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ABSTRACT 
Dwelling design needs to consider multiple objectives 

and uncertainties to achieve effective and robust 

performance. A multi-objective robust optimisation 

method is outlined and then applied with the aim to 

optimise a one-story archetype in Delhi to achieve a 

healthy low-energy design. EnergyPlus is used to 

model a sample of selected design and uncertainty 

inputs. Sensitivity analysis identifies significant 

parameters and a meta-model is constructed to 

replicate input-output relationships. The meta-model 

is employed in a hybrid multi-objective optimisation 

algorithm that accounts for uncertainty. Results 

demonstrate the complexities of achieving a low 

energy consumption and healthy indoor 

environmental quality. 

INTRODUCTION 

Delhi’s dwellings must be designed to mitigate hot 

summers, cool winters and a highly polluted ambient 

environment in order to provide healthy and low-

energy homes. Our research so far suggests that 

current building performance in Delhi is unsuitable for 

achieving a healthy indoor environment, risking 

reliance on energy intensive air conditioning (A/C) 

use (Nix et al. 2014a). Thus, further research exploring 

suitable design is necessary for producing guidance to 

improve current building performance.  

Optimising building performance often results in a 

trade-off between indoor environment quality, energy 

consumption, and intervention cost (Porritt et al. 2012; 

Das et al. 2013). A multi-objective assessment was 

carried out to guide the selection of interventions 

across a range of archetypes in Delhi, considering 

cost, health, energy use and settlement type priorities 

(Nix et al. 2015). More advanced methods to find 

optimal designs include using genetic algorithm that 

explore the Pareto-optimal front which results in a set 

of Pareto efficient design choices. These methods 

have been used in earlier work and helped identify 

optimal inventions balancing energy use and health for 

a government provided top-floor flat in Delhi (Das et 

al. 2014a). 

However, these methods fail to explore design 

uncertainty arising from fluctuations in environmental 

conditions, material variability and model 

assumptions. Uncertainties influence intervention 

performance and as such, should be understood in the 

design phase to achieve robust solutions. Uncertain 

optimisation, otherwise known as robust optimisation, 

techniques have been widely applied in other fields of 

engineering (structural & aerospace) with stringent 

criteria on system reliability. However, such methods 

are seldom used in the field of building performance, 

Nguyen et al. 2014 provides a useful overview of the 

handful of papers employing such methods, and calls 

for more investigations to “determine the significance, 

necessity, methods and applications” of robust 

optimisation in building performance design.  

Van Gelder et al. 2014 recently presented a novel 

methodology using a multi-layered sampling scheme 

to assess design effectiveness and robustness (Van 

Gelder et al. 2014b). This method is likely to be slower 

than employing a genetic algorithm as it uses a space-

searching approach. Hopfe et al. 2012 successfully 

employs multi-objective robust optimisation for a 

simple example case with limited design parameters 

(Hopfe et al. 2012). Other studies have limited real-

world application, do not consider whole building 

performance or focus on single design objectives 

(Huang et al. 2009; Rezvan et al. 2012). 

In this paper, we offer a multi-objective robust 

optimisation method based on widely published tools 

and techniques, to select interventions that achieve 

healthy low-energy dwellings in Delhi. We optimise 

dwelling design for health and energy use 

simultaneously, (cost and other criteria was deemed 

outside the study scope for this initial application). 

Uncertainty was incorporated through hybrid 

evolutionary multi-objective optimisation algorithm. 

The work forms part of an ongoing study to provide 

guidelines for improved dwelling design. Here an 

overview of methods employed and an application 

example for a one-story dwelling is presented. The 

methodology can be applied in similar investigations 

to provide robust-optimal solutions. 

METHODS 

In this section, an overview of the methods used to 

carry out multi-objective robust optimisation is 

provided. The main four steps taken in the study are 

illustrated in figure 1.  

In the pre-processing stage, a base building simulation 

model is created. The simulated tool selected should 
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sufficiently predict outputs of interest and should be 

fully tested and validated.  Once a tool has been 

chosen, the distributions of input parameters to be 

simulated should be determined. Contributing input 

parameters will consist of design variables and 

uncertain variables.  Design variables are parameters 

that can be controlled, such as window size, and 

through the optimisation scheme these best range for 

the input variables will be found. Uncertain variables 

are parameters that cannot be controlled, and can be 

classed as having either aleatory or epistemic 

uncertainties. Aleatory uncertainties cannot be 

reduced as they arise from random variability, such as 

variability in material properties, however these 

uncertainties can be described by probabilistic 

approaches. Epistemic uncertainties arise through lack 

of knowledge or model simplifications, and have the 

potential to be reduced. By reviewing various data 

sources, design and uncertain variables can be 

described using probability distributions.  

