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ABSTRACT Speciation is fundamental to the process of generating the huge diversity of life on Earth. However, we are yet to have a clear
understanding of its molecular-genetic basis. Here, we examine a computational model of reproductive isolation that explicitly incorporates a
map from genotype to phenotype based on the biophysics of protein-DNA binding. In particular, we model the binding of a protein
transcription factor to a DNA binding site and how their independent coevolution, in a stabilizing fitness landscape, of two allopatric lineages
leads to incompatibilities. Complementing our previous coarse-grained theoretical results, our simulations give a new prediction for the
monomorphic regime of evolution that smaller populations should develop incompatibilities more quickly. This arises as (1) smaller pop-
ulations have a greater initial drift load, as there are more sequences that bind poorly than well, so fewer substitutions are needed to reach
incompatible regions of phenotype space, and (2) slower divergence when the population size is larger than the inverse of discrete differences
in fitness. Further, we find longer sequences develop incompatibilities more quickly at small population sizes, but more slowly at large
population sizes. The biophysical model thus represents a robust mechanism of rapid reproductive isolation for small populations and large
sequences that does not require peak shifts or positive selection. Finally, we show that the growth of DMIs with time is quadratic for small
populations, agreeing with Orr's model, but nonpower law for large populations, with a form consistent with our previous theoretical results.
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PECIATION is of great importance in generating the ob-

served diversity of life, yet it is still poorly understood,
especially at the genetic level. Two populations are said to
have speciated when they have developed reproductive
isolation (RI), that is, when they can no longer interbreed.
A standard model of how postzygotic reproductive isolation
arises is due to Dobzhansky, Muller, and Bateson (Bateson
1909; Dobzhansky 1936; Muller 1942), where so-called
Dobzhansky—Muller incompatibilities (DMIs) arise due to ep-
istatic interactions; for example, two geographically isolated
lineages evolving allopatrically from a common ancestor ab
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can fix the allelic combinations aB and Ab, respectively, yet
the hybrid genotype AB can be inviable due to the epistatic
interactions between these two loci. In polygenic systems,
where many loci code for an additive quantitative trait, a
similar hybrid incompatibility arises; quadratic, or any non-
linear, selection induces epistasis such that divergent pop-
ulations, under the action of drift, maintain different
underlying allelic combinations at the many loci (Wright
1935a,b) for the same optimal trait value, which when com-
bined in hybrids can lead to incompatibilities (Barton 1989).
Although there are many examples of genes directly involved
in reproductive isolation (Wu and Ting 2004), we still lack
a theoretical understanding of the functional relationship
between genes and their role in the development of hybrid
incompatibilities and speciation dynamics. In this article, we
examine an important example of such a functional relation-
ship, the genotype-phenotype map of transcription factor-DNA
binding. Using a simple biophysical model of transcription
factor-DNA binding we analyze how incompatibilities can
arise between allopatric lineages.
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Despite many studies of the evolution of RI, very little
attention has been paid to the role of population size;
however, there is indirect and direct evidence that smaller
populations develop incompatibilities more quickly. The
observation of the large diversity of species on small young
islands, such as Hawaii (Mayr 1970), or on the island of
Cuba (Glor et al. 2004) and in the East African Great Lakes
(Owen et al. 1990; Santos and Salzburger 2012), where in
the latter two cases each one has been subject to histori-
cally fluctuating water levels and thus opportunities for
allopatric speciation, suggests that smaller populations
speciate more quickly. This is in contrast to lower levels
of reproductive isolation observed in marine species with
large ranges and population sizes, for example, the rela-
tively small fraction of Pacific-Caribbean species pairs
separated by the Isthmus of Panama a few million years
ago compared to those that are not reproductively isolated
(Mayr 1954, 1970; Rubinoff and Rubinoff 1971). There is
also evidence that reproductive isolation arises more
slowly in birds compared to mammals (Fitzpatrick 2004).
Strikingly, even after ~55 MY divergence (Cooper and
Penny 1997), domestic chickens (Gallus gallus) can still
hybridize with helmeted guineafowl (Numida meleagris),
where estimates of the effective population size of domestic
chickens range from N. ~ 10° to 10° (Sawai et al. 2010),
whereas in contrast, cichlids develop reproductive isolation as
quickly as 1 — 10MY after divergence (Stelkens et al. 2010) and
have relatively small population sizes [100 — 10,000 (Oppen
et al. 1997; Fiumera et al. 2000)]. This population size trend is
further supported by net rates of diversification (Coyne and Orr
2004) inferred from phylogenetic trees (Barraclough and Nee
2001; Nee 2001). On the other hand, there are examples that
buck this trend, such as Drosophila, which shows rapid specia-
tion, for example, in adaptive radiations in Hawaii at large
population size (Ayala et al. 1996).

Where does current theory stand in light of these observa-
tions? There are a number of theoretical models of allopatric
speciation based on the Dobzhansky—Muller mechanism,
which consider independent lineages evolving neutrally or
under varying selection pressures on each lineage (Nei et al.
1983; Orr 1995; Orr and Orr 1996; Orr and Turelli 2001;
Gavrilets 1999, 2003, 2004). Models that involve positive se-
lection driving divergence are unlikely to be able to explain
this dependence on population size, since larger populations
respond more quickly to a given selection pressure (Gavrilets
2003). This leaves models of speciation where populations
diverge neutrally or under stabilizing selection pressure; the
models of Nei et al. (1983) and Gavrilets (1999) tackle pre-
cisely this question in the strong mutation regime (nu,N =1,
where n is the number of nucleotides or base pairs for the loci
of interest, u, the base-pair mutation rate, and N the popula-
tion size) where the population is highly polymorphic. They
find slower divergence in larger populations due to the lower
reproductive success of members of the population who have
diverged farther from the fitness maximum, resulting in a
slower speciation rate. However, in neither of these models
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is there a dependence on population size in the weak muta-
tion, nearly monomorphic regime, where nu,N < 1. Models
of hybrid incompatibility that rely on fitness epistasis on
quantitative traits (Wright 1935a,b) also predict that smaller
populations should develop reproductive isolation more
quickly, as drift helps populations shift between stable equi-
libria more rapidly (Barton 1989); but again by the polygenic
nature of the population described in the model, we expect
such a system to have evolutionary dynamics in the strong
mutation regime.

A model that could give rise to more rapid RI for small
populations is based on founder events or peak shifts, where
small founder populations split and become isolated (Lande
1979, 1985; Barton and Charlesworth 1984; Barton and
Rouhani 1987); the strength of drift is larger in small popu-
lations, allowing them to more easily pass through fitness
valleys. A major problem with such models is that for isola-
tion to occur on reasonable timescales the product of the
fitness barrier and population size needs to be sufficiently
small. However, this condition also means that gene flow is
relatively unimpeded between peaks (Coyne and Orr 2004),
destroying the reproductive isolation the model seeks to
establish. Finally, the work of Orr and co-workers provided
a framework to understand how incompatibilities might arise
in allopatry through sequentially fixing mutations in the
weak mutation regime (nuoN < 1) (Orr 1995; Orr and
Turelli 2001); they showed that the number of potential
or untested incompatibilities “snowballs” like ~ K? for
interactions between pairs of loci, where K is the number
of substitutions separating the two lineages. However, the
starting point of this model is the assumption of neutral,
population size independent, divergence between lineages
with a fixed probability that each untested combination is
incompatible and so cannot address the question of the
population size dependence.

