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Abstract
Model-based and model-free reinforcement learning (RL) have been suggested as algorith-

mic realizations of goal-directed and habitual action strategies. Model-based RL is more

flexible than model-free but requires sophisticated calculations using a learnt model of the

world. This has led model-based RL to be identified with slow, deliberative processing, and

model-free RL with fast, automatic processing. In support of this distinction, it has recently

been shown that model-based reasoning is impaired by placing subjects under cognitive

load—a hallmark of non-automaticity. Here, using the same task, we show that cognitive

load does not impair model-based reasoning if subjects receive prior training on the task.

This finding is replicated across two studies and a variety of analysis methods. Thus, task

familiarity permits use of model-based reasoning in parallel with other cognitive demands.

The ability to deploy model-based reasoning in an automatic, parallelizable fashion has

widespread theoretical implications, particularly for the learning and execution of complex

behaviors. It also suggests a range of important failure modes in psychiatric disorders.

Author Summary

Automaticity develops with task familiarity. One possible explanation is that automaticity
arises when performance of the task becomes habitual, or model-free. Here we asked
whether goal-directed, or model-based, reasoning could also become automatic, or resis-
tant to distraction. We used a well-characterized task that differentiates model-based from
model-free action. We replicate previous findings that distraction strongly impairs model-
based reasoning in task-naive subjects. However, in subjects with prior exposure to the
task, distraction does not impair model-based reasoning. This suggests that humans can
deploy sophisticated and flexible reasoning more extensively than previously thought.
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Introduction
A wealth of experimental data indicates the brain uses at least two distinct decision making
strategies in value-guided choice. One involves prospective reasoning about action-outcome
contingencies, while the other retrospectively links rewards to actions [1–3]. The interplay
between these two choice strategies has substantial clinical implications. For example, over-
reliance on habits could lead to inflexible decision-making in addiction [4] and compulsion
[5].

A compelling computational account of these two control mechanisms draws on reinforce-
ment learning (RL) theory [1]. In Daw and colleagues' framework, retrospective learning is
accomplished withmodel-free strategies in which rewarded actions tend to be repeated, but the
underlying structure of the world that gives rise to these rewards is not learned [6] [7]. Prospec-
tive reasoning, on the other hand, relies on a learned model of the world to accurately predict
the outcomes of actions, even in the face of changing action-reward contingencies [1,7,8]. This
is suggested to rendermodel-based reasoning more flexible but at a heightened computational
cost [3].

Contemporary theories posit that model-based reasoning engages limited-resource execu-
tive functions [9] that involve the dorsolateral prefrontal, ventromedial prefrontal and anterior
cingulate cortices [10–15]. This is supported by observations that model-based reasoning is
impaired under cognitive load [16] or acute stress [17], and following disruption of dorsolateral
prefrontal cortex function via TMS [18], with the degree of impairment interacting with base-
line working memory capacity.

However, studies of model-based decision-making often utilize tasks in which the stimuli,
contingencies and other task parameters are novel to the subject. This raises the possibility that
reliance on limited-resource executive functions is not an intrinsic property of model-based
reasoning, but is instead a characteristic of reasoning with an unfamiliar model. In everyday
life, tasks become "second-nature" with experience and are subsequently more easily used as
building blocks for increasingly complex tasks. It remains untested whether this is entirely due
to the formation of efficient habits, or if what is "second-nature" can include sophisticated rea-
soning with a model of the world.

Here, we used a two-step decision-task that engages both model-free and model-based rea-
soning [16,19]. In brief, trials consist of two stages, where each stage involves a two-alternative
forced choice between a pair of adjacent fractals (Fig 1). Each first-stage fractal is predomi-
nantly associated (with a 70% probability) with one of two second-stage pairs. Transitions with
70% probability we call "common"; those with 30% probability we call "uncommon". The four
second-stage fractals are associated with different reward probabilities that fluctuate indepen-
dently across a session. Thus, subjects have to make trial-by-trial adjustments in choice so as to
maximize the probability of reward.

Model-free and model-based decision strategies make different predictions about choice
dependence on transitions and rewards from previous trials. We used computational modeling
and logistic regression to quantify the contribution of model-free and model-based strategies
when subjects performed the two-step task, either alone (single-task condition) or in combina-
tion with a demanding concurrent task (dual-task condition). The latter represents a high load
condition. We also wanted to test whether the effect of load changed with practice.

To this end we trained subjects on the two-step task for 3 consecutive days and introduced
intermittent periods of high load. An initial group of 22 healthy subjects, referred to as the
‘high load group’, experienced the dual-task condition on each day of training. This allowed us
to characterize choice under load across the entire training period. A second group of 23
healthy subjects, referred to as the ‘low load group’, experienced the dual-task condition on day
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Fig 1. Task and experimental design. (A) Subjects chose between a pair of fractals at each of two stages,
where a choice at the first-stage lead to one of two second-stage pairs with a fixed probability. This transition
structure could be exploited by the player. The second-stage choice followed either a reward (gold coin) or no
reward (0), according to independently fluctuating reward contingencies. On dual-task trials (displayed in the
figure), two different numbers of physically different sizes were displayed above each fractal at the first-stage.
Following second-stage feedback, the word ‘SIZE’ or ‘VALUE’ was presented on the screen, requiring the
player to indicate whether the number that was larger in size, or value, respectively, had appeared on the left
or right side of the screen. Correct responses were incentivized via monetary gain; incorrect responses were
unrewarded. (B) On days 1 and 2 the ‘high load group’ played alternating blocks of single-task (128) and dual
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3 only. This allowed us to determine how training on the two-step task alone would impact
choice under load.

