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 

Abstract — Industrial manufacturing of large-scale wind 

turbines requires the accurate tightening of multiple bolts and 

nuts, which connect the ball bearings - supporting wind turbine 

blades - with the hub, a huge mechanical component supporting 

blades pitch motion. An accurate tightening of bolts and nuts 

requires uniformly distributed clamping forces along flanges and 

surfaces of contact between hub and bearings. Due to the role of 

friction forces and the dynamics of the phenomenon, this process 

is  nonlinear and currently performed manually; it is also time 

consuming, requiring high-cost equipment and expert operators. 

This paper proposes a set of neural networks, which infer the 

clamping force achievable with a tightening tool while fastening 

M24 nuts on bolts. The tool embeds a torque sensor and shaft 

encoder, therefore two types of inputs of the neural networks are 

considered in order to fit the clamping force output: the time 

signals of (a) the applied torque of the tool and (b) the 

combination of the torque and of the angular speed of the tool.  

According to results, neural networks properly model the 

clamping force, both during the training stage and when exposed 

to unseen testing data. This approach could be generalized to 

other industrial processes and specifically to those requiring 

repetitive tightening tasks and involving highly nonlinear aspects, 

such as friction forces. 

 
Index Terms — self-adaptive manufacturing, bolt tightening, 

wind turbine, neural network.  

 

I. INTRODUCTION 

OWADAYS, the green-energy market and, in particular, 

that of wind turbines is expanding because of the 

growing, public sensitivity towards the responsible generation 

and usage of energy, the increased attentiveness of policy 

makers towards producing energy whilst avoiding pollution as 

well as the increasing performance and operative life of 

modern wind turbines [1-4]. Today’s wind turbines - capable 
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of generating power in the order of 5-6 MW - consist of large-

scale wind blades and mechanical components: the rotor can 

be as long as 150 m and the mass of its central part, the hub, 

can be in excess of 20,000 kg [5]. This set-up complicates the 

installation process and also leads to difficulties when 

inspecting or repairing the plant. Energy providers aim at 

keeping repairs to a minimum and reduce errors that may be 

made during assembly; assembly errors are widely considered 

as contributing strongly to mechanical faults in installed wind 

turbines [6-8]. Usually the assembly is performed by 

operators, often with many years of experience: however, the 

overall assembly of a wind turbine may not be performed 

satisfying criteria concerning accurate clamping force and 

appropriate distribution of this force across large components 

such as the hub easily requiring the individual tightening of 

more than 100 nuts on bolts. Automating this process by 

means of robotics would be desirable. A few examples 

following such a robot-based approach are described in the 

literature [9-13]. 

One key component of the rotor is the wind turbine hub 

(Fig. 1): its role is to support the blades and a pitching 

mechanism which allows blades rotating around their 

longitudinal axes to adaptively follow the wind speed change 

while preserving an optimal spinning of the rotor [14]. This 

task is accomplished with hydraulic actuators and ball 

bearings mounted on the hub flanges to support the blades. 

Ball bearings are coupled with the flanges through multiple 

bolts and nuts (in some cases, in excess of 100 for each 

bearing, i.e. for each blade).  

Because of the dynamic loads occurring over the operative 

life span of the turbine, a appropriate tightening process of 

these bolts and nuts during the assembly is essential as well as 
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Fig. 1.  Design of a wind turbine hub requiring tightening of bolts and nuts 

for the assembly of ball bearing which support the blades pitch motion. 
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the task needs to be properly optimized. The main expected 

outcome of this process is to achieve a uniformly distributed 

clamping force along the connecting faces of the major wind 

turbine parts, such as the flanges of the hub.  

The process is intrinsically highly non-linear, because of the 

high contribution of friction forces during the tightening, 

caused by the interactions between the threads of the bolts and 

nuts during the spin and, later on, by the friction occurring 

between the bolt and the flange during the final tightening 

stage [15, 16]. Other nonlinearities are introduced from the 

mechanical uncertainties and from the variability of the metal 

properties of the threads as well as from changes of 

temperature and humidity occurring in the working and 

operative environments [17-22].  

