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We investigate modified theories of gravity in the context of teleparallel geometries. It is well known that
modified gravity models based on the torsion scalar are not invariant under local Lorentz transformations
while modifications based on the Ricci scalar are. This motivates the study of a model depending on the
torsion scalar and the divergence of the torsion vector. We derive the teleparallel equivalent of fðRÞ gravity
as a particular subset of these models and also show that this is the unique theory in this class that is
invariant under local Lorentz transformation. Furthermore one can show that fðTÞ gravity is the unique
theory admitting second-order field equations.
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I. INTRODUCTION

General relativity is a very successful theory in excellent
agreement with observations. However, the theory faces
some challenges which are often summarized as the dark
matter and the dark energy problem. The dark matter
problem manifests itself, for instance, in flattened galactic
rotation curves. Dark matter is an important ingredient for
the dynamics of the entire Universe and accounts for
approximately 27% of its matter content, with dark energy
making up about 68%, with the remainder being ordinary
matter. On the other hand, dark energy is responsible for the
observed accelerated expansion of the Universe. In prin-
ciple one could accept the cosmological constant Λ as an
additional ingredient of physics; however, this causes
substantial problems once the cosmological term is inter-
preted as a vacuum expectation value [1].
Modifications of general relativity (GR) started being

considered almost immediately after the formulation of the
theory. Many of those early studies were concerned with
incorporating electromagnetism into the new geometrical
framework, with advances in other branches of theoretical
physics motivating a large variety of models. One such
approach is based on a geometrical result going back to
Weitzenböck who observed that it is always possible to
define a specific connection such that the space is globally
flat. The geometrical framework is a manifold with
curvature and torsion equipped with the so-called
Weitzenböck connection. This forms the basis of what is
now called the teleparallel equivalent of general relativity
(TEGR); see e.g. Refs. [2–12] and also Ref. [13]. In the
standard GR framework, the metric contains the gravita-
tional potentials which are responsible for the curvature of
spacetime. On the other hand, in the teleparallel framework

the gravitational fields are represented by the torsion tensor
with the curvature not being important. While both for-
mulations are equivalent, their interpretations are quite
different. For instance, both formulations are invariant
under local Lorentz transformations; however, in GR all
geometrical quantities are naturally Lorentz scalars while in
TEGR expressions typically depend on the chosen frame.
In this paper we are interested in the classes of models

known as fðRÞ gravity and fðTÞ gravity [14–21]. It is well
known that fðTÞ gravity is not invariant under local Lorentz
transformations because the torsion scalar T is not an
invariant under them either; the Ricci scalar and the torsion
scalar differ by a total derivative term. However, the
resulting fðTÞ gravity theory is a second-order theory,
unlike fðRÞ gravity which contains fourth derivatives. By
taking a fresh look at these models we derive the tele-
parallel equivalent of fðRÞ gravity as a particular subset of
models depending on the torsion scalar and a boundary
term. We establish that this is the unique theory in this
class that is invariant under local Lorentz transformation.
Furthermore we can show that fðTÞ gravity is the unique
theory admitting second-order field equations.
Our paper is organized as follows. Section II gives a

brief introduction to teleparallel gravity. Section III defines
our theory and discusses its main features. We conclude
in Sec. IV. We work with the metric with signature
ð−;þ;þ;þÞ, Latin indices indicate tangent-space coordi-
nates whereas Greek indices correspond to spacetime
coordinates.

II. TELEPARALLEL GRAVITY

Let us begin by briefly introducing teleparallel gravity
and its generalization to fðTÞ gravity. Our dynamical
variables are the tetrad fields eaμ, and inverse tetrads Eμ

a

where Latin indices indicate tangent-space coordinates
whereas Greek indices correspond to spacetime
coordinates.
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The fundamental relationships between the metric gμν,
the inverse metric gμν and the tetrads and inverse tetrads are

gμν ¼ eaμebνηab; ð1Þ

gμν ¼ Eμ
aEν

bη
ab; ð2Þ

where ηab is the Minkowski metric with signature
ð−;þ;þ;þÞ. The tetrad eaμ and the inverse tetrad Eμ

a satisfy

Eμ
menμ ¼ δnm; ð3Þ

Eν
memμ ¼ δνμ: ð4Þ

We define e to be the determinant of the tetrad eaμ, which is
equivalent to the volume element of the metric, so that
e ¼ ffiffiffiffiffiffi−gp

where g is the determinant of the metric. In what
follows, the conventions of Ref. [12] are used.
General relativity is a metric theory of gravity without