We hypothesized that model-based calculations would become less reliant on executive
resources following training, independent of whether training included or excluded load, lead-
ing to a reduction in the detrimental effect of cognitive load on model-based choice.

Results

Computational modeling
We analyzed data using previously described reinforcement learning (RL) models [1,19],
including a hybrid model and reduced (nested) versions that captured pure model-free and
model-based choice. The hybrid model chose according to a combination of model-free and
model-based valuations, weighted by the parameter w, such that w = 0 corresponded to pure
model-free and w = 1 to pure model-based. Otto and colleagues [16] found that cognitive load
shifted w towards 0. Our central question was whether this shift would be reduced if subjects
had prior training on the two-step task. In other words, we asked whether the difference in w
between single and dual-task trials on day 3 in the ‘low load group’ was smaller than on day 1
in the ‘high load group’ (a between-group comparison). In this comparison, the groups were
matched in level of exposure to the Stroop task and the only manipulation was the amount of
prior exposure to the two-step task. A secondary question was whether we could track incre-
mental changes in w across days (a within-group comparison).

Between-group comparison. We first sought to validate that choice in the two-step task
reflected a mix of both model-free and model-based valuations [19]. We fit the RL models to
‘high load group’ data from day 1 of training, and to ‘low load group’ data from day 3 of train-
ing, separately for single-task (two-step alone) and dual-task trials. Using Bayesian model com-
parison, we found that the hybrid model provided a better fit to subject data in both groups
and both trial types, as indicated by a lower iBIC score (see S1 Table). Importantly, in the ‘high
load group’ on day 1 the weighting parameter w was significantly higher in the single-task com-
pared to the dual-task condition (paired t(21) = 2.85, p = 0.01, mean diff = 0.12, 95% CI = [0.03
0.21]), consistent with previous evidence that model-based reasoning is impaired under high
cognitive load in untrained subjects [16] (Fig 2A). Conversely, we found no difference in the
value of w between single-task and dual-task trials when fitting ‘low load group’ data from day
3 (paired t(22) = 0.29, p> 0.05) (Fig 2B). This suggests that prior training on the two-step task
permitted a strong degree of model-based reasoning under load, despite subjects having no
prior experience with performing a task under load.

Within-group comparison. Next, we fit the hybrid model to data from days 2 and 3 of
training in the ‘high load group’, separately for single-task and dual-task trials. We were inter-
ested in whether subjects abruptly switch their choice strategy at the start of a given training
day, or alternatively, whether a gradual shift in behavioral control emerges across days. We per-
formed paired t-tests on parameter estimates from Bayesian model inference. In the single-task
condition, we found evidence for a moderate shift towards more model-based choice, as
indexed by higher w values on days 2 (paired t(21) = 3.10, p = 0.005, mean diff = 0.11, 95% CI
= [0.04 0.18]) and 3 (paired t(21) = 3.66, p = 0.002, mean diff = 0.11, 95% CI = [0.05 0.17]) of
training compared to day 1 (Fig 3A). During dual-task trials, we found a more pronounced

task (64) trials (for a total of 4 blocks), while the ‘low load group’ played 2 consecutive blocks of single-task
(128) trials. On day 3 both groups played alternating blocks of single-task and dual task trials (as per the ‘high
load group’ on days 1–2).

doi:10.1371/journal.pcbi.1004463.g001
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shift towards model-based choice, with an approximately linear increase in the value of w
across days (Fig 3B). w was significantly greater on day 2 compared to day 1 (paired t(21) =
4.26, p< 0.001, mean diff = 0.18, 95% CI = [0.09 0.26]), and day 3 compared to day 2 (paired
t(21) = 4.08, p< 0.001, mean diff = 0.14, 95% CI = [0.07 0.21]) and 1 (paired t(21) = 9.19,
p< 0.001, mean diff = 0.32, 95% CI = [0.24 0.39]). Thus, training increased the relative contri-
bution of model-based reasoning during high load (dual-task) trials, suggesting that the addi-
tion of load is necessary to expose training-induced changes in behavior in the two-step task.

Multi-day model comparison. To corroborate the finding that w changes with training
within a fully Bayesian framework, we fit a full hybrid RL model (in addition to various nested
alternatives) to ‘high load group’ data across all 3 days (combined), separately for single-task
and dual-task trials. We tested model variants in which w could shift across days, governed by
a slope parameter σ. Bayesian model comparison revealed an influence of σ for the dual-task
condition but not the single-task condition, with the latter replicating in both cohorts (see S2
and S3 Tables). Thus, training influenced the balance between model-free and model-based
control across each day of training in dual-task trials but not in single-task trials (however, we
note w was higher on days 2 and 3 compared to day 1 of training during single-task blocks, a
subtlety not captured by a slope model that is only sensitive to linear effects). Importantly, the
value of σ was negative at the group-level, indicating a higher degree of model-based control on
day 3 compared to day 1 (see S3 Table). Thus, subjects’ ability to perform model-based

Fig 2. Computational modeling: Between-group comparison. The weighting parameterw represents a measure of model-based (w = 1) relative to
model-free (w = 0) control.w was lower in the dual-task (high load) condition compared to the single-task (low load) condition in naïve (‘high load group’, day
1) but not trained (‘low load group’, day 3) subjects. Vertical lines represent SEM. * denotes p < 0.05. α = learning rate, β = inverse temperature, ε = lapse
rate. (A) Mean best-fitting parameters for day 1 of training in the ‘high load group’. (B) Mean best-fitting parameters for day 3 of training in the ‘low load group’.

doi:10.1371/journal.pcbi.1004463.g002
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reasoning gradually became immune to cognitive load when training included both the single-
task and dual-task conditions, both within a fully Bayesian framework, and when fitting behav-
ior from each day individually.