The parameters distributions are then sampled in a 

sampling scheme to represent the variables of interest. 

Outputs distributions are then found by running the 

building simulation tool. Details about using a Monte-

Carlo approach, various sampling methods 

efficiencies and sampling convergence for building 

simulation performance have recently been published 

elsewhere (Janssen 2013). Furthermore, such methods 

have been successfully employed in previous research 

(Paterson et al. 2014; Das et al. 2014b; Bucking et al. 

2014) 

From this, results are analysed and input-output 

relationships assessed.  Sensitivity analysis can be 

carried out to identify the key input variables that 

affect outputs of interest. Such analysis is useful in the 

construction of a meta-model, as a reduced parameter 

set with only the most important variables allows for 

the prediction of outputs in considerably less time. 

Generally, scatter plots illustrating the input/output 

relations are first qualitatively analysed, and then the 

application of statistical tests, such as the Pearson 

product-moment correlation coefficient or 

Spearman’s rank correlation coefficient, can quantify 

sensitivities. Such methods have been utilised 

elsewhere in assessing drivers of building 

performance (Lomas and Eppel 1992; Mara and 

Tarantola 2008; Tian 2013). 

The computational resources required to run building 

simulation models within an optimisation scheme can 

become computationally expensive. This expense can 

be reduced through the development of a meta-model. 

We refer the reader to previous research for further 

details on meta-modelling (Van Gelder et al. 2014a).  

These meta-models are then used in the optimisation 

scheme. Multi-objective optimisation can be 

determined in two main ways combining the 

objectives into a single objective or finding the 

‘Pareto-optimal front’. Pareto-front optimisation is 

used specifically where objectives are conflicting, 
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Figure 1: Flow chart of main work components 
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whereby an improvement in one objective 

compromises another objective. In this work, the 

Pareto-optimal front between the conflicting 

objectives of health and energy are explored by using 

a multi-objective genetic algorithm.  Genetic 

algorithms evolve populations of chromosomes of 

potential Pareto-optimal scenarios over generations to 

find the optimal front.  Each generation undergoes 

uncertainty propagation, through a second sampling 

scheme that incorporates uncertainty variables. The 

outputs will have a probabilistic distribution and a 

deterministic metric is needed to formulate the 

objective function. As such, we sum the weighted 

mean and standard deviation for each metric 

distribution. The results can be analysed by plotting 

the Pareto optimal front and the range of design 

variables will be returned.   

APPLICATION 

Base EnergyPlus model 

EnergyPlus 8.2.0, an extensively tested and validated 

multi-zone building physics tool, was chosen to 

estimate the impact of parameters on indoor 

environmental quality and energy consumption (US 

DOE EERE 2013). EnergyPlus employs heat and 

mass balance equations, which can estimate heat, 

moisture, pollutants, and airflow as a function of 

building parameters, external environment and 

occupant behaviour. The airflow network was applied 

to model air movement between internal zones and 

between the dwelling and external environment. 

Pollutants were modelled by integrating EnergyPlus’ 

generic contaminant module in the airflow network. 

Models were simulated for an annual period, 

outputting hourly indoor air temperature, indoor 

pollutant concentration and energy consumption 

variables. 

Figure 2: Dwelling layout to undergo uncertain 

optimisation 

For this study, a simple one-story dwelling was used 

consisting of a living room, bedroom, bathroom and 

separate kitchen, with the layout as illustrated in figure 

2. The dwelling is exposed on all sides, with a constant 

wall height of 3m. Although, there are multiple 

possibilities for dwelling layouts (flats etc) that will 

have an effect on energy consumption and indoor 

environmental quality, the simple layout selected is 

likely to be appropriate for a wide range of income 

groups in Delhi. Field surveys undertaken in Delhi 

give confidence in the chosen geometry.  