A common theme of the above theories is that they are
phenomenological with respect to the underlying genetic
basis of incompatibilities. Johnson and Porter (2000, 2007)
examined the evolution of decreased hybrid fitness for simple
models of gene regulation, under positive and stabilizing
selection, in the clonal interference regime (nu,N ~ 1), but
did not investigate the dependence on population size. More
recently, they extended their work with sequence-based
models of transcription factor (TF) binding similar to the
model described here (Tulchinsky et al. 2014b), showing de-
creased hybrid fitness with decreasing population size; how-
ever, these results are again in the regime where the effect of
mutations is not weak (nu,N ~ 1) and the dynamics of the
growth of DMIs were not investigated in detail.

In summary, although the models of Gavrilets, Nei ,and
Barton each predict a decreasing rate of developing RI with
increasing population size when nu,N =1, these models
predict no dependence on population size, or are not applicable,
in the weak mutation, nearly monomorphic regime where
nuoN < 1. This is despite genetic studies that have shown that
traits involved in species differences range from monogenic



to mildly polygenic (Orr 2001). However, more recently, a
theoretical framework was developed by the authors of this
article for phenotypic evolution in the monomorphic regime
(nuoN < 1) that accounts for a general mapping between
genotype and phenotype (Khatri and Goldstein 2015); when
applied to a toy model of transcription factor—-DNA binding,
it suggested that more rapid RI might arise for smaller pop-
ulations, due to their having a larger drift load. In this work,
we explore simulations of a more realistic sequence-based
model of transcription factor-DNA binding, which overcomes
limitations of the theoretical model.

Although any pair of interacting genes can result in a DMI,
the interaction of genes that control expression has been
shown to be amajor factor driving differences between species
(King and Wilson 1975; Wray 2007; Wittkopp et al. 2008;
Wolf et al. 2010), suggesting a major role in speciation. In
particular, compensatory changes at both cis and trans locations
have been shown to be responsible for the misexpression of
many genes in hybrids between Drosophila melanogaster and
D. simulans (Landry et al. 2005), while there is more direct
evidence in Drosophila of evolution of genes related to transcrip-
tion factors driving speciation (Ting et al. 1998; Brideau et al.
2006). With the increasing use of genome-level studies
(Seehausen et al. 2014) to characterize speciation, there is
a need for theory and modeling to bridge the gap between
sequence-level changes at coevolving loci and phenotypic
determinants of incompatibilities; the binding of transcription
factors to DNA to control gene expression is arguably one of
the most important coevolving systems for organisms and so
makes an ideal case study to examine the consequences to
speciation of a simple biophysical model and a mechanistic
insight on the way DMIs develop.

In this article, we examine how incompatibilities arise in
allopatry for an abstract, yet biophysically motivated model
of binding between two macromolecules, a protein TF
binding to a specific DNA or TF binding site (TFBS). Our
model is based on the “two-state” approximation (Von Hippel
and Berg 1986; Gerland et al. 2002), which assumes the
binding affinity is a sum of contributions of opposing amino
acid nucleotide pairs, with each contribution being of only
two types, “matched” or “mismatched.” This approximation,
although not capturing the molecular interactions in atomis-
tic detail, can represent many salient aspects that have been
ignored in previous work on speciation theory. In particular,
such a model allows us to include the effects of drift-selection
balance in the weak mutation regime (nu,N < 1), due to
some phenotypes being coded by more sequences than others
and the corresponding effect of population size on speciation
dynamics. Recent work has shown that such mappings from
genotype to phenotype give rise to a number of nontrivial
effects (Force et al. 1999; Fontana 2002; Berg et al. 2004;
Mustonen and Lassig 2005; Khatri et al. 2009; Goldstein
2011). Here, we find this simple genotype—phenotype
map predicts an increasing rate of accumulating DMIs for
decreasing population sizes in the weak mutation regime,
the appropriate limit for monomorphically evolving traits,

with a robust mechanism that does not require valley cross-
ing by either of the divergent populations. This dependence
on population size arises due to two separate mechanisms.
First, at large population sizes, the overall substitution
rate slows down as the number of nearly neutral mutations
decreases, which is line with expectations from the nearly
neutral theory (Ohta 1973, 1992). More significantly, the
particular form of drift-selection balance that arises from
the genotype-phenotype map results in sequence pairs that
have a distribution of binding affinities peaked away from
the optimal in smaller populations. As a result, less allopatric
evolution is required before the hybrid organisms become
inviable.

Materials and Methods
Quaternary model of transcription factor-DNA binding

Proteins bind DNA through a number of interactions, includ-
ing electrostatic, van der Waals, and hydrogen bonding at the
protein—-DNA interface. We can split these interactions into a
nonspecific part due mainly to the electrostatic interaction
between positive protein side chains and the negative phos-
phate backbone and a specific part largely due to hydrogen
bonding. It is these specific interactions that give rise to
discrimination of TFs to different DNA sequences; a TF at
its correct sequence binds through both nonspecific and
specific interactions, while at a noncorrect site it binds
only nonspecifically with an altered conformation that
maximizes electrostatic interactions (Von Hippel and
Berg 1986).

The two-state approximation (Von Hippel and Berg 1986;
Gerland et al. 2002) for transcription factors binding at their
correct binding sites assumes that amino acid nucleotide
interactions are either optimal or nonoptimal and the contri-
bution of each amino acid-nucleotide pair to the total binding
energy is approximately additive. The rationale for this model
is the underlying biophysics of protein—-DNA interactions, in
particular, the fact that an amino acid at a protein-DNA
interface will tend to have a preferred nucleotide with which
to hydrogen bond, taking account of the approximately fixed
orientation of the amino acid as positioned by the rest of the
protein. The other nucleotides tend to be nonoptimal and not
able to hydrogen bond (Takeda et al. 1989). Although each
optimal interaction is marginally stabilizing [—0.5 kcal/mol
(Von Hippel and Berg 1986)], it is the nonoptimal nucleotides
that dominate the binding free energy, since the hydrogen bond
acceptors and donors in the DNA can neither hydrogen bond to
an amino acid nor hydrogen bond to water molecules. This
suggests a large cost for each nonoptimal interaction, although
in reality the exact value is highly dependent on the particular
protein and DNA sequence; empirically measured costs of free
energy per amino acid nucleotide mismatch can range from
1-2 kcal/mol (2-3 kgT) (Takeda et al. 1989; Stormo and Fields
1998) to 4-5 kcal/mol (6-8 kgT) (Von Hippel and Berg 1986;
Lesser et al. 1990; Baldwin 2003), where kg is Boltzmann’s
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constant and T is room temperature. This variation is likely
explained by specific cooperative effects that include electro-
static, steric, and solvent interactions (Lesser et al. 1990;
Baldwin 2003) that change the energy scale of binding de-
pendent on a particular protein-DNA binding context. In this
article, for simplicity, we assume a binding energy difference
of each nonoptimal interaction compared to an optimal
interaction of A¢ = 1.8 kcal/mol = 3kgpT.