Other learning parameters. In addition to differences in the value of w between single-
task and dual-task trials, we found differences in a number of other learning parameters (see
Figs 2 and 3, S3 Table). When fitting data from the ‘high load group’ on day 1, and the ‘low
load group’ on day 3, we found subjects were less considerate of the most recent reward infor-
mation (as indexed by a lower learning rate) and chose more stochastically (as indicated by a
lower inverse temperature) during dual-task trials compared to single-task trials (high load
group α: paired t(21) = 4.33, p< 0.001; high load group β: paired t(21) = 2.94, p = 0.008; low
load group α: paired t(22) = 4.61, p< 0.001; low load group β: paired t(22) = 4.49. p< 0.001)
(see Fig 2). We identified similar differences when fitting data across all training days consecu-
tively (S3 Table). However, when subjects were able to practice the dual-task condition on each
day (‘high load group’), both the learning rate and inverse temperature under load increased

Fig 3. Computational modeling: Within-group comparison. The weighting parameterw represents a measure of model-based (w = 1) relative to model-
free (w = 0) control. At the group level, model parameters remained relatively stable across single-task trials, indicating that performance in the absence of
load was modestly influenced by training. By contrast, we observed higherw values and higher learning rates with increased task exposure during dual-task
trials. Vertical lines represent SEM. α = learning rate, β = inverse temperature, ε = lapse rate. (A) Mean best-fitting parameters when fitting data from the ‘high
load group’ and days 1–3 of training for single-task trials. (B) Mean best-fitting parameters when fitting data from the ‘high load group’ and days 1–3 of training
for dual-task trials.

doi:10.1371/journal.pcbi.1004463.g003
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across days (α day 2 vs. day 1: paired t(21) = 3.34, p = 0.003; day 3 vs. day 2: paired t(21) =
2.03, p = 0.06; day 3 vs. day 1: paired t(21) = 5.76, p< 0.001; β day 2 vs. day 1: paired t(21) =
-1.45, p> 0.05, day 3 vs. day 2: paired t(21) = 7.96, p< 0.001; day 3 vs. day 1: paired t(21) =
3.84, p< 0.001) (Fig 3B).

Logistic regression
Computational modeling relies on fitting several model parameters that can exhibit a degree of
shared variance, and this has a potential to complicate interpretation when the true value of
more than one parameter differs between two conditions. We therefore employed a logistic
regression to validate the main findings from our model. We quantified the degree to which
choice on the current trial reflected a model-free and model-based influence with respect to
events occurring on the preceding 3 trials (see Materials & Methods) [20]. For example, if a
player received a reward following an uncommon transition 3 trials in the past, a model-free
system would be more likely to repeat the first-stage choice on the current trial, whereas a
model-based system would endorse a switch in choice.

During single-task trials, we identified both a significant model-free and model-based influ-
ence on choice extending up to 3 trials in the past (all p< 0.05), consistent with subjects utiliz-
ing a hybrid of both systems (Fig 4A). However, we found a reduction in model-based control
in the dual-task condition compared to the single-task condition in the ‘high load group’ on
day 1, an effect that propagated up to 2 trials in the past (1-back: paired t(21) = 2.59, p = 0.017,
mean diff = 0.22, 95% CI = [0.04 0.40]; 2-back: paired t(21) = 2.78, p = 0.011, mean diff = 0.19,
95% CI = [0.05 0.34]). Importantly, this difference was reduced following task training (on day
3), independent of whether training included (‘high load group’, Fig 4A) or excluded (‘low load
group’, S1 Fig) the high load condition (high load 1-back: paired t(21) = 1.16, p> 0.05; high
load 2-back: paired t(21) = 0.62, p> 0.05). To visualize these effects, we derived single indices
of model-free and model-based learning by summing the coefficients that correspond to an
influence of events on 1, 2 or 3 trials in the past (see Fig 4B).

To our surprise, we were unable to identify a model-free influence in either group in the
high load (dual-task) condition (see Fig 4A and S1 Fig). However, model-free coefficients were
not significantly different when comparing the single-task and dual-task conditions (see Fig
4A). Thus, we do not draw strong inferences from this dissimilarity.

In keeping with other studies utilizing the two-step task [16,18,19,21], we repeated the
regression analysis but now only considering the influence of events occurring on the immedi-
ately preceding trial. Our findings were consistent with the computational modeling approach
and the 3-back regression, and are reported in the supplement for completeness (see S2 Fig and
S4 Table). In summary, these results replicate our computational modeling in a format with
more flexible parametric assumptions.

Numerical Stroop performance
Mean numerical Stroop accuracy during dual-task trials was 81.9% on day 1, 85.5% on day 2,
and 89.5% on day 3 for the ‘high load group’. Thus, performance on the secondary task demon-
strated an approximately linear improvement across training days (day 2 vs. day 1: paired t(21)
= 2.53, p = 0.019; day 3 vs. day 2: paired t(21) = 3.88, p< 0.001; day 3 vs. day 1: paired t(21) =
5.34, p< 0.001). Mean numerical Stroop accuracy for the ‘low load group’, in which subjects
only experienced the dual-task condition on day 3 of training, was 83.2%, and thus comparable
to the ‘high load group’.
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Discussion
Here we asked whether reliance on finite executive resources [13,14,18,22–24] is a universal
property of model-based reasoning, or whether, as task familiarity increases, model-based rea-
soning can depend less on these limited-resource functions. We found that reasoning was pre-
served under load in subjects who had acquired familiarity, through prior training, with the
structure of a two-stage Markov decision task [19]. This was replicated in two cohorts of sub-
jects (who received training either with or without load) using different methodological
approaches. Our results show that training can enable model-based reasoning even when exec-
utive resources are devoted to another task, thereby reflecting the emergence of resource
independence.