additional geometrical objects being considered. The
Riemann curvature tensor is constructed from the Levi-
Civita connection which then gives rise to the standard
Einstein tensor and the well-known Einstein field
equations. However, there exists an equivalent formulation
based on a globally flat space where gravity is described
by torsion instead of curvature. That this is indeed possible
is not trivial and is based on the work of Weitzenböck
who noted that by choosing the connection in a specific
way it is possible to ensure that space is indeed globally
flat.
In the teleparallel formulation of general relativity one

works with the so-calledWeitzenböck connection. To begin
with we define the object Wμ

a
ν by

Wμ
a
ν ¼ ∂μeaν: ð5Þ

The torsion tensor is the antisymmetric part ofWμ
a
ν so that

Ta
μν ¼ Wμ

a
ν −Wν

a
μ ¼ ∂μeaν − ∂νeaμ; ð6Þ

or in terms of spacetime indices

Tλ
μν ¼ Eλ

aTa
μν: ð7Þ

One can relate the Levi-Civita connection 0Γ and the
Weitzenböck connection as follows:

Wλ
μ
ρ ¼ 0Γμ

λρ þ Kλ
μ
ρ; ð8Þ

where K is the contortion tensor which in turn can be
expressed using the torsion tensor as

2Kμ
λ
ν ¼ Tλ

μν − Tνμ
λ þ Tμ

λ
ν: ð9Þ

It is clear that the contortion tensorKλ
μ
ρ is antisymmetric in

its last two indices. One also defines the torsion vector Tμ

as the following contraction:

Tμ ¼ Tλ
λμ: ð10Þ

Let us calculate the Ricci scalar of the Levi-Civita
connection in terms of torsion. One arrives at the following
relation:

eRðeÞ ¼ −e
�
1

4
TabcTabc þ

1

2
TabcTbac − TaTa

�

þ 2∂μðeTμÞ ð11Þ

(see also Ref. [12]). This can be divided by e and
yields

RðeÞ ¼ −
�
1

4
TabcTabc þ

1

2
TabcTbac − TaTa

�

þ 2

e
∂μðeTμÞ; ð12Þ

which can also be written as

RðeÞ ¼ −SabcTabc þ
2

e
∂μðeTμÞ; ð13Þ

where the tensor S is defined as follows:

Sabc ¼ 1

4
ðTabc − Tbac − TcabÞ þ 1

2
ðηacTb − ηabTcÞ: ð14Þ

Its form in spacetime coordinates is given by

2Sσμν ¼ Kσ
μν − δμσTν þ δνσTμ: ð15Þ

Frequently the combination SabcTabc is referred to simply
as the torsion scalar T. This results in a neat form of
Eq. (13) which then reads

RðeÞ ¼ −T þ 2

e
∂μðeTμÞ; ð16Þ

and forms the principal starting point for teleparallel
gravity. By definition, the Ricci scalar is invariant under
local Lorentz transformations. This cannot be said for the
torsion scalar T or the boundary term; while the particular
combination T − B is invariant, the individual terms are
not. As we will study the boundary term in some detail we
introduce the notation

B ¼ 2

e
∂μðeTμÞ ¼ 2∇μTμ: ð17Þ
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The action of the TEGR is given by

STEGR ¼
Z

Ted4x; ð18Þ

and the usual Einstein-Hilbert action of general relativity is
given by

SGR ¼
Z

R
ffiffiffiffiffiffi−gp

d4x: ð19Þ

The identity (16) shows that the actions STEGR and SGR only
differ by a total derivative term which implies that the
field equations derived from either of the two actions are
equivalent. Clearly, both theories are also invariant under
local Lorentz transformations.
A well-studied modification of GR is to consider fðRÞ

gravity [14–16] where f is an arbitrary (sufficiently
smooth) function of the Ricci scalar

SfðRÞ ¼
Z

fðRÞ ffiffiffiffiffiffi−gp
d4x: ð20Þ

Recall that the Ricci scalar depends on second derivatives
of the metric tensor. Hence variations with respect to the
metric will require integration by parts twice which will
result in terms of the form ∇μ∇νF where F ¼ f0ðRÞ,
making the theory fourth order.
In analogy one can consider fðTÞ gravity

SfðTÞ ¼
Z

fðTÞed4x ð21Þ

in the TEGR framework [19]. Since the torsion scalar T
only depends on the first derivatives of the tetrads, this
theory is a second-order theory. However, since fðTÞ does
not differ from fðRÞ by a total derivative term, these
theories are no longer equivalent. Moreover, since T itself
is not invariant under local Lorentz transformations, fðTÞ
gravity is also not locally Lorentz invariant [12,20]. Hence,
there is a trade-off between second-order field equations
and local Lorentz invariance.