A further critical and intriguing aspect of the this particular 

tightening process is the fact that - although the main task of 

the tightening is the achievement of a desired final clamping 

force - usually no direct measurement of this force distribution 

is possible in situ, because of the mechanical and geometrical 

configuration of the plant. One indirect approach is based on  

measuring the shortened length of the bolt by using, for 

example, ultrasonic techniques [23, 24]. Nevertheless, this 

approach increments the process cost requiring working time 

and additional equipment. 

Various models of bolt tightening have been already 

reported in the literature: some of them were model-based or 

model-free controllers [25-27], the latter bypassing the need to 

estimate the parameters of the physical model [28-31]. For 

instance, in [25], authors presented the equations of screw 

insertion torque in function of the screw itself, the hole and the 

properties of the material; then, a theoretical model was 

validated by comparing experimental data with predictions of 

the model, providing basis for computerized monitoring of 

screw fastenings. Other approaches attempt to tailor the values 

of the model parameters according to physical observations: 

Izumi et al. [32] developed a finite element analysis approach 

describing the interactions between the threads of bolts and 

nuts during their tightening and showing as previous theory 

overestimates the tightening torque. Fuzzy-based tightening 

controllers were also proposed [15], which are capable of 

supervising the whole tightening process while detecting 

errors including cross-threading, screw jamming and nut 

misalignment [28-29, 33].  

Performing automatic tightening with an accurate model of 

the clamping force - consistent with the mechanical properties 

of the materials and with the kinematics and dynamics of the 

process - remains one of the main goals of bolt tightening – 

and, because of the stringent build requirements for wind 

turbines, this is specifically the case for the manufacturing of 

wind turbines. 

Recognizing the advantages of automated methods 

involving numerically controlled screwdrivers and nut 

tighteners, this paper proposes an experimental set-up and a 

neural network based approach ensuring the correct clamping 

force between nut and flange after the tightening is complete, 

improving on current strategies, which rely on humans to 

execute the tightening procedure by employing hand-held 

wrenches and tensioning tools. Apart from improving the 

quality and repeatability of the tightening process, the 

proposed approach is also likely to decrease the cost of the 

manufacturing as well as its execution time [6, 7, 34, 35].  

The paper is organized as follows: Section II reports on the 

materials and methods, experimental design and neural 

network based approach, Section III details the results, finally 

Sections IV and V report the discussion and conclusion, 

respectively.  

II. MATERIALS & METHODS 

A. Experimental design  

An instrumented tightening tool, model BL 57/140 MDW 

(by DSM Messtechnik GmbH) is used for the tightening of 

M24 bolts and nuts. Due to the need of an automatized 

process, the tool is mounted on an M6iB Fanuc Industrial 

Robot (Figs. 2-3). The set-up also includes a three M24 bolt 

bench to allow the bolt tightening of a restricted numbers of 

bolts and generalize the process on the wind turbine hub. Data 

are acquired via a set of instruments and sensors as it follows. 

 

TABLE I 

DATA DISTRIBUTION (10 TRIALS)  

 t   ω Fclamp 

 [s] [deg] [Nm] [deg/s] [kN] 

mean 0.52 1974.50 162.04 4743.60 33.13 

2std 0.04 52.13 17.51 220.27 5.30 

%  6.70 2.60 10.80 4.60 16.00 
      

 

 
 

Fig. 3.  Details of the experimental set-up: tightening tool (DSM BL 57/140 

MDW) embeds sensors to monitor applied torque () and angular 

displacement (), while fastening M24 bolts and nuts (Fig. 5, top panels); a 

washer sensor (MecSense KMR 50 kN), captures the effective clamping 

force (Fclamp) applied to the flange (Fig. 5, bottom panel). 

 
 

Fig. 2.  Industrial robot (Fanuc M6iB) equipped with the tightening tool (BL 

57/140 MDW). 
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The tightening tool is equipped with an analogue encoder with 

an accuracy of 1 - for the real-time monitoring of tool and nut 

angular displacement during the tightening – and a torque 

sensor with an accuracy of 1% of the end value – for the real-

time acquisition of the torque, as it is applied by the tool to the 

fastening nut. During the tightening process, nuts are run 

down a bolt and tightened against a metal flange (Fig. 3): in 

order to monitor the resultant clamping force, a washer sensor, 

model KMR 50 kN (MecSense Kraftmesstechnik), with an 

accuracy of 0.5%, is positioned between the nut and the 

flange. This sensor is usually not employed in an industrial 

set-up and allows a better accuracy of the measurement 

compared to ultrasound instrumentation (see Section I). 