The base construction consists of brick walls with 

internal and external plaster, concrete floor and a 

reinforced concrete ceiling, as typically found in Delhi 

housing (Government of National Capital Territory of 

Delhi 2009). Internal gains include those from 

occupants and the various appliances. Occupancy 

schedules and appliance usage was based on various 

survey data (TERI 2007) and are further detailed in 

previous work (Nix et al. 2014b). The dwelling is 

modelled with air-conditioning used during occupied 

periods in living room and bedroom areas. Windows 

and door openings were assumed to remain closed.  

PM2.5 is assumed to be produced by cooking in the 

kitchen and ingress from the outdoor environment. 

The cooking generation rate for PM2.5 is assumed to 

be the same as for gas cooking at a rate of 1.6mg/min. 

The deposition rate for internally- and externally-

generated PM2.5 throughout the dwelling is assumed to 

be 0.39/hr (Özkaynak et al. 1996). 

Based on previous work (Das et al. 2014a; Nix et al. 

2015), outputs for the optimisation included total 

annual dwelling energy consumption (E) and three 

health metrics. Health metrics were developed as a 

proxy to indicate ‘exposure’ to heat (hheat), cold (hcold) 

and PM2.5 (hPM2.5) for an occupant that remains home 

most of the time. Health metrics are the number of 

days in which the daily mean exceeds a given 

threshold. Thresholds for heat and cold were based on 

previously reviewing external temperature-mortality 

relationships ((McMichael et al. 2008) and the 

threshold for PM2.5 was based on WHO Guidance 

(Cohen et al. 2005; Krzyzanowski and Cohen 2008).  

These are given by: 

hheat= ∑ thheat

365

day=1

 (Tmean[day]), 

where thheat(x)= {
1,  x>29°C

0,        else
 

(1) 

  

hcold= ∑ thcold

365

day=1

 (Tmean[day]), 

where thcold(x)= {
1,  x<29°C

0,        else
 

(2) 

  

hPM2.5
= ∑ thPM2.5

365

day=1

 (Tmean[day]), 

where thPM2.5
(x)= {

1,  x>75μg/m3

0,             else
 

(3) 

Selection of inputs 

Design variables, such as permeability or glazing type, 

are parameters to be optimised to provide a healthy 

and low-energy dwelling design. These parameters are 

based on key determinants affecting building 

Living Room 

Bedroom 

Bath 
Room 

Kitchen 
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performance in Delhi dwellings derived in previous 

work (Nix et al. 2014a) and additional parameters 

considered to affect building performance. 

Design variables selected for modelling included; a 

layer of external wall insulation where the thickness 

(dwallins), conductivity (λwallins), and density (ρwallins), 

were varied; thickness (droofins), conductivity (λroofins) 

and density (ρroofins) of the external roof insulation; and 

a layer of insulation under the floor with varied 

thickness (dfloorins), and conductivity (λfloorins). Ranges 

for material variables were derived from the WUFI 

database (Fraunhofer Institute for Building Physics 

2013). Windows were modelled with single and 

double glazing configurations (Gtype). Shading 

(Soverhang) was included in the form of an overhang on 

all facades between 0-3m. The solar absorptance  

(asolar) of the external plaster was selected to vary 

between 0.16-0.98, which represents applied paint 

colour. The floor area (Afloor) was varied from 18m2-

200m2, which is likely to be representative of the 

variation in Delhi. Window area (Awind) was varied as 

a percentage of wall area from 0-40%. Dwelling 

orientation (θ) was varied between 0-360° and 

dwelling permeability (P) varied between 3-

50m3/h/m2@50Pa, which represents very airtight to a 

very leaky dwellings. An extract fan, Vfan, in the 

kitchen was modelled with a varying volumetric flow 

rate between 0-0.20m3/s. Design variables with 

symbols, units and input ranges are shown in table 1.  

All design variables were described using uniform 

distributions. 

 Uncertain parameters included were occupant 

number (#occup), set-point temperature to trigger the 

air-conditioning (TAC), set point temperature for 

triggering window blinds (Tblinds), and monthly mean 

levels of external PM2.5 were described by a sine wave 

with varying amplitude (PM2.5_amp) and offset 

(PM2.5_off).  The distribution for occupancy number 

was given by data from the Delhi Housing Conditions 

Survey (Government of National Capital Territory of 

Delhi 2009) and set point temperatures derived from 

research on thermal comfort by Indraganti (Indraganti 

2011).  Ranges describing PM2.5 levels were derived 

from PM2.5 monitoring data from a central Delhi 

location (Government of National Capital Territory of 

Delhi). Uncertain variables are detailed in table 2. 