As mentioned, for each amino acid there tends to be a single
nucleotide it prefers to hydrogen bond (Takeda et al. 1989). If
we designate the category of amino acids by its preferred part-
nering base (e.g., an amino acid in group T would interact
preferably with a thymine) and recognize that only changes
of amino acid group affect the binding properties, we can use
A, T, C, and G to represent letters from the quaternary alpha-
bet for both proteins and DNA sequences; for simplicity, this
assumes that the amino acids are equally distributed among
the four categories. In this way, the genome corresponding to
this TF-TFBS pair consists of two “genes” of length ¢ in the
standard four-letter alphabet of DNA. For simplicity, we
consider the mutation rates between amino acid clusters in
the protein and nucleotides in the DNA as approximately equal;
since our model assumes amino acids and nucleotides are
drawn from the same alphabet and as we see below, we treat
protein and DNA sequences equally in determining binding
affinity, we find in our results that the substitution rates of
protein and DNA loci are equal. However, in nature, the rate
of substitution between amino acid categories is different
from that between DNA bases, increased by the triplet code
and decreased by the clustering and other forms of selection
acting on the protein, as well as by pleiotropic constraints.
However, our model is reasonable, since we would expect the
overall dynamics of divergence to be dominated by the loci
with the slowest substitution rate and hence slowest effective
mutation rate.

Assuming additivity of each amino acid-DNA interaction,
the binding free energy will then be equal to a sum of free
energies due to matches and mismatches. The number of mis-
matches is given by the Hamming distance r = dy(g’, gP),
where the function dy counts the number of positions where
the protein sequence g” and DNA sequence gP are not the
same. The number of matches is then ¢ — r, giving a binding
free energy,

AG = ler + Aer, €8]

where ¢, is the free energy of each match, which includes
both specific and nonspecific interactions. If we choose
our zero of energy to be the energy of the best binding
sequence, (e, then we can redefine the binding free energy
to be

AG = Aer. )

This binding free energy corresponds to the specifically bound
mode of attachment (which has both specific and nonspecific
contributions). In addition to this specific bound mode, an
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alternative configuration of protein and DNA exists where the
interactions are purely electrostatic. The specific binding
mode and this alternative nonspecifically bound mode are
in thermodynamic competition. The free energy of binding
in the electrostatic nonspecific mode is

AGpgs = (Aégpg, 3)

where Agyg is the free energy per nucleotide in the nonspe-
cific mode relative to the optimal binder. Thermodynamic
studies of Lac repressor binding to DNA suggest that the
difference in free energy between the best specific binding
and the nonspecific mode of binding is ~15 kgT, so as
¢ = 10 for the Lac repressor, we find Agys ~ 1.5 kgT (Revzin
and Von Hippel 1977; Von Hippel and Berg 1986).

Modeling the evolution of reproductive isolation

The relationship between the binding energy of a TF to
its binding site and the fitness of an organism is poorly
understood and is likely very complicated and different for
each TF-TFBS pair. There is competition between specific
binding and nonspecific binding of the TF (purely electro-
static mode, discussed above). We would expect the fraction
of time spent in the specific mode to reach a maximum when
there are no mismatches, decreasing with increasing r until
the TFBS cannot compete with the electrostatic nonspecific
mode of binding. Genome-wide studies of TFs in Escherichia
coli (Mustonen and Lassig 2005) and yeast (Mustonen et al.
2008; Haldane et al. 2014) found a distribution of binding
energies for different TFs that deviated from the random/
neutral expectation (Equation 6) for the highest-affinity
binders. This deviation from the neutral distribution, which
reflects selection for functional binding sites, has a form
suggesting a Malthusian fitness landscape that is peaked
at nearly optimal binding, decreasing with negative curva-
ture as the binding strength is reduced. These factors sug-
gest a simple model for the fitness landscape where the
Malthusian fitness decreases quadratically with the specific
binding energy (corresponding to a Gaussian Wrightian
fitness function) until a critical number of mismatches r*
is reached, corresponding to AG(r*) = AGys, where nonspe-
cific binding begins to dominate. Beyond this point we
consider the organism inviable with a Malthusian fitness
of negative infinity (Wrightian fitness of zero). In particular,
this cutoff allows us to define DMIs as occurring when r > r*
for hybrids between allopatric populations.
More formally,
L 2
F(AG(r)) — EKFT forr=r @
— for r>r*,
where «r is the curvature of the fitness landscape and biolog-
ically, roughly corresponds to the strength of selection of this
trait; as kg decreases the fitness landscape becomes more
shallow, and so for a fixed effective population size the land-
scape becomes more neutral.



Combining AG(r*) = AGys with Equations 2 and 3 yields
r* = (Aeys/Ae. Note that as binding sites increase in length,
¢, the stability of the best binder (r = 0) relative to non-
specific binding will increase in proportion to ¢ and hence a
larger number of mismatches will be required before a bind-
ing site becomes nonfunctional. Specifically, for Ae = 3kgT
and Aeps = 1.5kgT (Von Hippel and Berg 1986), we find
r* =¢/2. In the case of short DNA recognition sites for EcoRI
endonuclease cleaving DNA, where ¢ = 5, it was found that
r* =~ 3 (Lesser et al. 1990), which agrees well with our approx-
imate relation between r* and ¢. We expect our qualitative results
to be robust to the choice of such a threshold. Similarly, a more
detailed consideration would include binding of the TF to other
spurious sites in the genome with large sequence similarity; again
we expect such consideration will change the value of AG*,
but not change the scaling relation r*« ¢, as longer binding
sites will always have a larger maximum affinity.

To simulate the evolution of TF-TFBS sequence evolution
we assume a diploid Wright-Fisher population genetic
process with 2N, copies of each gene in the population with
a fixed effective population size of N, where we have as-
sumed equality with the actual population size N. As we are
interested in the weak mutation regime (nuyN. < 1), the
population is represented by a single fixed sequence for the
TF-TFBS pair of loci at each time point, where all individuals
are homozygous and mutations are either instantly fixed or
eliminated. We use the Gillespie algorithm (Gillespie 1976)
to simulate evolution as a continuous-time Markov process;
at each step of the simulation the rates of fixation of all 3 X 2¢
one-step mutations from the currently fixed alleles (wild
type) on both TF and TFBS loci are calculated, and one of
these mutations is selected randomly in proportion to the
relative rate. Time is then progressed by K~! In(u), where K
is the sum of the rates of all one-step mutants and u is a
random number drawn independently between 0 and 1,
which ensures the times at which substitutions occur are
Poisson distributed, as would be expected for a random
substitution process. The rates are based upon the Kimura
probability of fixation (Kimura 1962),

1 — e 2F 4N S8F

k = 2uoNe 1 — e aNeoF Mo T —ansF ©)

where S6F is the change of fitness of a mutation at a particular
location and 2u,N, is the rate at which mutations arise for
each amino acid or nucleotide position in a diploid popula-
tion; the latter approximation in Equation 5 assumes 6F < 1.
Note that although in the simulations we use the full form for
the fixation probability, fitness effects are typically small
(6F < 1) in the simulations, so the substitution rates depend
only on the population-scaled fitness changes 4N.6F, which,
for a given mutation, are proportional to 4N.kg. In the rest of
this article we refer to the scaled population size 4Nk to
make it clear that reducing either N, or g (or both) can
change the evolutionary outcomes from those dominated
by selection to those dominated by drift.