 The tightening process involves forces of friction between 

the threads of the bolt and the nut as well as between the bolt 

and the flange (Section I): according to this characteristics, a 

theoretical model of bolt tightening has been previously 

reported in [16, 36], showing the relationship between the 

torque and the clamping force in function of the bolt and nut 

geometry and two coefficients of friction, namely the contact 

between the male and female threads (t) and the friction 

between the nut and the flange (b). In general, it is not easy to 

estimate these coefficients straight away and a mechanical 

characterizations - based on the nominal properties of the 

materials which are involved in the tightening - do not return a 

realistic estimation of the physical parameters: according to 

material properties compendium [37], for untreated steel, the 

coefficient of friction for screw threads (t) is estimated 

between 0.12 and 0.18; similarly, for untreated steel, the 

coefficient of friction between the nut-bolt face against the 

clamped surface (b) is in a range between 0.10 and 0.18. 

These forks of values do not allow a proper and consistent 

assessment of the real tightening dynamics, furthermore 

because of the presence of another mechanical element, which 

is the aforementioned washer sensor. 

B.  Neural network rational 

A model free approach inherently incorporating these 

dynamics is proposed: a set of neural networks employing 

experimental measurements of torque, angular displacement, 

and clamping force as extracted from fastening M24 bolts and 

nuts is proposed.  

Ten experimental trials are performed at maximum speed of 

the tightening tool - i.e. maximum voltage of the control input 

signal (± 10 V, [15]) - Fig. 3. The maximum speed and torque 

applied are 190 rpm and 140 Nm, respectively. Angular 

displacement of the tool (), applied tightening torque (τ), and 

clamping force (Fclamp) are measured. Data are sampled at 2 

kHz (i.e. with a real-time cycle time of 500 s) with a 

Windows Control and Automation Technology Beckhoff 

TwinCAT 3 system [15, 38]; the system is coupled with the 

tool and sensors via  an industrial Personal Computer (PC) and 

a desktop PC; the two PCs are connected through an Ethernet 

communication protocol; a software architecture integrates 

models and programs which are developed under Matlab and 

Simulink environment (by Mathworks Inc.) and then compiled 

into real-time operating code and executed on an industrial PC 

by the Beckhoff TwinCAT software system [38] (Fig. 4). 

Since dynamics equation of the tightening would the initial 

conditions of the process [39], it makes sense to introduce a 

further parameter in the neural network controller structure, 

namely the derivative of the tool angular displacement or 

angular speed (ω). This signal can be inferred as the derivative 

of the angular position of the tool in such a way that the 

network is fed with the position of the tool and its speed; a 

third order elliptic filter, with a cut-off frequency of 10 Hz, 0.1 

dB pass-band ripple, and stop-band at −100 dB, is applied in 

order to smooth the noise of the angular position derivative. 

The calculation of the derivative and the filtering are 

implemented and off-line applied with the Matlab 

Programming Language.  

Fig. 5 shows the final set-up of one experimental 

acquisition (trial n. 1), including the aforementioned rotational 

speed of the tool: from the top panel to the bottom one, the 

 

 
 

Fig. 5.  From top to bottom panels, representative data of trial n. 1 (out of 

10): tool angular displacement ( []), raw and filtered angular speed (ω 

[/s]) - in grey and black color, respectively -, tightening torque (τ [N∙m]) and 

clamping force (Fclamp [kN]). 

 

 

 
 
Fig. 4.  Implementation of robot and tool control set-up, based on Beckhoff 

TwinCAT software system and PCs network connected through Ethernet 

protocol. 
 

