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Abstract

Do regional boundaries defined by governments respect the more natural ways that people interact across space? This
paper proposes a novel, fine-grained approach to regional delineation, based on analyzing networks of billions of individual
human transactions. Given a geographical area and some measure of the strength of links between its inhabitants, we show
how to partition the area into smaller, non-overlapping regions while minimizing the disruption to each person’s links. We
tested our method on the largest non-Internet human network, inferred from a large telecommunications database in Great
Britain. Our partitioning algorithm yields geographically cohesive regions that correspond remarkably well with
administrative regions, while unveiling unexpected spatial structures that had previously only been hypothesized in the
literature. We also quantify the effects of partitioning, showing for instance that the effects of a possible secession of Wales
from Great Britain would be twice as disruptive for the human network than that of Scotland.
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Introduction

Do regional boundaries defined by governments respect the

more natural ways that people interact across space? Beyond its

fundamental importance in economic geography [1–4], this

question underlies many conflicts and struggles for regional

independence across the world, such as those that have been

recorded across parts of Great Britain over the past decades. To

estimate the strength of inter- and intra-regional transactions,

traditional analyses have relied on aggregate parameters such as

local labour market data, commuter or travel flows and other

indexes of accessibility and socioeconomic status [5–9]. Here we

propose a new, more fine-grained approach to regional delinea-

tion, based on analyzing networks of billions of individual human

transactions that have recently become available [10]. Given a

geographical area and some measure of the strength of links

between its inhabitants, we show how to partition the area into

smaller, non-overlapping regions while minimizing the disruption

to each person’s links. We tested our method on the largest non-

Internet human network, composed of 20.8 million nodes inferred

from a large telecommunications database in Great Britain

[11,12]. Our partitioning algorithm yields geographically cohesive

regions that correspond remarkably well with traditional maps and

with existing commuting and administrative data. The most

striking differences are that Wales and parts of Yorkshire become

merged into regions dominated by the major cities of the West and

East Midlands, respectively. Our approach could be extended to

other large-scale data sets arising in economic geography, urban

planning and transportation studies, potentially creating a new

type of regional analysis that more closely reflects patterns of

human interaction.

We started with a telephone data set containing 12 billion calls

over a one-month period, estimating more than 95% coverage of

the Great Britain’s residential and business landlines in that

quarter. Using these data and the methodology explained in Text

S1, we inferred a network of roughly 20.86106 nodes and

85.86106 undirected links. To safeguard personal privacy,

individual phone numbers were anonymized by the operator

before leaving storage facilities. Also, each caller’s geographic

location was specified at the level of spatial units based on a

geographic agglomeration of sub-regional switching facility groups

(covering 49 km2 on average). Thus the geographic agglomeration

acts as a kind of mask, preventing us from being able to pinpoint a

customer’s address, neighbourhood or village.

We assumed that the above network is a measure of human

interactions at an individual level over all of Great Britain (see

discussion in Text S1 and below) and aggregated it into a grid of

3,042 square pixels, each with dimensions 9.5 km by 9.5 km. We

treated each pixel as a spatial node and measured its connection

strength to every other pixel, thereby deriving a matrix of the total

bidirectional traffic between each pair of spatial nodes in the

geographic network (Fig. 1). The resulting network of telephone
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traffic gives an indication of how tightly the thousands of different

parts of Great Britain are connected, pixel by pixel. Please note

that connection strength was calculated using total call time, hence

taking into account the local population density.

Results and Discussion

The question naturally arises: What is the best way to group

these pixels into larger regions? A similar question has been a focus

of network research over the past decade; there one seeks the best

way to partition a network into separate, non-overlapping

communities [13–18]. The leading approach is based on

optimizing the network’s ‘‘modularity’’ [15]. High modularity

values occur when the network is subdivided such that there are

many links within communities and few between them, as

compared to a randomly generated network with otherwise

similar characteristics.