Table 2: Uncertain variable, with symbols, units and 

input distribution, where G is gamma, N is normal 

and U is uniform. 

UNCERTAIN 

VARIABLE 
UNIT 

INPUT 

DISTRIBUTION 

#occup - G,3.2,1.4 

TA/C °C N,30,2 

Tblinds °C N,28.2 

PM2.5_amp µg/m3 U,50-100 

PM2.5_off µg/m3 U,110-160 

Sampling scheme 

Selected inputs were varied in the base file through a 

sampling scheme; previous work reviewing sampling 

efficiency should be referred to for further 

clarification (Janssen 2013; Das et al. 2014b). In this 

study, a Latin Hypercube sampling (LHS) was 

employed; its space-filling scheme provides better 

efficiency than random sampling. Specially, the LHS 

maximin scheme is used, which maximises the 

minimal distance between sampling points.  

Both design and uncertain variables were sampled 

simultaneously. Algorithms provided in MATLAB 

were employed to generate a hypercube, with uniform 

distributions between 0 and 1. These distributions 

were then converted using the inverse cumulative 

distribution function for each variable. Mini-samples 

of size 20 were then simulated in EnergyPlus v.8.2.0, 

with outputs post-processed to find the mean and 

standard deviations. Further permutations were 

carried out until sample mean and standard deviations 

change by less than 1%. 

Sensitivity analysis 

A sensitivity analysis was carried out in order to 

analysis the relationship between input parameters and 

selected output metrics describing indoor 

environmental quality and energy consumption, which 

can be useful in developing meta-models. 

In this work, scatter plots were initially used to 

provide visual indication of input-output relationships. 

The significance of input-output correlations was 

assessed by testing the hypothesis of no correlation to 

give p-values, a p-value smaller than 0.05 was used to 

indicate significant correlations. Correlations between 

input- output and their p-values generated from 

Spearman’s rank correlation coefficient are shown in 

table 3. A number of parameters were found to be 

insignificant for the health metrics or energy 

consumption; as such, a reduced parameter set could 

be employed in the development of a meta-model. 

Table 1: Design variables, with symbols, 

units and input ranges. 

DESIGN 

VARIABLE 
UNIT 

INPUT 

RANGE 

dwallins m 0.125-3 

λwallins W/m.K 0.025-6 

ρwallins kg/m3 500-2000 

droofins M 0.125-3 

λroofins W/m.K 0.025-6 

ρroofins kg/m3 500-2000 

dfloorins M 0.125-3 

λfloorins W/m.K 0.025-6 

Wtype - Single, Double 

Soverhang M 0-10 

asolar - 0.16-0.98 

P m3/h/m2@50Pa 3.0-50 

Warea % 0-50 

Vfan m3/s 0-0.2 

Afloor M 18-250 

Θ ° 0-360 

Proceedings of BS2015: 
14th Conference of International Building Performance Simulation Association, Hyderabad, India, Dec. 7-9, 2015.

- 2096 -



Table 3: p-values, from Spearman’s Rank, indicating 

significance of input-output correlations, shaded 

values denote significant relationships below the 0.05 

level. 