 

TABLE I 

DATA DISTRIBUTION (10 TRIALS)  

 t   ω Fclamp 

 [s] [deg] [Nm] [deg/s] [kN] 

mean 0.52 1974.50 162.04 4743.60 33.13 

2std 0.04 52.13 17.51 220.27 5.30 

%  6.70 2.60 10.80 4.60 16.00 
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angular displacement, angular speed (raw and filtered signals), 

tightening torque and clamping force are reported, 

respectively. The figure is well representative of all the 

experimental data collected, which show similar patterns in 

the other 9 trials; Table I reports the mean and two times 

standard deviations, as well as the percentage of the standard 

deviation compared with the mean, of , ω, , Fclamp, 

respectively, of all trials. According to these values, the 

repeatability of the tightening processes is appropriate, with an 

average execution time of 0.52  0.02 s, an angular variability 

of less than 3% (i.e. less than 10% of the number of turns 

required to accomplish full tightening, namely 1975/360  

13 turns). Similarly,  the variability of torque, angular speed 

and clamping force are less than 11%, 5% and 16%, 

respectively.  

Despite such a good repeatability of the data over all trials, 

a normalization process of the measurements is needed to in 

order to properly input the neural networks (see Section II, 

par. D). Beforehand we need to define the structure of the 

networks. 

C. Design and training of the neural networks 

A set of neural networks are adopted to model the clamping 

force (Fclamp) as the output of the networks; on the other side, 

the tightening torque () and the derivative of the tool angular 

displacement (i.e. the angular speed of the tool, ω) are applied 

as inputs of the networks.  

Two network configurations, with one and two inputs, 

respectively, are implemented with the Matlab Programming 

Language (Fig. 6). For each one of these configurations, two 

types of network are defined: static or fitting network and 

dynamic or time series network. Therefore four types of neural 

networks are employed, according to a combination of the 

different set of inputs (i.e. one or two input) and types of 

network (i.e. static or dynamic network).  

The static and dynamic networks are both feedforward 

neural networks fitting the input-output model. The dynamic 

model applies a time delay associated with the input [40]. 

Both types of networks embed two layers of neurons, namely 

an hidden and output layer. The former is populated with 10 

neurons, each one using a sigmoid transfer function. A linear 

transfer function is applied to the latter one, which consists of 

a single neuron. Fig. 7 shows the configurations of both neural 

networks, where ‘w’ and ‘b’ refer to the weight and bias of 

each neuron, respectively [40]. 

 Sensor data are pre-processed, i.e. normalized, and post-

processed, i.e. de-normalized, with respect to their maximum 

and minimum values (details in Section II, par. C). To 

optimize the learning of the system, data are randomly divided 

into 3 groups: the training phase of each network is performed 

with 70% of data (group 1), whereas validation and testing are 

implemented with 15% of data each (group 2 and 3). Data of 

the second group are used to validate the network 

generalization capability and stop the training phase in case of 

an over-fitting detection. On the other side, the data of the 

third group are applied to the trained network in order to 

validate its generalization performance vs. a novel data set, 

irrespective of the training performance. 

The training is accomplished with a Levenberg-Marquardt 

back-propagation  method [41]; the adaptive learning 

parameters are set-up as it is reported in Table II;  a 

momentum term, equal to 0.9, is also included to stabilize it. 

Weights and biases are initialized with a Nguyen-Widrow 

function and then updated after presenting all training set to 

the network [42].  

Furthermore, in order to improve the training performance 

and avoid local minima, multiple training runs are performed 

with each network configuration, always commencing the 

process from a randomly distributed set of initial weights.  

 Mean Squared Error (MSE) is used to monitor the training 

performance, namely: 

 

 
 

Fig. 6.  I/O neural network configuration with tightening torque () and 

angular speed (ω) inputs - single or double configurations, top and bottom 
scheme, respectively - and clamping force (Fclamp) output. 

 

 
 

 
 

Fig. 7.  Fitting (static) and time series (dynamic) neural network set-up (top 

and bottom panels, respectively): hidden and outer layer contains 10 and 1 

neurons, embedding sigmoid and linear transfer functions, respectively. 