Using the above evolutionary process based on the bio-
physics of a TF binding DNA, we study allopatric speciation
by independently evolving two lineages in the fitness land-
scape defined by Equation 4. We create an ancestral genome
containing a protein and a DNA binding-site gene, each of
length ¢, with AG drawn from the equilibrium distribution of
binding energies (Equation 7). This ancestral genome is
then duplicated, with each copy representing the start of a
different isolated population that subsequently evolves
independently. As the allopatric populations evolve, we con-
sider the viability of hybrid offspring of the two lineages.
If the evolving protein and DNA sequences in one lineage
are g% and gP and the other ones are gb and g5, we can at
each time point calculate the Hamming distance for each
hybrid as hi2 = du(g}, 8>) and ha1 = du(gh, g2) with corre-
sponding hybrid binding energies, AGY, = Ach;, and
AGY, = Achy;. Using the same fitness function as in Equa-
tion 4, we can then evaluate the fitness of the hybrids as a
function of time. An incompatibility arises whenever the
fitness of the hybrid is —c [h1p >7r*(¢) or he; >1r*(0)], i.e.,
when a hybrid TF-TFBS specific binding is weak compared
to the nonspecific mode of binding and effectively can no
longer recognize its target site. At this point, we assume that
the two diverging populations can no longer form viable
offspring, and they are reproductively isolated. This is a
simplification as hybrid offspring will always be heterozy-
gous at diverged loci, such that the TF-TFBS pair inherited
from each parent will have functional binding, while cross-
binding between parental pairs will be nonfunctional.
Hence, not all postzygotic DMIs would be sufficiently dele-
terious to affect the viability of these heterozygotic off-
spring. We assume, however, that there are some TF-TFBS
pairs that are sufficiently critical such that r > r* and loss of
cross-binding is sufficient to decrease the gene expression
level to the extent that the hybrid is inviable; these are the
pairs that will be relevant for the speciation process and
therefore are the ones addressed by our model. For each
scaled population size and sequence length, 1000 replicates
were run up to a time of u,t = 500, allowing us to calculate
the probability of the presence of a DMI as a function of
divergence time. In addition, simulations were run up to a
shorter time (dependent on the exact value of 4xgN,) with
10° replicates to get reliable estimates of the very small
probability of a DMI (Figure 1) at early times.

Data availability

Results
Rate of accumulation of hybrid incompatibilities

The probability of a DMI Pj(t) as a function of divergence time
pot is plotted in Figure 1, for various values of 4kgN, for
¢ = 10. We see that the model predicts a very strong popula-
tion size effect for the dynamics of hybrid incompatibilities;
as the scaled population size decreases the timescale for DMIs
to arise sharply decreases. This effect saturates for very small
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Figure 1 Average probability of a DMl as a
function of time after divergence from common
ancestor u,t calculated from simulations for
various scaled population sizes, for ¢ = 10.
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scaled population sizes, but diverges for very large scaled
population sizes, to the point that reproductive isolation will
take extremely long times for very large population sizes
(4Nekr > 10). For small scaled population sizes the increase
in DMIs is quadratic at small times (2¢uyt < 1). For large
scaled population sizes there is a delayed, but very rapid,
increase in DMIs, which does not seem to fit a power law
but rather has a negative curvature on a log-log scale. This
is consistent with theoretical predictions of a coarse-grained
model of TF-DNA binding evolution (Khatri and Goldstein
2015), where the growth of DMIs is rapid with the asymptotic
form, as t—0 of Py(t) ~ erfc(1/v/t) ~ v/te"'/t. This form
arises when there are nearly neutral diffusive dynamics, as
shown by the inset in Supporting Information, Figure S2, and
when the common ancestor distribution is very narrow, as
shown in Figure 2, in both cases for simulations at large
scaled population sizes. We also performed simulations
where the common ancestor sequence was drawn to always
have the mean binding energy of the equilibrium distribution
(Figure S1) and found the results to be nearly identical; this
suggests that the power law behavior seen for small popula-
tions is not due to averaging over the common ancestor dis-
tribution, but as argued in the Discussion due to Poissonian
distribution of times for substitutions.

The dependence of P;(t) on population size arises from two
effects, the first resulting from the dependence of equilibrium
binding strengths on population size. Figure 2 shows the
distribution of binding energies on each lineage for different
scaled population sizes (4Nky) for ¢ = 10 and r* = ¢/2 = 5.
The distributions are confined to the region 0 =< AG = AG*,
where AG* = Aer* = 15 kgT is the inviability boundary. For
large scaled population sizes, we see that distributions are
peaked near the optimal binding strength AG = 0, reflecting
the efficacy of selection in large populations. However, as the
scaled population size is decreased, we see the distribution of
binding energies shifts to weaker affinity values (higher AG),
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due to the stronger influence of genetic drift. At the smallest
scaled population sizes, genetic drift dominates and the
distribution of binding affinities becomes identical to the dis-
tribution obtained under neutral evolution (maintaining,
however, the inviability boundary). At the level of sequences
or genotypes, the neutral distribution is evenly distributed
among all possible genotypes; each sequence has equal
probability. However, the probability of a given value of AG
is obtained by multiplying the probability of each sequence
times the degeneracy, that is, the number of sequences
corresponding to this AG. As each sequence has the same
probability, the neutral distribution is then simply propor-
tional to the number of sequences that give AG or Hamming
distance r = AG/A¢, which is given by the binomial

distribution
r (—r
Q(AG(r) = 42f(ﬁ) G) G) . ©)

For example, the number of sequences that give AG = 0 is
Q(AG = 0) = 4 ~ 10° (for ¢ = 10), as there is exactly one
DNA sequence that matches to each one of the 4¢ protein
sequences. This number is very small compared to the num-
ber of sequences at the inviability border that have five mis-
matches, Q(AG = 15 kT) =~ 6.4 X 101°.

At intermediate population sizes we can quantify the
interplay between selection and degeneracy through the
concept of sequence entropy (Barton and Coe 2009; Khatri
and Goldstein 2015), representing the (log) number of
sequences encoding a given phenotypic state (e.g., binding
energy), S(AG) = In(2(AG)), which is closely related to the
Boltzmann entropy from statistical mechanics (Reif 1965).
This entropy measure should be distinguished from entropies
of sequences due to polymorphisms in the population
(in this article we have assumed populations are always
monomorphic). The combination of fitness and sequence
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Figure 2 Equilibrium distribution of binding
energies AG as a result of evolution subject to
the quadratic fitness landscape in Equation 4,
for ¢=10. We assume the fitness landscape
has a fitness cliff (inviability boundary) for
r>r*=¢/2 =5 mismatches or for binding en-
ergies greater than >Aer* =15 kgT, which
represents when the specific binding energy
to its binding site is greater than that of the
nonspecific, electrostaticc, mode of binding.
The solid squares are results of simulations,
while the solid lines are the expected distribu-
tion from Equation 7, which we see agree very
well. In addition, we see that the distribution
shifts from one dominated by fitness F(AG) at
large scaled population sizes (4kg/N > 1) with a
peak at the highest fitness binding energy to
one dominated by sequence degeneracy at
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entropy that is maximized during evolution is the function
®(AG) = F(AG) + S(AG) /4N, termed the free fitness (Iwasa
1988; Sella and Hirsh 2005; Haldane et al. 2014; Khatri and
Goldstein 2015), from which the probability density is
given by

1
P(AG) = - eMPA9), )

where Z is a normalization factor, known as the partition
function, given by Z = Y'_,e®®46) This probability
density is plotted as solid lines in Figure 2 for different pop-
ulation sizes, using Equations 4, 6, and 7; we see that the
agreement between the two is excellent.