III. f ðT;BÞ GRAVITY

We will now consider a general framework which
includes both fðRÞ gravity and fðTÞ gravity as special
subcases. Inspired by the above discussion, we define the
action

STB ¼
Z �

1

κ
fðT; BÞ þ Lm

�
ed4x; ð22Þ

where f is a function of both of its arguments and Lm is a
matter Lagrangian.

Variations of the action with respect to the tetrad gives

δSTB ¼
Z �

1

κ
ðfðT; BÞδeþ efBðT; BÞδB

þ efTðT; BÞδTÞ þ δðeLmÞ
�
d4x; ð23Þ

where

efBðT; BÞδB ¼ ½2eEν
a∇λ∇μfB − 2eEλ

a□fB

− BefBEλ
a − 4eð∂μfBÞSaμλ�δeaλ ; ð24Þ

efTðT; BÞδT ¼ ½−4eð∂μfTÞSaμλ − 4∂μðeSaμλÞfT
þ 4efTTσ

μaSσλμ�δeaλ ; ð25Þ

fðT; BÞδe ¼ efðT; BÞEλ
aδeaλ : ð26Þ

The variations (25) and (26) are the standard variations
that lead to fðTÞ gravity. A detailed derivation of the δB
variation (24) is presented in the Appendix. The energy-
momentum tensor is defined as follows:

Θλ
a ¼

1

e
δðeLmÞ
δeaλ

: ð27Þ

Putting everything together, we find that the field equations
are given by

2eEλ
a□fB − 2eEσ

a∇λ∇σfB þ eBfBEλ
a

þ 4e½ð∂μfBÞ þ ð∂μfTÞ�Saμλ þ 4∂μðeSaμλÞfT
− 4efTTσ

μaSσλμ − efEλ
a ¼ 16πeΘλ

a: ð28Þ

And contracting this with eaν we arrive at the field equations
in spacetime indices only

2eδλν□fB − 2e∇λ∇νfB þ eBfBδλν

þ 4e½ð∂μfBÞ þ ð∂μfTÞ�Sνμλ þ 4eaν∂μðeSaμλÞfT
− 4efTTσ

μνSσλμ − efδλν ¼ 16πeΘλ
ν ð29Þ

where Θλ
ν ¼ eaνΘλ

a is the standard energy-momentum ten-
sor. In the following we will consider the limiting cases
which give fðTÞ gravity and fðRÞ gravity, respectively.
To be more precise, we actually derive the teleparallel
equivalent of fðRÞ gravity and show its equivalence with
fðRÞ gravity.

A. f ðTÞ gravity
Let us begin with examining our field equation (29)

when choosing the function f to be independent of the
boundary term. In order to match the sign convention
employed, we simply set
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fðT; BÞ ¼ fðTÞ; ð30Þ

so that fB ¼ 0. Doing this, we find

4e½fTTð∂μTÞ�Sνμλ þ 4eaν∂μðeSaμλÞfT
− 4efTTσ

μνSσλμ − efδλν ¼ 16πeΘλ
ν; ð31Þ

which, as expected, are the standard fðTÞ field equations.
Let us make an important remark about this limit. One
verifies immediately that this is the unique form of the
function f which will give second-order field equations.
Recall that linear terms in the boundary term B do not affect
the field equations. Therefore, the generic field equations
contain terms of the form ∂μ∂νfb which are always of
fourth order and can vanish if and only if fb is a constant, so
that f is linear in the boundary term.
Therefore, for a nonlinear function f, fðTÞ gravity is

the only possible second-order modified theory of gravity
constructed out of R, T and B. As mentioned before, the
price to pay is the violation of local Lorentz invariance.