 

 

TABLE II 
TRAINING PARAMETERS 

parameter value description 

   

Nmax 1000 n. of training epochs (stop condition) 

MSEG  0 MSE goal (stop condition) 

Fmax 6 n. of consecutive epochs where training 
performance fails to improve (stop condition) 

initial 0.001 initial learning rate 

max 1e10 maximum learning rate 

decreasing 0.1 decreasing decay rate 

increasing  10 increasing decay rate 
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MSE = 
2
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ii clamp
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n
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
    (1) 

where n is the numbers of experiments of the training set, 

iclampF is the effective clamping force of the i-th experiment 

and 
iclampF


 the value as predicted from the network [40]. 

D. Data normalization 

A proper normalization should not dissipate the information 

inherited from the data and, at the same time, should conform 

with the required range of values of the I/O transfer functions 

of the network. To this aim, a two stage normalization is 

performed. 

Stage 1: clamping force (Fclamp) and torque () values are 

approximately null during most of the tightening process; for 

instance, during the 1st trial, this happens between 0 and 0.48 s 

(Fig. 5). As a consequence, this part of not informative 

experimental data can be removed from the training set; a new 

initial time (tinil
i) is defined for each of the i-th trial, which is 

initialized and triggered as a specific threshold of torque is 

reached (trigger). Four different triggering values are adopted, 

namely 0, 5, 10 and 15 Nm. A separate training, according to 

details reported in Section II, part C, is performed for each one 

of the 4 training set as obtained by applying the 4 threshold 

values. Results of this normalization stage, as performed with 

null value of threshold (trigger = 0 Nm), are shown in Fig. 8. 

Stage 2: Regardless of the high repeatability of data (Section 

II, part B and Table I), a further normalization stage is 

introduced to improve data homogeneity and to cluster all 

experimental acquisitions into a single data set. Since each 

experiment takes different execution time, a normalized time 

(tnorm
i) is  defined for each i-th trial (i = 1,..,10) with respect to 

the effective execution time (tf
i); therefore it holds: 

tnorm
i = t / tl

i, where tnorm
i   [0,1] s     (2) 

Finally, the network training is performed after processing the 

data, according to the following steps: 

 data of the ten experiments are loaded 

 time array of the i-th experiment is overwrite from t = 0 s 

to tf
i at a sampling frequency of 2 kHz (Section II, part B) 

trigger threshold is set and values of angular displacement 

() and execution time are reset to null value in 

correspondence of the triggering point 

 angular speed (ω) is inferred from the novel  vector and 

then filtered (Section II, part B) 

 parameters are normalized with respect to tnorm
i from 0 to 

1 s 

 patterns are interpolated to preserve same length and 

dimension of each array over all trials, irrespective of 

their effective execution time (tf
i). 

III. RESULTS 

For each network configuration, ten training sessions are 

performed: fitting and time series networks, as well as single 

and double inputs are used (Figs 6-7; Section II, part B). 

Networks are trained with normalized experimental data 

(Section II, part D) according to protocol reported in Section 

II, part C.  

Results are summarized in Tables III-V, which report  the 

training and testing MSE (train and test columns, 

respectively), according to the inputs of the networks  - torque 

() and torque and angular speed ( and ω) –, their 

 
 

Fig. 8.  Normalization of experimental data with null threshold of the 

tightening torque (trigger = 0 Nm). 

 

TABLE III 

MSE OF STATIC NEURAL NETWORK, TRIGGER = 0 N M 

 input 

  , ω 

trials train  test train test 

     

1 4.04e+04 6.38e+04 4.25e+04 3.42e+04 
2 2.66e+04 6.46e+04 3.99e+04 1.65e+05 

3 3.10e+04 4.66e+05 5.56e+04 3.38e+04 

4 1.51e+05 7.54e+04 4.07e+04 1.37e+05 
5 1.78e+05 1.27e+05 3.63e+04 1.04e+05 

6 4.59e+04 1.26e+05 6.19e+04 6.24e+04 

7 3.36e+04 1.56e+05 8.60e+04 5.61e+04 
8 2.90e+04 8.68e+04 3.73e+04 2.50e+04 

9 7.60e+04 3.06e+05 4.87e+04 6.60e+04 

10 6.18e+05 2.16e+05 1.04e+05 2.80e+05 
     

 

 

TABLE IV 

MSE OF DYNAMIC NEURAL NETWORK, TRIGGER = 0 N M 

 input 

  , ω 

trials train  test train test 

     