The binding energy distributions show that for a general
genotype-phenotype map fitness is not maximized, but
instead there is a balance between selection for higher fitness
and the tendency to undergo drift toward those phenotypes
that correspond to the largest number of sequences. As the
scaled population size decreases, the initial binding affinity
of the common ancestor is on average smaller and so fewer
substitutions are required between a pair of divergent line-
ages for an incompatibility to arise in a hybrid.

The second major factor affecting the rate of accumulation of
DMIsis the slowing of the substitution rate with population ize,
as shown in Figure 3. The dependence we see can be explained
by the average size of fitness effects as the scaled population
size changes, where (k) ~ 37 p,(r)(kr—rs1 + kr—r—1) isasum
over terms formed by the product of the equilibrium probabil-
ity p,(r) and the total substitution rate for r—r=*1 (the exact
formula given in the legend of Figure 3 and plotted as the
solid black line); at very large scaled population sizes the
pe(r) is peaked at r = 0 and so the average substitution rate
will be dominated by transitions between r =0 and r = 1.
Although p,(r) is maximum for r = 0, transitions from r = 0
to r = 1 happen rarely since it requires fixing a mutant with a

12 14 16

Binding Energy AG (kgT)

small scaled population sizes (kN < 1),
which is peaked at the inviability boundary,
representing the left tail of the neutral distribu-
tion in Equation 6 (shown in black).

population-scaled difference in fitness, 4N.6F = — 2xpNA&?,
which is negative and of magnitude >>1, when 4kgN > 1;
this means substitutions will occur significantly slower than
neutral. Conversely, the reverse transition from r=1 to
r = 0 is also rare, despite the fixation probability being large,
since the probability p,(r = 1) is small due to the same large
population-scaled difference in fitness [This must be the case
as in equilibrium p,(r)k,— 11 = pe(r + 1)k;11 -, for the prob-
abilities not to change. This requirement is known in physics as
“detailed balance.”]. This explains the slowdown of the accu-
mulation of DMIs for large scaled population sizes observed in
Figure 1. However, in very small populations, the inverse of the
scaled population size is much larger than differences in fitness
so we might expect substitutions to occur at the neutral rate
((k) = pg). In fact, we find that it is roughly half the neutral
rate ((k) = 0.6u,); this is because for 4kgN. < 1 populations
spend a large fraction of the time at the inviability boundary r*,
so the substitution rate is diminished compared to the
expected neutral rate u,, since a fraction (¢ —r*)/¢=0.5 of
mutations at this boundary are inviable and are never accepted
in the population.

Finally, we note that our results are robust with respect to
changes in sequence length, showing qualitatively similar
behavior for the dynamics of DMIs at different scaled pop-
ulation sizes, as shown in Figure 1. The effect of sequence
length is explored in Supporting Information and in Figure 4,
which examines the typical time required for RI to arise.

Estimating the time to reproductive isolation

In a full genome, where there are many possible interacting
genes, it will typically be the short-time behavior of each
interacting pair that will dominate the development of RI
for the whole organism. If we assume ~m ~ 10 interaction
partners per gene and ng ~ 2 X 10* protein-coding genes, we
have ~M = (1/2)mng ~ 10° interaction partners. As only a
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single one of these interactions giving rise to a DMI is re-
quired for RI, we for simplicity estimate the probability that
RI has arisen is Pg;(t) = 1 — (1—P;(t))", which at short times
is given by Pr;(t) ~ 1 — e MPi()_ In Figure 4 is plotted the time
t* at which Pi(t*) =1/M = 107°, for ¢ = {5,10,20}. We
see the rate at which RI develops is strongly dependent on
the scaled population size, with a weaker, but still significant
dependence on the sequence length. In particular, we see for
small scaled populations RI can arise quite quickly, on the
timescale of t* ~ 0.0005/u, ~ 250,000 generations, assum-
ing o = 2 X 1077, There are different aspects of our model,
which each cause an underestimate or an overestimate of the
time for RI to arise. As discussed, only some fraction of traits
will lead to a sufficient change in gene expression to cause an
inviable organism, when cross-binding in heterozygotes is
eliminated, and so this would cause an underestimate of
the time. But on the other hand, particularly for small pop-
ulations, where the common ancestor binding energy distri-
bution is broad (Figure 2), there will be common ancestor
gene pairs, whose binding affinity is closer to the inviability
boundary, which would tend to dominate t*, giving a t* that
is shorter than our estimate. In addition, not all TF-TFBS
pairs will necessarily have optimum fitness at optimum bind-
ing, which is likely to cause a reduction of the time to re-
productive isolation, as the common ancestor distribution
will be peaked closer to the inviability boundary, even in
the limit of large populations; this again would mean an over-
estimation of t*. As discussed above a major determinant at
large scaled population sizes of the time for RI to develop is
the rate of substitutions on each lineage, the inverse of which
is plotted as a dashed line in Figure 4; we see that although
the inverse substitution rate is a good predictor for large
scaled population sizes, for small scaled populations it fails.
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This is due to the weaker equilibrium binding affinities at
smaller scaled population sizes, which reduces t* further.

The time for RI to arise has a complicated dependence on
sequence length, which is explored in detail in Supporting
Information. Briefly, for small scaled population sizes
(4kpN, < 1), RI develops more rapidly for longer sequences
as the overall substitution or divergence rate ~¢(k) is roughly
proportional to ¢, yet the distance between the common an-
cestors and the inviability boundary does not vary apprecia-
bly with sequence length. Conversely, for large population
sizes (4kpNe > 1), this trend is reversed and longer se-
quences develop RI more slowly. This is because, although
there is the same dependence of divergence rate on ¢, the
average distance of the common ancestor to the inviability
boundary increases linearly with ¢ (r* o ¢) due to longer bind-
ing sites giving more stable protein~-DNA complexes. For
large scaled population sizes, as demonstrated in Figure S2
of Supporting Information, the hybrid binding energies have
neutral dynamics and so the typical time required to fix r*
substitutions will vary quadratically with r* and thus qua-
dratically on ¢. This quadratic dependence dominates the lin-
ear dependence of the divergence rate on ¢, resulting in an
overall linear dependence of t* on ¢. The speciation times as a
function of ¢ for 4xgN, = 20 are shown in the inset in Figure
4; the near-linear dependence lends support to the diffusive
model for hybrid dynamics at large population sizes.