There are several possible accounts for these findings. First, subjects may change the way
they calculate the contingencies of the task following training. From a neural perspective,
model calculations may be implemented in new brain areas such that they no longer overlap
with those used in the concurrent task. Training has previously been shown to cause "off-
loading" in tasks requiring executive resources, including an implementational shift from pre-
frontal to parietal and striatal regions [25,26]. It is also possible that model calculations remain

Fig 4. Model-free andmodel-based influences on choice.Results of a logistic regression that considers model-free and model-based influences on
choice in the current trial with respect to events that occurred up to 3 trials in the past. (A) Each regressor describes whether events on trial t-1, t-2 and t-3
increase (coded as +1) or decrease (coded as -1) the probability of choosing fractal A according to a model-free or a model-based system (6 total
regressors). Model-free coefficients are plotted on the left-hand side of x-axis, and model-based coefficients on the right-hand side. Data from days 1 and day
3 are plotted in the top and bottom panels respectively. Coefficients corresponding to the single-task are shown in blue, and those corresponding to the dual-
task are shown in orange. Vertical lines represent SEM. * denotes p < 0.05, ‡ denotes p = 0.09. (B) For each condition (single-task in blue, dual-task in
orange), and separately for days 1 and 3, we summed (individually) the coefficients corresponding to trial t-1, t-2 and t-3, and derived single estimates of the
degree to which model-free (plotted on the y-axis) and model-based (plotted on the x-axis) control were dominant in choice. Vertical lines represent 95%
confidence intervals. A line through the origin represents points in which model-free and model-based valuations have an equal influence on choice.

doi:10.1371/journal.pcbi.1004463.g004
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in the same brain regions, but that coding within these areas becomes more efficient. For exam-
ple, only a fraction of the initial pool of neurons may be required to realize the same represen-
tational fidelity [27–29].

Second, resilience to load could emerge if auxiliary processes (other than reasoning with the
structure of the task itself) become more efficient. For example, some cognitive resources may
be required for identifying the various stimuli, for tracking events that occurred on previous
trials, and for recalling learned values at the second stage. There may also be resource require-
ments for maintaining belief distributions over meta-parameters, such as whether the task
structure changes or new fractals appear, what appropriate learning rates are, when model-
based reasoning should be deployed [1,30] and how attentional resources should be allocated
within a trial. Since all these depend on executive brain regions to some degree [31–35], a gain
in efficiency across any of these domains is likely to free resources.

Third, subjects might learn to perform model-based calculations at the end of each trial
("offline"), rather than at the beginning of the next trial. When used to update a cached or
habitual value accessed for the next choice, such offline calculation could relieve the need to
store the current reward in memory until the beginning of the next trial. In turn, this might
allow better allocation of executive resources to the concurrent task. Indeed, a recent experi-
ment has suggested that the model-based system can “train” the model-free system by replay-
ing and simulating experience offline, and that this in turn allows for choice under load that
appears model-based [36].

A final consideration is that choice under load after training may not be truly model-based.
Increasingly sophisticated choice heuristics (for example, applying Q-value updates to the
opposite first-stage transition following an uncommon transition), can permit behavior that is
increasingly difficult to distinguish from fully model-based in the two-step task [37]. Although
not realizing the full Markov model of the task, these strategies implicitly embody partial mod-
els of task structure. While our data do not adjudicate between these divergent mechanisms,
future experiments could aim to investigate their respective predictions using neuroimaging.
Further, although our study demonstrates that model-based reasoning can become resist to
load, it remains difficult to predict whether these findings would generalize to other task or
load manipulations. Indeed, future studies should aim to identify the various factors that might
promote or impede such resistance.

Our regression analysis suggests the possibility that the reduction in w (a parameter index-
ing the balance between model-based and model-free control) under load could reflect a mar-
ginal weakening of model-free reasoning, in addition to a more pronounced disruption of
model-based reasoning. This contrasts with previous studies showing that model-based, but
not model-free learning, is prone to interference in a range of contexts [5,16–18,38]. This subtle
difference may be a consequence of dissimilarities in task design. For example, while Otto and
colleagues utilized interleaved trials of low and high load [16], we employed alternating blocks
of either condition. If subjects make choices by integrating over the recent trial history, then
enforcing a high load over a longer period of trials could have more diffuse consequences on
choice.

In addition, we found higher w values on day 3 of training in the ‘high load group’ than the
‘low load group’ in both trial types. Because the 'high load group' had more prior exposure to
the Stroop task in this comparison, their higher w values could possibly reflect improved facil-
ity with the Stroop task itself, or indeed with the performance of any concurrent tasks [3], for
example via improved working memory. Thus, we do not draw any strong conclusions from
this observation.

In our computational model, load affected not just w but also prompted slower learning
rates and more stochastic choice, independent of training (in the ‘low load group’). The former
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implies subjects inferred lower environmental volatility under load (perhaps placing stronger
weight on priors) [33], or that load induced a tradeoff between working memory and more
incremental learning processes that exhibit longer time-constants. More stochastic choice
might reflect a reduction in decision confidence [39,40]. It is also possible that the underlying
choice strategy used by subjects was not fully captured by our models, leading to some other
form of variability to be absorbed by our parameters.