1 5.56e+04 1.12e+04 4.55e+04 2.16e+04 

2 3.67e+06 2.34e+07 3.95e+04 5.47e+06 

3 2.98e+04 2.59e+04 4.08e+04 7.72e+06 

4 2.97e+04 1.63e+04 1.77e+04 1.27e+06 

5 2.77e+05 5.89e+04 4.37e+04 1.62e+04 
6 2.07e+04 3.65e+07 5.62e+04 2.66e+04 

7 4.02e+04 1.65e+04 6.20e+05 5.53e+05 

8 2.23e+04 2.06e+05 6.78e+04 2.14e+04 
9 4.51e+04 9.92e+04 3.41e+04 2.10e+05 

10 1.82e+04 3.88e+09 4.33e+05 5.05e+05 
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configurations - fitting and time series – and the value of the 

triggering torque - trigger = 0, 5, 10, 15 Nm. 

Particularly, Table III refers to results obtained with static 

networks and null trigger, whereas Table IV reports results 

achieved with same set of parameters but time series 

networks.  

Each table shows the outcomes of 10 consecutive training 

processes, according to the ten random initializations (Section 

II, part C).  

On average, mean and standard deviation of training and 

testing MSE of the static network with null trigger and single 

input , are (1.23  1.82)105 and (1.69  1.29)105, 

respectively, whereas double inputs ( and ω) leaded to (0.52 

 0.23)105 and (0.96  0.79)105, respectively.  

A complete set of the average and standard deviation of 

training and testing MSE, for the different configurations is 

reported in Table V.  

Bar distribution of training MSE mean and standard 

deviation is shown in Fig. 9 for all network configurations, 

namely for static and dynamic networks (s and d within the 

figure, respectively), with single and double inputs (in black 

and grey color, respectively) and with different performed 

normalization (trigger = 0, 5, 10, 15 Nm).  

Similarly, testing performances are reported in Fig. 10, 

which shows mean and standard deviation of the testing MSE 

error according to the same set of network configurations. 

IV. DISCUSSION 

  A qualitative and quantitative interpretation of results is 

given in part A. Effect of the data pre-processing on networks 

performance are analyzed in part B. Finally, generalization 

properties of the networks are discussed, as well as results vs. 

previous literature. 

A. Results interpretation 

To correctly interpret the physical meaning of the training 

and testing MSE, definition of the error has to be taken into 

account (eq. (1), Section II, part C): namely, an MSE value of 

105 N2 is equivalent to an effective error of ± 316 N. Since 

average value of Fclamp is 33.13 kN (Table I), the 

aforementioned error is less than 0.96% of the final clamping 

force (i.e.  31.60 kg vs. 3313.00 kg). 

According to this estimation and results (Figs 9-10 and 

Tables III-V), networks with double inputs are qualitatively 

better performing than those ones having same configuration 

but single input. Normalizing data with small trigger values, i.e. 

5 Nm and 10 Nm, makes static networks outperforming the 

dynamic ones, whereas, when data are appropriately clustered 

- i.e. trigger grows at 15 Nm – performance of dynamic 

networks become comparable with those of the static ones. 

Therefore, to simultaneously (a) optimize network 

performance and (b) increase the informative content of data, 

(c) while keeping network configuration as much simple as 

possible (i.e. static), the value of the triggering torque should 

be maintained low. However, even with high value of torque 

threshold, errors do not dramatically increase (Tables III-V). 

Being p the level of significance, paired T-test shows that 

there is no statistically significant difference between training 

single and double input networks with trigger equal to 0 Nm (p 

= 0.24) 1. With the same value of threshold torque, there is 

also no significant difference between training static or 

dynamic networks having single (p = 0.45) and double inputs 

(p = 0.19). A similar behavior is preserved when value of 

trigger is increased to 5 Nm, either when comparing networks 

with single or double inputs, or comparing static and dynamic 

networks having the same input configuration. By increasing 

the trigger value to 10 Nm, this not significant difference 

between static and dynamic configurations lasts, whereas a 

substantial difference is observed when comparing the training 

of static and dynamic networks having double inputs (p = 

0.03). By further increasing threshold torque value to 15 Nm, 

this latter difference disappears; nevertheless, using single or 

                                                           
1 We assume that the difference is significant if p is equal or smaller than 

0.05, which means a 5% or lower probability of being wrong in asserting that 
two sets of data are different. 