Discussion

Dobzhansky, Muller, and Bateson (Bateson 1909; Dobzhansky
1936; Muller 1942) provided the first solution to Darwin’s
conundrum of how speciation might arise by suggesting that
in allopatry incompatibilities form between coevolving loci
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Figure 4 Time for reproductive isolation (RI) to arise as a function of scaled population size 4xgN, defined as the time t* when the average probability of
a DMI crosses a threshold value of 1/M = 107>, where M is the typical number of interaction partners of a protein in a genome. The black dashed line
corresponds to a plot of the inverse of the average substitution rate shown in Figure 3. The inset shows the time to speciation plotted vs. sequence
length for values of ¢ = {5, 10, 20} (black circles), where the solid line represents the best straight line fit, which indicates that the underlying mechanism

of hybrid divergence is neutral diffusion.

on an epistatic fitness landscape. Here, using a similar
approach to that of Tulchinsky et al. (2014b), we have
examined a biophysically motivated model of how incom-
patibilities arise in allopatric populations, and their popu-
lation size dependence, using a simple model of the
coevolution of transcription factors binding to DNA in the
weak mutation, monomorphic regime. The model of TF-
TFBS binding described here is inherently epistatic, despite
the assumption that the contribution of each interacting
amino acid-nucleotide pair is independent and additive
to the total binding energy. Epistasis arises both from the
nature of the binding interaction and from the resulting
fitnesses. Considering the binding interaction, whether a
given amino acid or nucleotide gives rise to a match or
mismatch depends on the particular binding partner, so
that the binding energy is a nonlinear function of the
sequences at the TF and TFBS loci. It is this epistasis that
is the source of the Dobzhansky-Muller incompatibilities
that we find in our simulations described in Results. For
example, as has been previously discussed (Johnson and
Porter 2000; Tulchinsky et al. 2014b) the common ancestor
might be fixed for a pair of sequences ATCGC/ATAGC,
which has a binding energy of AGca = 3kgT, as there is only
a single mismatch; after a period of divergence, two allopat-
ric populations might be fixed for TTAGC/ATAGC and
ATCGA/ATCGC, each arising from just two substitutions,

of compensatory effect, from the common ancestor se-
quence, so that AG; = AG, = 3kgT, as there is still only a
single mismatch. However, the hybrid sequences are
TTAGC/ATCGC and ATCGA/ATAGC, which correspond
to binding energies AGl, = AGL, = 6kgT, as they each have
two mismatches. As the number of substitutions increases
on each lineage, we can see that each lineage will maintain
good fitness in a stabilizing landscape through compensa-
tory changes, which each try to minimize the number of
mismatches; however, each lineage fixes different sets of
compensatory mutations, so when combined in a hybrid,
the epistasis between pairs of sequences then gives rise to
DMIs. The second cause of epistasis is the quadratic depen-
dence of fitness on binding strength, as well as the disconti-
nuity of the fitness function at r = r*. Although there is a
similarity between our model and typical polygenic models
of quantitative traits, they are very different as for quantita-
tive traits the phenotype is usually modeled as additive in
each locus (Wright 1935a,b; Barton 1989), but with qua-
dratic selection inducing epistasis between loci; in our model
there is epistasis at the level of phenotype and the fitness of
phenotypes.

A key aspect that this biophysical model of evolution
introduces to the picture of fitness landscapes is the idea that
many sequences can result in the same phenotype. In
particular, the number of sequences corresponding to each
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phenotype can be very different, and this uneven distribution
can have important consequences for the evolutionary
process. As described, our results arise due to a drift-selec-
tion balance, which can be cast in the language of a balance
between fitness and sequence entropy. The maximum of the
free fitness landscape corresponds to the phenotype when
these two evolutionary forces are balanced; importantly, this
balance is dependent on the population size. Here, for TF-
DNA binding there are many more sequences that have a
large number of mismatches compared to those few high-
fitness sequences that have a small number of mismatches;
at smaller population sizes genetic drift dominates, pushing
the equilibrium toward less fit sequences. This has an impor-
tant consequence for the dynamics of reproductive isolation,
that smaller scaled populations on average have common
ancestors with a lower equilibrium affinity and so a smaller
number of substitutions are needed for a hybrid incompati-
bility to arise. This leads to the main prediction of this article
that smaller scaled populations (4xgN. < 1) develop incom-
patibilities more quickly. Note that an evolutionary model
that ignored this genotype—phenotype map could not repro-
duce Figure 2, but would have a common ancestor binding
distribution peaked at the best binder for all population sizes,
even though the strength of selection is reduced at small
scaled population sizes. It should be stressed that the key
parameter of interest is the scaled population size and so
our results do not apply to just small populations, but in
principle to TF-TFBS pairs in organisms of large absolute
population size, but weak absolute selection, such that
4kpN < 1; again across the genome there are likely many
pairs of TF-TFBS, for which 4kgN. < 1, affording the possi-
bility for rapid reproductive isolation to arise under stabiliz-
ing selection. For example, human studies suggest that ~20%
of mutations in amino acids are under weak selection, such
that 4kgN. < 1 (Eyre-Walker et al. 2006), and so some
fraction of these would be related to TF-TFBS interactions
to which our model would apply. In general, the rate of
reproductive isolation due to stabilizing selection will depend
on the underlying distribution of fitness effects produced by
new mutations in a given organism; if this distribution is
assumed roughly fixed independent of the organism, then
we would expect the proportion of TF-TFBS pairs that fall into
the weak selection category to increase for smaller populations
and the average rate of developing RI (per locus pair) will be
higher compared to that in larger populations.

At larger scaled population sizes (4xgN > 1, but still in the
weak mutation regime, nu,N < 1), where fitness dominates
drift we find this trend continues, but for a different reason;
when 4xgN, > 1, populations no longer diverge neutrally and
instead need to fix deleterious mutants whose difference in
fitness is large compared to the inverse of the effective popula-
tion size. This means that the time for reproductive isolation
becomes very long for very large scaled populations. Overall,
this picture is consistent with predictions of the nearly neutral
theory, where large populations have a diminishing substitution
rate (Ohta 1973, 1992; Lanfear et al. 2014). However, while
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there is evidence consistent with the nearly neutral theory
from experimental studies (Wu and Li 1985; Ohta 1995;
Johnson and Seger 2001; Weinreich 2001), they are not yet
conclusive. In addition, there are theoretical models that predict
no dependence on population size of the population-scaled
fitness effects (Cherry 1998; Goldstein 2013), depending on
the exact nature of the genotype—phenotype map. Again it
should be noted that it is the effective scaled population size
of the loci of interest that is key and so our model specifically
predicts that TF-TFBS pairs in a genome under stabilizing se-
lection and for which 4kgN, > 1 are unlikely to give rise to RI;
however, this can in principle occur in large or small absolute
populations, depending on the strength of selection on TE-TFBS
pairs. Again, assuming a roughly fixed distribution of fitness
effects, our results would suggest that for larger populations,
the mechanism we describe under stabilizing selection would
be relatively unimportant in contributing to RIL.