At first glance our result might appear contrary to a standard view that increasing training
produces a shift from goal-directed (model-based) to habitual (model-free) control. For exam-
ple, it is well established that extended training reduces sensitivity to outcome devaluation
[13,41–44]. However, our experiment differs from these previous studies as subjects do not
receive extended training with a particular action-reward contingency. Instead, they received
training with a more sophisticated pattern of relationships between action and reward corre-
sponding to the task structure. This difference appears to be essential for determining whether
habits or model-based reasoning are strengthened with experience. Notably, although we con-
clude that there exist certain conditions where training can improve model reasoning under
load, an important remaining question concerns the precise sets of conditions—complexity of
model, type of training, and degree of load—whereby this training effect is enhanced or
diminished.

A central feature of human learning is the ability to acquire very complex task structures,
which often involve performing multiple subtasks in parallel. One way to achieve this parallel-
ism is to reduce the subtasks to habits, reflecting fixed and inflexible action patterns. Our work
suggests that even when subtasks are performed in parallel, each subtask can realize sophisti-
cated and flexible model-based reasoning. This lends richness to ideas on the range of behav-
ioral repertoires that humans can express. It is also consistent with the notion of "models"
throughout processing hierarchies in the brain, from low-level sensory processing to high-level
cognition [45,46].

The possibility that model-based reasoning can become automatic suggests new failure
modes (and treatment avenues) in psychiatric disorders. If maladaptive models become auto-
matic, they may lead to behavior that is both sophisticated and pernicious. Conversely, if adap-
tive models fail to become automatic when they should, they may fail to compete with
maladaptive habits, especially under stress or cognitive load. Yet another possible failure mode
is that experience calcifies models into true, inflexible habits rather than automatic models.

In summary, we present data that is a challenge to a widespread notion in decision-making
that "goal-directed" and "deliberative" are synonymous. We suggest that a dependence of goal-
directed reasoning on use of serial executive resources can lessen with task experience. This
could be important in the acquisition of progressively more complex behavior, with implica-
tions for therapies that aim to restore normal decision-making in psychiatric disorders.

Materials and Methods

Ethics statement
Written informed consent was obtained from all participants prior to the experiment and the
UCL Research Ethics Committee approved the study (project number 3450/002).

Subjects
Previous studies in our laboratory and others have shown that 20 to 25 participants provide
sufficient power to quantify the contribution of model-free and model-based strategies in the
two-step task [16,18,19,38]. We thus decided prior to data collection to include at least 20 par-
ticipants in the final analysis of each experimental group. 35 adult participants formed a group
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(referred to as the ‘high load group’) which received training both with and without cognitive
load, of which 22 were included in the final analysis (7 male and 15 female; age range 18–34;
mean 21.5, SD = 3.71 years). 30 adult participants formed a second independent group
(referred to as the ‘low load group’) for which cognitive load was omitted from training on
days one and two. 23 were included in the final analysis (9 male and 14 female; age range 18–
26; mean 21.2, SD = 3.61 years).

Subject inclusion/exclusion criteria. In line with [16] we excluded 11 subjects from the
‘high load group’ and 5 subjects from the ‘low load group’ whose accuracy on the Stroop task
during dual-task trials was< 70% on any given day so as to ensure participants were in fact
attempting to perform both tasks simultaneously. In addition we excluded 2 participants from
the ‘high load group’ and 1 participant from the ‘low load group’ who chose the same first-
stage fractal on> 90% of trials (on any given day), irrespective of events on the previous trial.
Finally we excluded 1 participant from the ‘low load group’ whose probability of repeating a
first-stage action following a common-rewarded transition on the previous trial was< 0.25 on
day one of training.

General design
In the ‘high load group’, subjects performed alternating blocks of single-task (two-step alone)
(128 trials) and dual-task (64 trials) trials until two blocks of each trial type were completed
(256 single-task trials, 128 dual-task trials in total). This protocol was repeated across three
consecutive days. Subjects received 20 practice trials of each trial type at the start of day one. In
the ‘low load group’, subjects performed 256 trials of the single-task (two-step alone) condition
for two consecutive days, while the protocol on day three was identical to the ‘high load group’.
Subjects in the ‘low load group’ received 20 practice trials of the single-task condition at the
start of day one, and 20 practice trials of the dual-task condition at the start of day 3.

Task
Subjects performed a two-step decision task based on [19] and equivalent to that used in [16].
At the first stage, subjects had 2000 ms to choose between a fractal-pair presented on a grey
background (the chosen fractal was highlighted with a yellow border for the remainder of the
choice period). Each first stage fractal led to one of two second stage fractal-pairs with a 70%
probability (common transition) and to the other with a 30% probability (uncommon transi-
tion). Second stage fractal-pairs were displayed on a green or blue background in accordance
with whether a common or uncommon transition had occurred. In addition, the chosen first-
stage fractal was minimized and moved to the top central portion of the screen. At the second
stage, subjects again had 2000 ms to choose between a fractal-pair (the chosen fractal was again
highlighted with a yellow border for the remainder of the choice period). An outcome was pre-
sented in the form of a golden coin (to indicate a monetary gain) or a ‘0’ (to indicate no mone-
tary gain), followed by an inter-trial interval (fixation cross). The position of each fractal (left
versus right) was counter-balanced across trials for both stages.