B. f ðRÞ gravity
Here we will show carefully how we recover standard

fðRÞ gravity in this model, and also find the teleparallel
equivalent of fðRÞ gravity. Starting with Eq. (16), we have

R ¼ −T þ B; ð32Þ

which suggests to consider our function f to be of the
particular form

fðT; BÞ ¼ fð−T þ BÞ: ð33Þ

We also introduce the standard notation for the derivative of
f from fðRÞ gravity

FðRÞ ¼ f0ð−T þ BÞ ¼ −fT ¼ fB: ð34Þ

Inserting this form of the function into our general
fðT; BÞ field equation (29) leads to the following field
equations:

2eδλν□F − 2e∇λ∇νF þ eBFδλν − 4eaν∂μðeSaμλÞF
þ 4eFTσ

μνSσλμ − efδλν ¼ 16πeΘλ
ν: ð35Þ

This equation gives us the teleparallel equivalent of fðRÞ
gravity [although for simplicity we have expressed this
equation using covariant derivatives ∇ of the Levi-Civita
connection, these can easily be rewritten in the teleparallel
framework using the relation∇μVμ ¼ 1

e ∂μðeVμÞ]. As this is
not an obvious observation, let us prove this statement by
rewriting the field equations in their usual way based on the
Ricci tensor and metric tensor.

We can rewrite the fourth term in Eq. (35) as

4eaν∂μðeSaμλÞ ¼ 2∂μðeKν
μλÞ − 2∂νðeTλÞ þ eBδλν

þ 4eSσλμWμ
σ
ν: ð36Þ

Inserting this back into Eq. (35) gives

2eδλν□F − 2e∇λ∇νF − 2F∂μðeKν
μλÞ þ 2F∂νðeTλÞ

− 4eFSσλμWν
σ
μ − efδλν ¼ 16πeΘλ

ν: ð37Þ

Next, we need to replace the torsion components with
curvature. The Ricci tensor satisfies the identity

0Rμν ¼ ∇νKλ
λ
μ − ∇λKν

λ
μ þ Kλ

ρ
μKν

λ
ρ − Kλ

λ
ρKν

ρ
μ: ð38Þ

We can rewrite this to derive the following identity:

0Rλ
ν ¼

1

e
ð∂σðeKν

λσÞ þ ∂νðeTλÞÞ − 2SσλμWν
σ
μ: ð39Þ

Using this final identity (39), it is then easy to see that
the field equations reduce to the fðRÞ field equations in
standard form

FRμν − 1

2
fgμν þ gμν□F − ∇μ∇νF ¼ 8πΘμν; ð40Þ

where Θμν is the energy-momentum tensor. Thus we
conclude that Eq. (35) is the teleparallel equivalent of
fðRÞ gravity.

C. Lorentz invariance

As in the previous subsection, let us rewrite our general
field equation in a covariant form in terms of the Einstein
tensor and the metric. If we insert the expression for the
Ricci tensor (39) into the field equation (39) we find

2eδλν□fB − 2e∇λ∇νfB þ eBfBδλν þ 4e½ðfBB þ fBTÞð∂μBÞ
þ ðfTT þ fBTÞð∂μTÞ�Sνμλ þ 4eaν∂μðeSaμλÞfT
− 4efTTσ

μνSσλμ − efδλν ¼ 16πeΘλ
ν: ð41Þ

Using the relation R ¼ −T þ B ¼ −T þ 2∂μTμ and Rλ
ν ¼

Gλ
ν þ 1

2
ðB − TÞδλν, after some algebra, we can write the field

equation in the following form:

Hμν ≔ −fTGμν þ gμν□fB − ∇μ∇νfB

þ 1

2
ðBfB þ TfT − fÞgμν

þ 2½ðfBB þ fBTÞð∇λBÞ þ ðfTT þ fBTÞð∇λTÞ�Sνλμ
¼ 8πΘμν: ð42Þ

It is readily seen that if one considers the fðTÞ limit, then
this equation coincides with the covariant form of the fðTÞ
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field equations presented in Ref. [20], and we note that this
equation is manifestly covariant. However, it is not in
general invariant under local Lorentz transformations. A
necessary condition for the equation to be Lorentz invariant
is for the antisymmetric part of the equation to be
identically zero, so the coefficient of Sνλμ must vanish
identically; see for example Ref. [20]. Requiring this gives
two conditions

fBB þ fBT ¼ 0; and fTT þ fBT ¼ 0; ð43Þ

which can be satisfied if we choose

fT þ fB ¼ c1; ð44Þ

where c1 is a constant of integration. Solving this gives us a
general f of the form

fðT; BÞ ¼ ~fð−T þ BÞ þ c1B ¼ ~fðRÞ þ c1B: ð45Þ

Since B is a total derivative term, the resulting field
equations are unchanged by terms linear in B. Hence,
we can set c1 ¼ 0 without loss of generality. We already
showed that an f of this form simply reduces to the fðRÞ
field equations, which are manifestly Lorentz invariant.
Hence we can conclude that the above field equations are
Lorentz invariant if and only if they are equivalent to fðRÞ
gravity. Therefore, the teleparallel equivalent of fðRÞ
gravity is the only possible Lorentz-invariant theory of
gravity constructed out of R, T and B. Conversely to the
above, the price to pay is the presence of higher-order
derivative terms.