As discussed in the Introduction there is some empirical
evidence that smaller populations develop postzygotic isolation
more quickly, although there have yet to be any systematic or
definite studies. Our model then provides a rationale for these
observations in the field with a robust mechanism that does
not require that either lineage pass through a fitness valley.
It also provides an insight, through a biophysical model, of
the mechanistic causes of how DMIs develop for coevolved
pairwise molecular interactions. While we would not expect
quantitative agreement with biological systems, we can make
arough comparison to empirical data: our results suggest that
reproductive isolation can occur on a timescale of the order
of a few hundred thousand generations for small scaled
population sizes. Direct studies of interspecific hybrids of
African cichlids (Stelkens et al. 2010) show that postzygotic
isolation typically arises over a timescale of ~4-18 MY,
which corresponds to ~1—6 million generations, assuming
a generation time of 3 years (Nagl et al. 1998), which sug-
gests the mechanism we present is roughly consistent with
empirical data. Importantly, we see that this mechanism,
which poises small populations at the inviability boundary,
can provide relatively rapid reproductive isolation between
lineages with only nearly neutral evolution, without having
to invoke valley crossing or peak shifts, or positive selection,
which requires large populations.

Overall, our results suggest that stabilizing selection via the
mechanism studied (and its analogs for more complicated
gene regulatory systems) would have more importance at
smaller population sizes and less at larger population sizes;
this latter assertion is consistent with a number of speciation
genes found to show evidence of positive selection, in many cases
as a result of genomic conflict (Johnson 2010; Presgraves
2010), which are predominantly in Drosophila, which has
a large effective population size and for which it is known
that positive selection is quite pervasive (Andolfatto and
Przeworski 2000; Macpherson et al. 2007). However, it is
difficult as yet to draw strong general conclusions about the
relative role of positive vs. stabilizing selection as a cause of
DMIs, although this work highlights the relative role that



different mechanisms might play at different population sizes
and gives a quantitative theory that experimentalists can use
to look for direct signatures of RI arising due to stabilizing
selection.

The model studied, however, is simplified compared to the
complexity of gene regulation in eukaryotes with multiple TFs
binding to enhancers to control gene transcription and each TF
having multiple binding sites controlling many different
genes. Here, we treat TFs and their binding sites on an equal
footing and so, for example, the substitution rate in each is the
same. It is commonly thought that since TFs are under stron-
ger pleiotropic constraints, they evolve more slowly and so
much of the phenotypic divergence between species is driven
by cis-regulatory change (King and Wilson 1975; Wittkopp
et al. 2008) (and reviewed recently by Lynch and Wagner
2008). We expect that as pleiotropy will act to reduce the
substitution rate on a TF, the divergence rate of allopatric
lineages will decrease. This suggests that if pleiotropy is im-
portant, our simulations may underestimate the average time
to reproductive isolation. However, a similar biophysical
model (Tulchinsky et al. 2014a), albeit in the strong mutation
regime, shows that for the case of a single TF binding two
functional binding sites, despite the additional constraint,
incompatibilities can arise at similar rates to those of a single
TF-TFBS pair under stabilizing selection.

Previous theoretical work by Orr (1995; Orr and Turelli
2001) predicts that in the weak mutation regime, the number
of incompatibilities should increase as ~ t2 from a fixed com-
mon ancestor, due to the combinatorial possibilities over a
large number of pairwise interacting loci. Here, we predict
the same growth of DMIs with time, but only for small scaled
population sizes (4kgN < 1) and for a single two-locus sys-
tem. However, the underlying mechanism appears to be very
different here and not likely to be universal. Simulations with
a fixed common ancestor rather than one drawn from the
equilibrium distribution (Equation 7) are nearly identical
(Figure S1 in Supporting Information); this suggests that
the power law arises (here quadratic) mainly due to the close
proximity of the common ancestor to the inviability bound-
ary, requiring just a few substitutions in each lineage, and
so the number of DMIs at short times is dominated by how
likely a few substitutions are to arrive very quickly. This
is given by a Poisson distribution, so if K* substitutions
are needed on average for an incompatibility, then
Py (K*; ut) = (,ut)K’;e’“t/K*!, which for short times ut < 1,
Pi(K*; ut) ~ (ut)® to leading order in ut. This suggests that
for a quaternary alphabet K* ~ 2, which is the minimum
number of substitutions required for an incompatibility to
arise, since a single substitution in one lineage will always
give rise to the common ancestor and mutated genotype in
the hybrids. On the other hand, for large populations, which
have a peaked distribution of common ancestors relative to
the Hamming distance to the inviability threshold r*, we
observe that the growth of DMIs does not appear to be de-
scribed by a simple power law, but instead the results suggest
there is a negative curvature to their growth on a log-log plot.

In addition, we find that the variance of binding energies
increases linearly with time in the limit of large populations
(inset in Figure S2 in Supporting Information), so together
with our results that indicate t* ~ ¢ (inset in Figure 4), this
suggests that the hybrid binding energies follow neutral dif-
fusive dynamics for large scaled population sizes. This is as
predicted by a simple calculation of the growth of DMIs due
to a continuous diffusion model for the evolution of TF-DNA
binding (Khatri and Goldstein 2015) and arises at large
scaled population sizes due to the fact that from a fixed com-
mon ancestor there is a large mutational distance that needs
to be diffused by hybrids before incompatibilities can arise.
We suggest that more detailed studies of species divergence,
similar to current works (Matute et al. 2010; Moyle and
Nakazato 2010), which show a rapid increase in DMIs,
should be able to discern between these two qualitatively
different behaviors at different population sizes. In particular,
recent cross-species ChiP-seq analysis of transcription factor
binding (Schmidt et al. 2010) suggests a way to explicitly test
our predictions at the level of actual binding affinities of
hybrid TF-TFBS combinations for recently diverged species,
such as in the Drosophila family.

The process of speciation underlies the vast diversity of life on
Earth. Gene expression divergence is thought to underlie many
differences between species (King and Wilson 1975; Wray
2007; Wolf et al. 2010), for example, in the Galapagos
finches (Abzhanov et al. 2006), in the various species of
Drosophila (Wittkopp et al. 2008), and with more direct evidence
of a role in speciation through the evolution of genes related to
transcription factors (Ting et al. 1998; Brideau et al. 2006). More
recently studies of crosses between D. melanogaster and D.
santomea, which diverged >10 million years ago, have revealed
how the cryptic divergence of genetic architecture of conserved
developmental body plans leads to postzygotic isolation (Gavin-
Smyth and Matute 2013). Proteins binding to DNA to control
gene expression are a prototypical coevolving system and critical
for the proper development of organisms; thus these results have
strong implications for speciation rates and diversity of popula-
tions at small population sizes. In addition, although our model is
motivated by DNA-protein binding, the approach could be adap-
ted to any type of interacting macromolecules, for example,
coevolution of protein—protein interactions or the interaction of
genes expressed by the nucleus and mitochondria, where in
particular such interactions have been shown in yeast to give
rise to cytonuclear incompatibilities (Chou and Leu 2010; Chou
etal. 2010).
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Probability of a DMI with fixed common ancestor binding energy
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Figure S1 Average probability of a DMI as a function of time after divergence from common ancestor it calculated from simula-
tions for various scaled population sizes, for £ = 10. Solid lines (exactly the same as Fig.1 in main text) correspond to common an-
cestor sequences drawn from the equilibrium distribution Eqn.7 in main text, while dashed lines correspond to a fixed common
ancestor with the mean binding energy at each population size.