Dual-task trials followed the same procedure, except that subjects had to simultaneously
perform a numerical Stroop task [47]. At the beginning of the first stage, two digits were pre-
sented, one above each choice fractal, for 200 ms, and then covered by a white mask for a fur-
ther 200 ms. After second-stage choice feedback, either the word ‘SIZE’ or ‘VALUE’ appeared
alone in the center of the screen on a grey background. The player had 1000 ms to indicate
which first-stage number was larger in size or value respectively. In accordance with [16] and
[47], the numerically larger number was physically smaller on 85% of trials. Thus, subjects had
to hold incidental information in working memory whilst performing the two-step task.
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Following their response, feedback in the form of the word ‘CORRECT’ or ‘INCORRECT’ was
presented a further 1000 ms. If participants failed to respond during the Stroop task probe, a
red “X” appeared for 1000 ms. Trial lengths were equated across two-step and dual task trials
(7200 ms per trial).

The reward probabilities associated with second-stage fractals were governed by indepen-
dently drifting Gaussian random walks (SD = 0.025). We generated a pool of fifteen random
walks for which reward probabilities did not exceed ~0.75 or fall below ~0.25. For each subject,
three walks were selected at random from the pool for use on each successive day of training.
Thus, walks were continuous between blocks of single-task and dual task trials.

Computational modeling
Based on [19], the task was modelled as consisting of three states (sA for the first-stage fractal
pair; sB and sC for the second-stage fractal pairs) where two possible actions (aA,aB) can be
taken from each state. The goal of each RL algorithm is to learn a state-action value function Q
(s,a) that maps each state-action pair to its expected future value. In each trial t, the first and
second-stage states are indicated as s1,t and s2,t respectively, while first and second-stage choices
(actions) are indicated as a1,t and a2,t Since there is no reward at the first stage, r1,t is always
zero, while r1,t can be zero or one.

Model-free. The model-free algorithm was temporal difference Q-learning [6] in which
the value of a given state is assumed to be equivalent to the expected reward from taking the
best available action from that state. At each stage i of each trial t, the value of the chosen state-
action pair was updated according to:

QTDðsi;t; ai;tÞ ¼ QTDðsi;t; ai;tÞ þ adi;t

where δ, the reward prediction error (RPE), is defined as

di;t ¼ ri;t þ g max
a

½QTDðsiþ1;t; aÞ� � QTDðsi;t; ai;tÞ

where α is a learning rate fit for each subject and γ is a discount factor that trades off the impor-
tance of sooner versus later rewards (fixed at 1).

Note that for the first stage choice, ri,t is always zero and δ is instead driven by the second-
stage value.

After outcome delivery, the second stage RPE is used to update the first-stage action QTD(s1,
t,a1,t) according to the eligibility trace λ, which assigns credit to the first-stage action without
the need for an additional step.

QTDðs1;t; a1;tÞ ¼ QTDðs1;t; a1;tÞ þ ald2;t

Thus, in the event that λ = 0, choice is driven by the estimated value of the second-stage
state on the previous trial. Consistent with previous studies [16,19], this model assumes that
eligibility traces are cleared between trials.

Model-based. Amodel-based RL algorithm involves learning a set of contingencies
between actions and states (a state-transition function), estimating a reward value for each
state, and then combining the two by iterative expectation. Here, since first-stage transitions
are probabilistic, a player must map action-state pairs to a probability distribution over subse-
quent states.

One can approximate subjects’ estimate of the transition probabilities by assuming they
believe one of two alternatives:

PðsBj sA ; aAÞ ¼ 0:7; PðsCj sA ; aAÞ ¼ 0:3; PðsCj sA ; aBÞ ¼ 0:7; PðsBj sA ; aBÞ ¼ 0:3
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or

PðsBj sA ; aAÞ ¼ 0:3; PðsCj sA ; aAÞ ¼ 0:7; PðsCj sA ; aBÞ ¼ 0:3; PðsBj sA ; aBÞ ¼ 0:7

based on the number of previous transitions from sA to sB given aA and from sA to sC given aB
(or vice versa). A previous study has shown this scheme settles on the true transition matrix
after the first few trials and fits subjects’ choices better than implementing a traditional trial-
by-trial learning algorithm [19]. Therefore, we assume the true transition probabilities are
learnt during practice trials and are known by the start of the first experimental block.

Since the second-stage action is the only choice associated with immediate reward, and is
the final step in a trial, an agent can learn the value of the second-stage state in a manner equiv-
alent to temporal difference Q-learning (as above). Thus, QTD(s2,t,a2,t) is simply an estimate of
the immediate reward r2,t, and the model-based algorithm converges with model-free learning
at this stage.

By combining the transition function with the second-stage values we can define the values
of the two first-level actions (using Bellman’s equation) as follows:

QMBðsA; ajÞ ¼ PðsBjsA; ajÞmax
a

½QTDðsB; aÞ� þ PðsCjsA; ajÞmax
a

½QTDðsC; aÞ�

where these are computed on every trial based on the updated second-stage Q-values.
Hybrid model. For the hybrid model we consider contributions from both model-free and

model-based RL. First-stage action values were defined as the weighted sum of values from the
algorithms described above as follows:

QHMðsA; ajÞ ¼ wQMBðsA; ajÞ þ ð1� wÞQTDðsA; ajÞ

where w is a weighting parameter.
When fitting data across all sessions, we included a slope parameter sigma (σ) that allowed

w to shift across days:

wD ¼ w½expðsðDay � 2ÞÞ�

and used wD as the new weighting parameter.
At the second-stage, all three models (model-free, model-based, hybrid) converge.
Action selection. For each model, values were converted to action probabilities using a

sigmoid (softmax) function:

PðaA;tÞ ¼ εþ ð1� 2εÞ expðb � Qðsi;t; aA;tÞÞ
expðb � Qðsi;t; aA;tÞÞ þ expðb � Qðsi;t; aB;tÞÞ

Where ε is a lapse rate, and β is an inverse temperature parameter that governs the stochasti-
city of choice options. When ε> 0 the boundaries of the sigmoid function are compressed and
deviations from the model are less harshly punished (see S3A Fig). Including a lapse rate in the
softmax may reduce the impact of choices unrelated to the value function of our model (for
example choices that result from lapses in concentration, or pressing the wrong button) on the
estimation of the remaining parameters (see S1 Text and S3B Fig for further explanation).