D. Conservation equations

Requiring the matter action to be invariant under both
local Lorentz transformations and infinitesimal coordinate
transformations gives the condition that Tμν is symmetric
and divergence free

∇μΘμν ¼ 0: ð46Þ

as shown in Ref. [20]. Hence we require the left-hand side
of our field equations to also have this property. Let us
show that this is indeed the case and that there is no need for
this to be imposed as an extra (independent) condition.
For compactness, let us define the vector

Xλ ¼ ½ðfBB þ fBTÞð∇λBÞ þ ðfTT þ fBTÞð∇λTÞ�: ð47Þ

Taking the covariant derivative of Hμν, we find after some
simplification

∇μHμν ¼ −
�
Rμν − 1

2
Bgμν þ 2∇ρSνρμ

�
Xμ: ð48Þ

Now using

Rμν ¼ −2∇ρSνρμ þ
1

2
Bgμν − 2SρσμKνσρ; ð49Þ

this simplifies to

∇μHμν ¼ 2SρσμKνσρXμ: ð50Þ

However, we know that the energy-momentum tensor is
symmetric, and hence

H½μν� ¼ −S½νμ�λXλ ¼ 0: ð51Þ

This implies

∇μHμν ¼ 2H½ρσ�Kνρσ ¼ 0; ð52Þ

which follows from K being antisymmetric in its last two
indices. This means that on shell the left-hand side of the
field equations are conserved.

IV. CONCLUSIONS

The principal aim of this work was to complete our
understanding of the relationship between different models
of modified gravity in the context of fðRÞ and fðTÞ gravity.
Our results can be visualized using Fig. 1. The starting
point is a gravitational action based on an arbitrary function
fðT; BÞ which depends on the torsion scalar and a torsion
boundary term. If this function is assumed to be indepen-
dent of the boundary term, one arrives at fðTÞ gravity
which we identified as the unique second-order gravita-
tional theory in this approach. Likewise, if the function
takes the special form fð−T þ BÞ, we find the teleparallel
equivalent of fðRÞ gravity. This theory is identified as the
unique locally Lorentz-invariant theory. Any other form of
fðT; BÞ will result in gravitational theories which are
neither of second-order nor locally Lorentz invariant.
Based on these considerations, one could study some

interesting physical models using the teleparallel frame-
work. For instance, it would be interesting to couple a
scalar field to this boundary term and study its

FIG. 1. Relationship between different modified gravity models
and general relativity.
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cosmological applications. Clearly, one will be able to
establish a direct link between Brans-Dicke type theories
and their teleparallel counterparts [23]. However, couplings
to the boundary term will result in some new dynamics
which will be interesting to study [24].
As discussed in the above, neither the torsion scalar T

nor the boundary term B are invariant under local Lorentz
transformations. This might be useful when studying metric
theories of gravity which already break this invariance, for
instance theories containing a preferred direction; see for
instance Ref. [22]. One could reformulate these theories
using the teleparallel framework and choose suitable
coupling terms containing the boundary term so that the
resulting theory becomes invariant under local Lorentz
transformations. This will not be possible for any theory
violating local Lorentz invariance; however, for some
models this approach will yield a new invariant theory.
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APPENDIX: DERIVATION OF THE
FIELD EQUATIONS

This appendix contains some details about the calcu-
lation which yields the variation (24) of the Lagrangian,
which corresponds to the variation of the additional
dependence of f on the boundary term B. This material
is included to make this paper more self-contained and to
make it easier to verify the results.
Performing this variation, it is found that

efBðT; BÞδB ¼ −ðfBBþ 2ð∂μfBÞTμÞδe
− 2eð∂μfBÞδTμ; ðA1Þ

where we used that the torsion vector is given by

Tμ ¼ gμνTσ
σν ¼ gμνEσ

að∂σeaν − ∂νeaσÞ: ðA2Þ
Using that δe ¼ 1

2
gμνδgμν and gμν ¼ ηabEμ

aEν
b, it is easily

shown that

δgμν ¼ −ðgνλEμ
a þ gμλEν

aÞδeaλ ; ðA3Þ
δe ¼ eEλ

aδeaλ : ðA4Þ
Now by varying Eq. (4) we find the relation of the

variation of the inverse tetrad to the tetrad to be

δEσ
m ¼ −Eσ

nE
μ
mδenμ: ðA5Þ

And by taking partial derivatives of Eq. (4), one can also
find a similar relation for the partial derivatives of the
inverse tetrad