We also repeated simulations for the case where replicate runs are performed with the common ancestor sequences always having
the mean binding energy from the equilibrium probability distribution (Eqn.7 in main text) at each population size. The results in
Fig.S1 show that drawing the common ancestor from the equilibrium distribution is nearly identical to a fixed common ancestor. This
suggests that the reason for the power law is related to the fact that the common ancestor is very close to the inviability boundary and
so only a small number of substitutions is required for hybrids to become inviable. As discussed in the main text, the distribution
of times of substitutions will be Poisson distributed giving a power law for Pr(t) to leading order in ugt, for ugt < 1. However,
there are some small differences between the two results: 1) for very small population sizes the rate of reproductive isolation is very
slightly faster for 4xrN, = 0.1 than 4xrN, = 0.01; 2) for 4xrN. = 1 and for short times, averaging over the equilibrium common
ancestor distribution predicts more rapid RI than from a fixed common ancestor. The latter is likely to arise since for 4xrN, = 1 the
equilibrium distribution is broad and peaked away from the inviability boundary (Fig.2 main text - red lines) and so the probability
of a DMI at short times is dominated by the tail of the distribution closest to the boundary, a phenomenon which cannot happen
when when drawing the common ancestor from the mean.

Dynamics of hybrid binding energies

Plotted in Fig.S2 is the average of the hybrid binding energy as a function of scaled population size calculated over 10* replicate
Gillespie simulations. At zero divergence, the average hybrid binding energies are equal to the average binding energies for that
scaled population size, as shown in Fig.2 in the main text. For long divergence times, the hybrid binding becomes weaker, with
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Figure S2 Average hybrid binding energy (AG™) as a function of time after divergence from common ancestor pgt for ¢ = 10. The
inset shows the root mean square deviation opcn = /((AGH — (AGH))2) of hybrid binding energies as a function of divergence
time.

the binding energies increasing to a value AGH = 225kpT, irrespective of scaled population size, corresponding to the mean of the
neutral distribution in Eqn.6 in main text; this is exactly what we would expect after a long period of divergence, as protein and DNA
sequences from different lineages should have effectively random interactions. The rate at which this neutral distribution is reached
depends strongly on the scaled population size in an approximately monotonic manner, as would be predicted from the average
substitution rate seen in Fig.S4. The inset of Fig.52 shows the root mean square, cxcn = \/((AGH — (AGH))2) of hybrid binding
energies vs pot on a log-log scale; we see that in the limit of large scaled population sizes that opagn ~ /Jof, suggesting that the
underlying dynamics of the hybrids is effectively diffusive.

Dependence of results on sequence length ¢

Average binding energy on each lineage
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Figure S3 Average binding energy, (AG) = &(r), (left axis, squares) and average Hamming distance of populations from inviabil-
ity boundary, r* — (r), (right axis, circles) as function of scaled population size 4xp N, and sequence length ¢ calculated using KMC
simulations. We see that as the population size is decreased the mean hamming distance or binding energy (~ drift load) increases
monotonically and towards the inviability boundary.

In the main text Fig.2 showed how the distribution of binding energies changed with scaled population size for a sequence length
¢ = 10; the figure demonstrated how the drift load increased for decreasing scaled population size. This greater drift load is also
illustrated in Fig.S3, which shows the average binding energy and also the Hamming distance of the populations to the inviability

2 Khatri et al.



boundary, as a function of the scaled population size 4xp N, for sequence lengths ¢ = {5,10,20}; for the corresponding values of ¢,
we choose * = {3,5,10}, so as to approximately satisfy r* = ¢/2. We see the average binding energy (squares) is larger for smaller
population sizes, which corresponds to populations being closer to the inviability boundary as shown by the circles in Fig.S3, and
hence also a larger drift load. For large population sizes (4xrN, > 1), where fitness dominates, the drift load is zero, independent
of N, as (AG) — 0. This means that, as shown in Fig.S3, the average Hamming distance to the inviability boundary increases for
increasing sequence length — this arises trivially as r* o £ — however, for small population sizes (4xpN, < 1) the average Hamming
distance to the boundary is roughly independent of sequence length. To understand this we consider that for small populations the
distribution is neutral and peaked at the inviability boundary r*(¢), as shown in Fig.2 of the main text and by the fact the mean
binding energy is close to AG* = er*, for 4kpN < 1 in Fig.S3; at the inviability boundary the number of mutations that increase
the Hamming distance is just the number of locations that are matched, multiplied by the number of nucleotides that can give a
mismatch, 3(¢ — r*(¢)) = 3¢/2 and those that decrease it is just the number of mismatched locations, r* = ¢/2. The ratio of these
two quantities is independent of /, showing that there is no net drift bias of the populations at the inviability boundary as ¢ changes
and so for small populations the average distance to the inviability boundary is roughly independent of ¢. As we will see the initial
distance of the common ancestor from the inviability boundary has a strong impact on the rate of accumulation of DMIs, as functions
of population size and sequence length.

Average substitution rate on each lineage
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Figure S4 Average total substitution rate for both protein and DNA loci, on a single lineage as function of scaled pop-
ulation size 4k N and sequence length ¢. Substitution rate is plotted in units of the nucleotide mutation rate . The

solid circles represent KMC simulations, while the solid lines are the theoretical prediction of the average rate (k) =

21\3]7’ Oy o pe(r) (r (7‘(‘ (r) + N%) +3(¢— r)7'f+(r)), where py(r) is the equilibrium distribution of Hamming distances (shown by

Eqn. ? in the main text) and 7~ and 71" are the fixation probabilities for the transition r — r — 1 and r — r + 1, respectively.

In Fig.54, we find a non-trivial dependence of the substitution rate on sequence length; at large population sizes, as expected,
the substitution rate per location is independent of sequence length, but strongly diminished compared to the neutral rate g, as
discussed above, due to the discrete changes in fitness being larger than the inverse of the population size. For small populations,
we also find that the substitution rate is roughly independent of sequence length; as the distribution of binding energies is peaked
at the inviability boundary the substitution rate will be proportional to the number of viable substitutions multiplied by the neutral
rate, ~ por*(¢)/€ = pg/2, which as observed in Fig.54 is independent of £. However, for intermediate population sizes, where
4xrN, ~ 1 the average substitution rate decreases with increasing sequence length. In the large and small populations size limits, all
substitutions are either non-neutral or neutral, respectively, for 0 < r < r*. However, for intermediate population sizes the quadratic
fitness landscape means there is a critical Hamming distance, r; £~ (4xpNee?)~1, below which substitutions are effectively neutral

(4N,|dF| < 1) and above are non-neutral (4N,|0F| > 1). The effective substitution rate will then be roughly ~ a(ﬂ)yor:f £ /{, where

a(l) = Z:fo pe(r) is the proportion of time, at equilibrium, spent in the nearly neutral region and 7} y f/ ¢ is the fraction of nearly
neutral substitutions at 77 We expect that a(¢) will decrease for increasing ¢, since we find that p,(r) shifts to larger values of r as

£ increases (not shown), due to an increased degeneracy pressure, as the sequence length is increased. So together with the fact that
the fraction of nearly neutral mutations decreases for increasing ¢, like r:f f/ ¢, we see that the average substitution rate is smaller for

larger sequence lengths at intermediate population sizes (4xpN, = 1).
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