Model sets. When fitting data from individual days, we considered a hybrid RL model that
included a single learning rate (α) and softmax temperature (β), a weighting parameter that
governs the balance between model-free/model-based control (w), and a lapse rate (ε). The eli-
gibility trace (λ) was fixed at 1. Model-free and model-based algorithms were nested versions
of the hybrid model where w was set to 0 and 1 respectively.
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When fitting data across all days, we considered a family of (nested) hybrid RL models in
which specific parameters were omitted or included as fixed versus free parameters. More com-
plex models included separate RL parameters for first and second stage choices, an eligibility
trace, and a slope parameter that permitted the weighting between model-free and model-
based control to shift across days. See S2 Table for the full model set.

Model fitting and comparison. The model fitting routine follows that previously
described by Huys and colleagues [48]. Each model yielded a parameter vector, θi, for each sub-
ject, i. Before inference, all parameters were suitably transformed to enforce constraints (log
and inverse sigmoid transforms). Model fitting at the individual level aimed to find the maxi-
mum a posteriori estimate of θi, given a vector of each subject’s choices,Ci:

yi ¼ argmaxy pðCijyiÞpðyijWÞ

We used a hierarchical (random effects) model-fitting approach, with the assumption that
parameter estimates were normally distributed at the group level, where ϑ are the parameters
of the empirical normal prior distribution (hyperparameters) on θ. The hierarchical approach
allows the population-level distribution of data to constrain unreliable parameter estimates at
the individual level. We estimated the maximum-likelihood hyperparameters, given the data
from all N subjects:

ŴML ¼ argmaxW pðC1 . . . CN jWÞ ¼ argmaxW

Y
i

pðCijWÞ

where:

pðCijWÞ ¼
Z

dyi pðCijyiÞpðyijWÞ

The intractable integral above was estimated by Expectation-Maximization (EM). The E-
step at the kth iteration sought the maximum a posteriori parameter estimates for each subject
(given an estimate of the empirical prior from the preceding iteration, achieved by uncon-
strained nonlinear optimization in Matlab, Mathworks, MA, USA):

yi
ðkÞ ¼ argmaxy pðCijyiÞpðyijWðk�1ÞÞ

We used a Laplace approximation, which assumes that the likelihood surface is normally
distributed around the maximum a posteriori parameter estimate:

pðyijCiÞ � N yi
ðkÞ;

X ðkÞ

i

� �

Where
X ðkÞ

i
is the second moment around yi

ðkÞ, which approximates the variance. In the M-

step, the estimated hyperparameters ϑ(k) of the normal prior distribution, mean μ, and
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factorized variance, σ2, were updated as follows:

mðkÞ ¼ 1

N

X
i

yi
ðkÞ

ðsðkÞÞ2 ¼ 1

N

X
i

ðyi
ðkÞÞ2 þ

X ðkÞ

i

� �
� ðmðkÞÞ2

We compared models by Bayesian model evidence, p(C1 . . . CN|M), approximated as BICint:

� 1

2
BICint ¼ logpðC1 . . . CN jŴMLÞ � 1

2
jMjlogðjC1 . . . CN jÞ

Where |C1 . . . CN| is the total number of choices made by all subjects, and |M| is number of
hyperparameters fitted. Notably here, by distinction from conventional BIC,

logpðC1 . . . CN jŴMLÞ is a sum over the model evidence at the subject level by integrating over
subject-level parameters:

log pðC1 . . . CN jŴMLÞ ¼
X

i

log
Z

dy pðCijyÞ pðyjŴMLÞ �
X

i

log
1

K

XK

k¼1

pðCijykÞ

The right hand expression approximates the integral by summing over K samples, drawn from

the empirical prior, pðyjŴMLÞ. Thus the individual-level parameters intervene between the data
and the group-level inference, but are averaged out when comparing models.

3-back logistic regression
In line with recent studies using the two-step task, we considered model-free and model-based
influences on choice in the current trial, with respect to events that occurred up to 3 trials in
the past [20]. Here, the dependent variable on trial t was 1 when stimulus A was chosen and 0
when stimulus B was chosen at the first-stage. Each regressor then described whether events on
trial t-1, t-2 and t-3 would increase (coded as +1) or decrease (coded as -1) the probability of
choosing A according to a model-free or a model-based system (6 regressors in total). Impor-
tantly, if a trial involved a common transition, both systems make identical predictions. How-
ever, opposing predictions emerge following uncommon transitions. We implemented a
random-effects logistic regression in Matlab (MathWorks) and performed one-sample t-tests
on the resulting coefficient estimates for the 6 regressors, separately for trained (day 3) versus
untrained (day 1), and dual-task (high load) versus single-task (low load) conditions (see Fig 4
and S2 Fig).

