestrations (as much as 66% reduction for 
the 160 nm population). This demonstrates that monodisperse nanoparticle populations, often used in 
computational simulations, may further give poor correlation with observed experimental results, where 
delivery quantification will be directly related to volume of nanoparticle itself or the related volume of 
cargo. Whilst we consider here the effects of polydispersity and size for a specific scenario in nanoparticle 
delivery, size and therefore polydispersity also influence general nanoparticle properties such as immune 
system interaction, clearance, tissue penetration and diffusion rates.

Conclusions
In conclusion we have successfully implemented an agent-based model of nanoparticle behaviour under 
physiological blood flow. This model has been designed to allow the facile inclusion of cellular interac-
tions and trafficking. This model has given us insight into the integral role of RBCs in the distribution 
of nanoparticles to the vessel walls. We have used this model to demonstrate that both size and polydis-
persity of nanoparticles must be considered together when targeting tumour tissue using the EPR effect. 
We predict that in future this model will be used to aid nanoparticle design to further improve tumour 
delivery and specific delivery to other clinically important tissues such as the CNS.

Methods
Agent-based Modelling. All models were written in FLAME and executed, in parallel, on the Iceberg 
High Performance Computing Cluster based at the University of Sheffield (http://www.shef.ac.uk/wrgrid/
iceberg). The state and process order graphs presented in Supplementary Figures 3 and 6 are automatically 
produced by FLAME during compilation in the DOT language. These can be visualised using the open 
source Graphviz package (http://www.graphviz.org). Our simulations concentrate on the singular capil-
lary, which is treated as a hollow cylinder, with no slip boundaries. Although capillary diameters vary, we 
have concentrated our simulations to vessels around 8-12 μ m in diameter, although the model is feasibly 
extendible beyond these limits. The model is constructed combining the following agents:

http://www.shef.ac.uk/wrgrid/iceberg
http://www.shef.ac.uk/wrgrid/iceberg
http://www.graphviz.org
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Red Blood Cells. The number of RBCs is generally confined to give a physiologically accurate haema-
tocrit of 10-12%. RBCs are maintained in an orientation perpendicular to the flow and at the centre of 
the vessel. RBCs are set to move at a rate determined by the pressure and viscosity; their effective radius, 
after deformation is taken from the literature16.

CFD Methods. In order to simplify the solutions to the Navier-Stokes equations, RBCs are treated 
as separate objects that influence flow by creating transient moving wall boundaries. A finite element 
approach, using Galerkin/least squares (GLS) methods, is then used within this geometry to aid gen-
eration of a solution to the Navier-Stokes problem for the fluid-phase12. Acellular blood (plasma) is a 
Newtonian fluid and therefore we have treated the fluid flow as Newtonian. Blood flow is treated as 
incompressible, thus meaning the density of the fluid remains unchanged, such that:

δρ
δ
= ( )t

0 11

Therefore, by substituting equation (11) into (1) and (2) we achieve the incompressible Newtonian form 
for the conservation of momentum (12) and incompressible form of the continuity equation (13):

ρ
δ
δ

η




+ ⋅ ∇


 = − ∇ + ∇ +

( )
v v p v Fv

t 12
2

ρ∇ ⋅ = ( )v 0 13

where η is the dynamic viscosity and ∇2 is the Vector Laplacian.
Equation (11) also leads to decoupling of the energy equation (3) from (12) and (13). Newton’s second 
law can then give Nanoparticle motion as

∂

∂
=



, ,
∂
∂


 ( )

m x
t

F t x x
t 14

2

2

where m is the mass, ∂
∂
x
t

2

2
 is the acceleration in x, t the time and x the x-coordinate. Brownian motion 

forces can be simulated by the methods presented by Andrews and Bray40, requiring the calculation of 
the translational diffusion coefficient (Dc), using the Stokes-Einstein equation:

πη
=

( )
D

k T
r6 15c

B

where kB is the Boltzmann constant and r is the particle radius. The calculation of the standard deviation 
(σ) for a Gaussian distribution from the diffusion coefficient:

σ δ≡ ( )D t2 16c

Random numbers can then be generated to fit the resulting Gaussian using the modified Box-Muller 
transformation41,42:

σ π
≡

( )

∆
σ




−



P e1

2 17

x
2

2

2

P is the probability of a change in x-coordinate of value Δx. The generation of these random numbers in 
all 3 axes gives a force vector that simulates the random walk (FB). Which can be added to force vectors 
generated from the Navier-Stokes (FL) to obtain total force (FTotal) acting upon the nanoparticle:

= + ( )F F F 18Total L B

The vessel wall is treated as a reflective boundary in the event of a nanoparticle-vessel wall collision.

Nanoparticles. Nanoparticles are modelled as spheres with variable size. They can be modelled to be 
of a ubiquitous size or to fit a range given by nanoparticle size analytical techniques, including DLS and 
Nanosight® tracking analysis (NTA). Nanoparticle-nanoparticle and nanoparticle-RBC interactions are 
neglected with the exception that neither can occupy the same space.

DLS distribution curves are generated by the sorting of particle size into size classes by the Zetasizer® 
software package. The simulated nanoparticle agents are assigned a size class based on probabilities calcu-
lated from the cumulative frequency data. The absolute size is then assigned by weighting the probability 
of sizes within the class by the neighbouring classes. Supplementary Figure 7 demonstrates distributions 
of different sized polydisperse nanoparticles from DLS analysis (Supplementary Figure 7A) and their 
respective simulated distributions (Supplementary Figure 7B).
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Fenestrations. Fenestrations are modelled as narrow pores perpendicular to the vessel wall. 
Fenestration diameter is maintained at 60 nm (typical for a normal vessel) or 240 nm (tumour vessel). 
Their density is obtained from the literature43. Nanoparticle movement within pores is generated through 
Brownian motion, using a shorter time-step than in the main vessel, due to the narrow geometry.

Mean Squared Displacement. The MSD of a nanoparticle at time t  is calculated by:

( ) = ( ) − ( ) ( )MSD t q t q 0 192

where ( )q t  is the position of the particle at time t  and ( )q 0  is the position of the particle at time 0.

Statistical Analysis. P-values were obtained and statistical significance determined using multiple 
t-tests by the Holm-Sidak method44.
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