 hheat hcold hPM2.5 E 

dwallins 0.816 0.790 0.587 0.331 

λwallins 0.007 0.263 0.645 0.003 

ρwallins 0.558 0.368 0.801 0.539 

droofins 0.728 0.864 0.593 0.015 

λroofins 0.002 0.046 0.096 0.017 

ρroofins 0.459 0.187 0.859 0.459 

dfloorins 0.577 0.848 0.524 0.380 

λfloorins 0.842 0.035 0.038 0.102 

Wtype 0.723 0.386 0.447 0.381 

Soverhang 0.060 0.001 0.816 0.248 

asolar 0.000 0.000 0.000 0.000 

P 0.836 0.173 0.000 0.544 

Warea 0.822 0.041 0.853 0.330 

Vfan 0.729 0.960 0.159 0.006 

Afloor 0.002 0.000 0.000 0.000 

Θ 0.738 0.157 0.762 0.518 

#occup 0.000 0.000 0.000 0.000 

TA/C 0.000 0.240 0.392 0.000 

Tblinds 0.638 0.743 0.937 0.403 

PM2.5_amp 0.689 0.754 0.410 0.802 

PM2.5_off 0.562 0.694 0.000 0.957 

Meta-model development 

An artificial neural network (ANN) was used to 

construct a meta-model. Neural networks can 

reproduce non-linear and non-monotonic relations 

between input and output variables through a structure 

of inter-connected layers of neurons. The first layer 

contains the inputs, the last layer contains the output, 

and layers between are hidden layers. The neurons are 

connected with synapses between layers, weights and 

biases of the synapses are updated in the fitting 

process by a training algorithm until the outputs are 

adequately reproduced. The Neural Network Toolbox 

provided in MATLAB was used in this study. The 

toolbox provides an array of options including the 

network type (feed forward, cascade forward), 

training algorithms (Levenberge Marquardt, Bayesian 

regularization), number of layers and number of 

neurons. The simulated sample data is split into a 

training (70%), validation (15%) and test set (15%). 

The options are explored to find the best mean error 

squared for the test group. The minimum mean 

squared error for the fit to the test set, MSEtest, is used 

to select the best neural network options. 

Meta-models were developed using a separate reduced 

parameter set for each output metric based on the 

sensitivity analysis. For hheat the preferred ANN 

construction was a feed forward network with two 

hidden layers and five neurons per hidden layer, with 

the Bayesian regularization training algorithm.  hcold 

preferred a construction with a feed forward network 

with two hidden layers, 20 neurons per layer and 

Bayesian regularization training. hPM2.5 was found to 

prefer a construction with a feed forward, one hidden 

layer and 14 neurons per layer with the Levenberge 

Marquardt algorithm. The best construction for E was 

a feed forward construction with one hidden layer and 

16 neurons and with Bayesian regularization training. 

Figure 3 shows that a good prediction was achieved, 

with high correlation between simulated outputs and 

meta-model outputs. construction R2 values between 

simulated and meta-model predictions for hheat, hcold 

and E are above 0.9, indicating that over 90% of the 

variance can be accounted by the meta-model. 

 

 

 

 

 

 

 

 

 

  

Figure 3: Comparison of simulated (sim) and meta-model (mm) outputs 
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Multi-objective robust optimisation 

The MATLAB in-built gamultiobj function was 

used in the next steps, employing the controlled elitist 

genetic algorithm NSGA-II. After an initial random 

population is ranked in relation to the objective 

function, the population is continually modified to 

achieve better rankings. This is then repeated until the 

criterion is met.  

Significant design variables ranges, λwallins, droofins, 

λroofins, Soverhang, asolar, P, Warea, Vfan, Afloor, were used 

to bound optimisation problem and generate the inputs 

for the meta-models.  To incorporate uncertainty in 

optimisation the uncertain variables, #occup, TA/C, 

PM2.5_off, with distributions as previously specified, 

were sampled in the calculation of the objective 

functions.  Uncertainty in design variables was 

included by normal distribution with the mean equal 

to the generated inputs and a standard derivation of 0.1 

times the mean. The sampling scheme employed was 

as described earlier. For each generation, the 

calculated energy and health metrics have a 

probabilistic distribution and a deterministic metric is 

needed to formulate the objective function. This was 

carried out by summing a weighted mean and standard 

deviation for each metric distribution. As such, the 

energy and health objective functions are given by: 

𝑂𝑏𝑗𝐸 = (1 − 𝛼)𝜎𝐸 + 𝛼𝜇𝐸 (4) 

𝑂𝑏𝑗ℎ = ∑((1 − 𝛼)𝜎ℎ𝑖 + 𝛼𝜇ℎ𝑖)

3

𝑖=1

,  

𝑊ℎ𝑒𝑟𝑒, 1 = ℎ𝑒𝑎𝑡, 2 = 𝑐𝑜𝑙𝑑 𝑎𝑛𝑑 3 = 𝑃𝑀2.5 

(5) 

For simplicity, in this work, α is kept equal to 0.5 

however, this could be altered depending on desired 

level of robustness needed. Changes in the 

formulation of objective functions will need to be 

explored in detail in future work. 

Results 

Figure 4: Pareto-optimal front, with the front 

highlighted in dark grey 

The results of the optimisation can be seen in figure 4, 

with the Pareto-optimal front highlighted in black. 

ObjE was found to range between 1770-2880, and 

Objh ranges between 140.8-258.4. It clearly highlights 

the conflicting objectives with higher energy objective 

providing lower health objective. 