∂νEσ
m ¼ −Eσ

nE
μ
m∂νenμ: ðA6Þ

Using Eqs. (A3) and (A6), δTμ can be written as

δTμ ¼ −ðEμ
aTλ þ gμλTa − Tλ

a
μÞδeaλ

þ gμνEλ
að∂λδeaν − ∂νδeaλÞ: ðA7Þ

If we integrate by parts and disregard the boundary term,
the last term on the right-hand side of Eq. (A1) becomes

eð∂μfBÞδTμ ¼ ½∂νðEλ
aðegμνÞð∂μfBÞÞ−∂νðEν

aðegμλÞð∂μfBÞÞ
− eð∂μfBÞðEμ

aTλ þ gμλTa þ Tλ
a
μÞ�δeaλ :

ðA8Þ

Using ∂λe ¼ egμν∂λgμν and the compatibility equation for
the metric ∇λðgμνÞ ¼ 0 we find

∂λe ¼ eWλ
ρ
ρ; ðA9Þ

∂λgμν ¼ −ðWλ
νμ þWλ

μνÞ: ðA10Þ

The affine connection is

Γλ
μν ¼ Wμ

λ
ν − Kμ

λ
ν ¼ Wν

λ
μ − Kν

λ
μ: ðA11Þ

Using Eqs. (A9) and (A10) and the equation above, the first
term of Eq. (A8) can be written in terms of covariant
derivatives as

∂νðEλ
aðegμνÞð∂μfBÞÞ

¼ eEλ
a□fB − eð∂μfBÞðEλ

aWν
μν − Eλ

aWνμ
ν þWμλ

aÞ:
ðA12Þ

Using the same idea, the second term of Eq. (A8) becomes

∂νðEν
aðegμλÞð∂μfBÞÞ

¼ eEν
a∇λ∇μfB þ eð∂μfBÞðgμλðWa

ν
ν −Wν

ν
aÞ

−Wa
λμ −Wa

μλ þWλμ
a − Kλμ

aÞ: ðA13Þ

By inserting Eqs. (A12) and (A13) into Eq. (A8) we find

eð∂μfBÞδTμ ¼ −½eð∂μfBÞðEμ
aTλ þ gμλTa þ Tλ

a
μ

þ gμλðWa
ν
ν −Wν

ν
aÞ −Wa

λμ −Wa
μλ

þWλμ
a − Kλμ

a −Wa
μλ þWμλ

a þWν
μν

−Wνμ
νÞ − eEλ

a□fB þ eEν
a∇λ∇μfB�δeaλ :

ðA14Þ

If we use the symmetry of the affine connection, i.e.
Eq. (A11), we can simplify the equation as
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eð∂μfBÞδTμ ¼ −½eð∂μfBÞðEμ
aTλ þWλμ

a −Wa
μλ − Kλμ

aÞ
− eEλ

a□fB þ eEν
a∇λ∇μfB�δeaλ : ðA15Þ

Now, by inserting this expression into Eq. (A1) and using
Eq. (A4) we find

efBðT; BÞδB ¼ ½2eEν
a∇λ∇μfB − 2eEλ

a□fB − BefBEλ
a

þ 2eð∂μfBÞðEμ
aTλ − Eλ

aTμ

þWλμ
a −Wa

μλ − Kλμ
aÞ�δeaλ : ðA16Þ

Here we will introduce 2Saλμ ¼ Ka
λμ þ Eμ

aTλ − Eλ
aTμ to

obtain

efBðT; BÞδB ¼ ½2eEν
a∇λ∇μfB − 2eEλ

a□fB − BefBEλ
a

þ 2eð∂μfBÞð2Saλμ − Ka
λμ þWλμ

a

−Wa
μλ − Kλμ

aÞ�δeaλ : ðA17Þ

The last four terms on the right-hand side are identically
zero due to Eq. (A11). Thus, we obtain the final result
which is

efBðT; BÞδB ¼ ½2eEν
a∇λ∇μfB − 2eEλ

a□fB − BefBEλ
a

− 4eð∂μfBÞSaμλ�δeaλ : ðA18Þ
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