 

TABLE V 

MSE MEAN & STD  

OF STATIC & DYNAMIC NETWORKS, TRIGGER = 5, 10, 15 N M 

 input 

trigger 

[Nm] 

static (s) 

& 

dynamic 

(d)  

train 
mean                     std 

test 
mean                     std 

5 
s 1.07e+05 1.09e+05 2.65e+04 2.07e+05 
d 1.18e+06 3.36e+06 6.50e+07 2.04e+08 

10 
s 2.94e+05 1.57e+04 3.65e+05 1.09e+05 

d 2.88e+05 4.39e+04 3.31e+05 6.15e+04 

15 
s 7.65e+05 2.95e+04 8.61e+05 9.41e+04 
d 7.54e+05 4.78e+04 8.19e+05 1.39e+05 

, ω input 

5 
s 5.73e+04 1.45e+04 1.21e+05 6.56e+04 

d 1.47e+05 1.83e+05 4.64e+05 9.97e+05 

10 
s 2.63e+05 5.05e+04 3.08e+05 9.44e+04 

d 2.32e+05 3.76e+04 2.72e+05 7.13e+04 

15 
s 5.37e+05 5.60e+04 5.65e+05 9.26e+04 

d 5.14e+05 5.95e+04 5.73e+05 7.10e+04 

 

 
 

Fig. 9.  Mean and standard deviation of training MSE of 10 learning 
processes vs. different static (s) and dynamic (d) networks’ configurations 

with diverse triggering torque (trigger = 0, 5, 10, 15 Nm). 
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double inputs, either with static or dynamic networks, is 

making a significant difference (p = 8.94e-07 and p = 1.34e-

05, respectively). 

B. Effect of data pre-processing 

Results are also depending on pre-processing of raw data. 

Looking at experimental data and at the first stage of the 

normalization process (Section II, part D), time patterns of 

force and torque are close to be null during the majority of 

time of each trial: therefore, there is no substantial knowledge 

which is returned to the network during this experimental 

phase; conversely, in terms of learning, the most useful stage 

of the trial is when force and torque start increasing, which 

typically occurs between t equal to 0.48 s and 0.53 s (Fig. 5). 

This trend suggests to endorse data pre-processing with an 

higher values of the torque threshold (for instance, trigger = 

10Nm or 15 Nm) to avoid overloading the networks with 

data containing null information. The handicap of selecting 

high values of trigger is a strong reduction of data size training 

the networks: in fact, despite the high sampling frequency 

(Section II, part B), the tightening process is inherently fast 

and the number of experimental data may be strongly reduced 

because of the selection of an high trigger value (see Fig. 5 and 

8, which display time patterns of the experimental data before 

and after the normalization procedure, respectively). As an 

immediate consequence, performing networks training with 

few experimental acquisitions may affect learning 

performance, since the dimension of the training set has to be 

modulated according to the size of the network (i.e. its 

dimension and number of neurons) [43-46]. 

Focusing on the second stage of the pre-processing, i.e. the 

time normalization (Section II, part D), this phase also 

introduces some side effects: novel offsets between data 

patterns of different experiments may be not originally present 

in the raw data since applied thresholds of torque may have 

introduced time shift of the starting point of each trial 

acquisition. To overcome these drawbacks, the beginning of 

each experimental data set may be defined with another 

criteria which is based, for example, on the signal derivative – 

e.g. the change of slope of the angle-torque curve. Such an 

approach has been suggested by Shoberg [30] and effectively 

this transition of the signal feature represents the physical 

‘alignment’ of the bolt and nut threads by detecting the 

beginning of the proper tightening. 

C. Learning performance 

Generalization skill of the networks can be extrapolated 

from comparing testing and training MSE (Tables III-V): on 

average testing error is higher than training one, suggesting a 

potential over fitting [45, 46]. Therefore, new set of networks 

may be considered in a further step of this research, to explore 

networks performance vs. numbers of layers and neurons, and 

finally optimize their structure vs. the size of the data set [45]. 