Figure 5: Heat and cold objectives plotted, with 

PM2.5 objective highlighted by colour map 

The health objective was broken down into heat, cold 

and PM2.5, and is plotted in figure 5. Similarly, a 

Pareto-optimal front is shown between heat and cold 

objectives, suggesting that the any dwelling design 

will risk some exposure to heat or cold. Interestingly, 

lower objective values for PM2.5 were found to be 

either a low cold objective or a low heat objective, 

whereas a balance between heat and cold may risk 

high PM2.5 objective. 

Table 4: Pareto-optimal range for each design 

variable 

DESIGN 

VARIABLE 

PARETO-

OPTIMAL 

λwallins 0.52-2.82 

droofins 0.21-0.30 

λroofins 0.03-2.34 

λfloorins 1.69-2.18 

Soverhang 0.04-1.28 

asolar 0.16-0.76 

P 8.22-16 

Warea 30.0-34.4 

Vfan 0.001-0.09 

Afloor 33.7-170.4 

Pareto-optimal ranges for design variables included in 

the study are shown in table 4. For the material 

properties included as design variables, the Pareto-

optimal range for λwallins was found to between 0.52-

2.82W/m.K, for dwallins between 0.21-0.30m, for λroofins 

between 0.03-2.34 W/m.K, for λfloorins between 1.69-

2.18 W/m.K. For other parameters the Pareto-optimal 

range was found to be 0.04-1.28m for Soverhang, 0.16-

0.76 for asolar, 8.22-16 m3/s/m2@50Pa) for P, 30.04-

34.42% for Warea, and 33.7-170.4 for Afloor. 

Interestingly, the Pareto-optimal range for many 

variables is quite large, suggesting that a design trade 

off between health and energy objectives will be 

necessary. The complexities in achieving a healthy 
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low-energy dwelling design are further highlighted by 

plotting normalised objective functions against 

Pareto-optimal ranges. Figure 6, shows that each 

design variable is conflicting, for instance choosing a 

large floor area benefits the health objective but is 

detrimental for achieving a low energy objective. This 

echoes work elsewhere that emphasizes the 

importance of considering other factors in order to 

address unintended consequences of decarbonising 

the built environment (Mavrogianni et al. 2013; 

Shrubsole et al. 2014). 

DISCUSSION & CONCLUSION 

The work demonstrates a method for developing 

guidance for dwelling design when considering 

multiple objectives and uncertainties. It is clearly 

shown design parameters are conflicting when 

considering both indoor environmental quality and 

energy consumption and as such should be carefully 

considered.  However, it can be concluded that 

limiting permeability between 8-16 m3/h/m2@50Pa 

and a window area between 30-34% will provide 

improved performance for the one-storey example and 

other parameters should be selected to balance 

objective preferences.  

Validation of method 

Results can be validated initially by assessing if 

outputs follow expected physical relationships. For 

instance, by plotting objective functions against 

Pareto-optimal design variables it can seen that 

although solar absorptance has a positive impact on 

the energy objective it has a negative impact on the 

health objective, presumably due to the increased in 

cold exposure. 

Secondly, we can compare Pareto-optimal outputs 

directly with EnergyPlus by re-sampling with the 

Pareto-optimal design variables.  The design variables 

that achieved the lowest health objective were 

simulated and objective function calculated. An error 

in the health objective function was found to be 4% 

and 11% error for the energy objective function. This 

suggests the method is suitable in predicting the 

Pareto-optimal front though; some improvements in 

accuracy are needed. 

Limitations and future work 

Many other sampling schemes, sensitivity tests and 

meta-model techniques could be explored to improve 

efficiency and accuracy of outputs. Although we are 

confident of the outputs from the methods applied, 

further work should assess different techniques to 

assess which are most suited for this study. The 

formation of the objective function istelf should also 

be futher analysis and adapted depending on the study 

and output of interest. 

The work should be expanded to additional archetypes 

(flats, multi-storey dwellings) and parameters, such as 

number of exposed facades. Further uncertainties 

could include model errors from set-up of the building 

simulation tool and errors resulting from the meta-

model outputs.  Furthermore, the results should be 

validated by comparing outputs with monitored data. 

Figure 6:  Normalised objective function plotted against Pareto-optimal range for design variable. Black points 

indicate Objh and grey points indicate ObjE. 
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