Supporting Information
S1 Fig. Model-free and model-based influences on choice: ‘Low load group’.We performed
a logistic regression on data from the ‘low load group ‘ on day 3 of training to estimate the rela-
tionship between choice on trial t and events occurring on trial t-1 up to t-3. Here, regression coef-
ficients can be interpreted as reflecting a model-free or model-based influence on choice, where
larger coefficients indicate a stronger influence. In the single-task condition (blue bars), model-
free and model-based coefficients were significantly different from 0 (up to 3 trials in the past),
suggesting that subjects used a hybrid of both strategies. In the dual-task (high load) condition
(orange bars), we observed a significant influence of a model-based system, that did not differ
from the single-task condition, up to 3 trials in the past. In contrast, we found no significant
influence of a model-free system. These results are consistent with data from the ‘high load
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group’ (see Fig 4). Vertical lines represent SEM. � denotes p =< 0.05, ‡ denotes p = 0.08.
(TIF)

S2 Fig. Switch-stay choice pairs. Bar plots show the average probability with which subjects
chose to repeat their first-stage action on the subsequent trial as a function of the transition
(common vs. uncommon) and outcome (rewarded vs. unrewarded) on the previous trial. Blue
bars correspond to common transitions and red bars correspond to uncommon transitions.
Vertical lines represent SEM. (A) Data from the ‘high load group’. The upper panel corre-
sponds to the single-task condition and the lower panel to the dual-task condition. Choice is
plotted separately for all 3 days. (B) Data from the ‘low load group’. Behavior is plotted across
all 3 days for the single-task condition, and for day 3 alone in the dual-task condition.
(TIF)

S3 Fig. The effect of utilizing a softmax lapse rate. (A) The left-hand side shows an empirical
softmax function generated using data from the ‘high load group’ on day 1 and the single-task
condition. For each subject, we grouped the values generated from the winning hybrid model
(see S1 Table) into 10 bins, and calculated the mean probability with which the best action was
chosen in each bin, including both first and second-stage choices. The plot is averaged over all
22 subjects in the ‘high load group’. Vertical bars represent SEM. The right-hand side shows a
simulated softmax function with an inverse temperature (β) of 1, with and without including a
lapse rate (ε) set to 0.1. The lapse rate compresses the boundaries of the softmax such that the
probability of choosing a given action is forced to lie between the range of 1-2ε. (B)Here we
show slices through the likelihood surface of a single subject when the lapse rate (ε) is set to 0
(left-hand side), or fit as a free parameter (right-hand side), respectively. The red crosses repre-
sent the peak of the likelihood surface. On the right-hand side, the black arrow represents the
shift in the peak of the surface (and the equivalent shift in the best-fitting values of our model
parameters) when ε is fit as a free parameter compared to when it is fixed at 0.
(TIF)

S1 Table. Bayesian model comparison: Single days. Results of a Bayesian model comparison
that accounted for differences in model complexity. The hybrid model, which incorporated influ-
ences from both model-free and model-based control, fit subject data better than pure model-
free and model-based RL algorithms across both trial types (single-task versus dual-task) and
both groups (‘high load group’ day 1, ‘low load group’ day 3). Bold-face denotes the winning
model (lowest iBIC score) for each condition. α = learning rate; β = softmax inverse temperature;
ε = lapse rate; w = model-free/model-based weight. The eligibility trace, λ (not shown), was set
to 1 in all cases. w was set to 0 and 1 for pure model-free and pure model-based RL respectively.
(DOCX)

S2 Table. Bayesian model comparison: Multiple days. Results of a Bayesian model compari-
son that accounts for differences in model complexity. More complex model variants include
those that have separate parameters for first and second stage choices, an eligibility trace, and a
parameter for capturing shifts in model-free versus model-based control across days (σ). In
simpler models, RL parameters were fixed between first and second stage choices, the eligibility
trace was fixed at 1, and σ was set to 0. Bold-face denotes the winning model (lowest iBIC
score) for each condition. Parameters followed by a superscript of 1 or 2 correspond to first-
stage or second-stage choices respectively. α = learning rate; β = softmax inverse temperature;
ε = lapse rate; w = model-free/model-based weight; λ = eligibility trace; σ = slope governing a
shift in model-free/model-based weight (w) across days.
(DOCX)

Model-Based Reasoning in Humans Becomes Automatic with Training

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004463 September 17, 2015 16 / 19

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pcbi.1004463.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pcbi.1004463.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pcbi.1004463.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pcbi.1004463.s005


S3 Table. Inferred group-level parameters. Best-fitting parameter estimates shown separately
for each group and condition (single-task versus dual-task), using data concatenated across all
3 days of training. Values represent mean parameter fits across all subjects. � represents fixed
parameter values. Parameters followed by a superscript of 1 or 2 correspond to first-stage or
second-stage choices respectively. In simpler models, λ was fixed at 1 and σ was set to 0. α =
learning rate; β = softmax inverse temperature; ε = lapse rate; w = model-free/model-based
weight; λ = eligibility trace; σ = slope governing a shift in model-free/model-based weight (w)
across days.
(DOCX)

S4 Table. Results of a logistic regression across days. Table shows the group-level output of a
logistic regression on first-stage switch-stay behavior, separately for single-task (‘high load
group’ and ‘low load group’) and dual-task trials, from data concatenated across all 3 training
sessions. We note that ‘reward x day’ was orthogonalized with respect to reward, and in turn
‘reward x transition x day’ was orthogonalized with respect to ‘reward x transition’. These
regressors thus account for variance unexplained by the simpler main effect or 2-way interac-
tion respectively (see Materials & Methods). Bold-face denotes p< 0.05 uncorrected for multi-
ple comparisons. rew = reward; trans = transition.
(DOCX)

S1 Text. Supporting Information.
(DOCX)
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