Finally, to validate networks outcome, a trained static 

network with double inputs and threshold torque equal of 0 

Nm is tested: assuming a constant angular speed of tool (ω = 

5000 /s) and a linear tightening torque profile ( = 0 ÷ 160 

Nm), a simulated tightening process is implemented (Fig. 11). 

Feeding the network with this data set of input leads to a set of 

output which is compared with the experimental data of th e10 

trials (Fig. 11): a 3D representation can be displayed, where 

signals lying on the x, y plane refer to the initial stage of the 

tightening process, i.e. when the bolt is screwed on the threads 

of the nut without applying any force (null values in the z-

axis). Fig. 11 outlines the proper fitting between the network 

output, which is reported in black color, and the overall trends 

of experiments (shown in grey color). 

In previous work, Fujinaka et al. [31] proposed a 

combination of neural network controllers for bolt tightening 

with an impact wrench pneumatically actuated. Controllers 

were able to perform materials classification in between the 

bolt and nut as well as to output achieved clamping force. 

Nevertheless, this latter force estimation was performed in 

correspondence of specific angular positions values, and 

precisely in the snug point, which triggers when force 

 

 
 

Fig. 11.  Three dimensional representation of data from 10 tightening trials 

(grey color) vs. neural network output (black color):  tightening torque (, x-

axis), angular speed (ω, y-axis) and resultant clamping force (Fclamp, z-axis) 

are reported vs. output simulation of static network with double input and 

trigger equal to 0 Nm (see details in the text). 

 

 

 
 

Fig. 10.  Mean and standard deviation of testing MSE of 10 learning 

processes vs. different static (s) and dynamic (d) networks’ configurations 

with diverse triggering torque (trigger = 0, 5, 10, 15 Nm). 
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proportionally increases with angle. Conversely, rather than 

performing single punctual estimations, the proposed set-up of 

this work allows modeling the entire time history of the 

clamping force occurring during the tightening process, from 

bolt and nut alignment, passing through partial and full 

engagement of threads, to final tightening [15],. 

Another approach, which was based on Fuzzy Logic 

control, was proposed from Dhayagude et al. in [33]: here, 

screw fastening was supervised to prevent process failure 

(cross-threading, screw jamming, etc.) and to obtain a precise 

tightening torque. Performance of this controller were 

validated through model simulations based on fastening 

dynamics and Eulero-Lagrange approach; in this context, it 

can be notice that the neural network architecture which is 

presented in this paper inherently incorporates this dynamic, 

namely the bolt-nut plant, since it fits related experimental 

data and has been validated by employing these latter 

measurements.  

V. CONCLUSION 

A set of neural networks for the modeling of the clamping 

force on tightening M24 bolts and nuts in wind turbine 

assembly has been presented.  

Experimental acquisitions have been performed with 

hardware and software set-up: a tightening instrumented tool, 

a washer sensor and a Beckhoff TwinCAT software 

architecture running at 2 kHz within an industrial PC; a Fanuc 

M6iB robot and a Matlab/Simulink environment running in a 

second PC are wired connected through Ethernet protocols. 

Experimental data are normalized in time and with respect to 3 

triggering thresholds of torque to train and test the networks 

whose number of neurons has been kept constant; in line with 

the dynamical characteristics of the process, two sets of inputs 

have been considered, which supply the network with the 

needed parameter and initial conditions: in this context, 

derivative of tool angular speed is introduced as one of the 

network input. 

Results have shown that this set-up is capable of modeling 

the time patterns of clamping force from tool tightening torque 

and angular speed.  

A further step of this study may emphasize optimization and 

adaptation of networks structure and size vs. dimensions of the 

experimental data sets [45]. Another critical aspect is the 

optimization of the data pre-processing and normalization; this 

latter phase may focus on identifying invariants or torque-

angle signatures: some of them have been already identified, 

like, for instance, the rundown phase (i.e. the prevailing phase 

of the tightening occurring at the beginning of the process, 

when the clamping force is almost zero and the only resistance 

is due to friction in the threaded region [28, 35]), the 

alignment, elastic clamping and post yield zones, as reported 

from Drumheller in [35].   
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