However, we are not trying to partition the network itself, but

rather to use the network’s characteristics to partition the

geographic space underneath the network’s topology while

guaranteeing spatial adjacency, one of the essential features of a

geographic region.

Nonetheless, we felt it might be instructive to ignore the

adjacency constraint initially, to see what sorts of regions would be

obtained. Following Newman’s approach as a baseline, we applied

his spectral optimization algorithm [16]. Note that it was

important to include loop edges (as proposed in [19]) in our

analysis as it allowed us to correctly represent the human network

from which we started (see Text S2).

After two iterations of the algorithm, a surprisingly accurate

map of the Greater London region emerged, along with an area

corresponding to Scotland, with just a few detached pixels

scattered across the rest of Great Britain (Fig. 2 (a) and (b)).

With subsequent iterations the modularity increased, ultimately

converging to a maximum of 0.58, indicative of a good

partitioning compared to the randomized network, as mentioned

in [15,20]. The resulting subdivision had 23 communities, 13 of

which were clearly delineated geographically, although some

scattered pixels and fuzzy boundaries remained. To determine if

these artefacts were due to noise produced by the heuristics of

spectral partitioning, we next fine-tuned the spectral partitioning

algorithm in a manner suggested by Newman [16], iteratively

moving pixels from one region to another to maximize overall

modularity (see Text S3). When applied to our data, this process

Figure 1. The geography of talk in Great Britain. This figure shows the strongest 80% of links, as measured by total talk time, between areas
within Britain. The opacity of each link is proportional to the total call time between two areas and the different colours represent regions identified
using network modularity optimisation analysis.
doi:10.1371/journal.pone.0014248.g001
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removed the fuzzy boundaries, attached the scattered pixels to

their nearest neighbours, and increased the modularity to 0.60.

Figure 2(c) shows the resulting map. Its regional cohesiveness is

unexpected: we began by looking at the human network as a

topological entity with no geographical constraints, but uncovered

clear regions in space that respect spatial adjacency. Apparently

the telecommunication links between individuals—and the

interpersonal transactions that they capture—are so intertwined

with geographical space that partitioning at a network-topological

level produces a very accurate partitioning of geographic space.

Compared to previously suggested distance-decay models of

telecommunication in space [21–24], our technique for partition-

ing shows that not only population distribution in space but also

regional boundaries affect the patterns of communication. They

also seem to confirm the spatial cohesiveness of partitions defined

on mobility networks at an aggregate level, such as airplane

connections and banknote movement [25,26].

Before embarking on the detailed examination of our regions,

however, we should check how stable our boundaries are. As it has

been shown [13,27], a modularity function such as ours is likely to

have exponentially many local maxima, and these maxima

typically have different clustered structures. Our partition is likely

not to be the global maximum and there are probably alternative

local maxima with a high modularity score. What would the

corresponding boundaries be? To find out we implemented several

modularity partitioning methods (see especially Figure S1 and

Text S3). The results are reassuring: there is indeed some variation

along the boundaries, but we always find cohesive regions centred

approximately in the same place. Also, if we intersect all regions

obtained with the different methods, we find 11 stable ‘‘cores’’ that

are always separated from each other by ‘‘peripheral’’ regions that

lie at the boundaries and have somewhat ambiguous associations

(Fig. 3). It should be noted that these ‘‘cores’’ highlight very

densely populated areas and contain the great majority of Great

Britain’s population (85%). Conversely the peripheral regions are

very sparsely inhabited. The regional partitioning is also robust

with respect to uncertainty in the data, as proven by subsampling

(see Text S4), and seems indicative of a highly modular network

[20,27], as seen by comparison with many null models that have

an average modularity score of less than 0.02 (see Text S5). We

recognize the limits of resolution due to the modularity definition

[28]. As we are interested in detecting large regions comparable to

the official administrative ones, our analysis did not suffer of this

issue. However, multi-resolutions methods could be used to detect

smaller robust communities (see [17]).

Another interesting point is that the core map based on human

interactions divides Great Britain into approximately the number

of ‘‘official’’ Nomenclature of Territorial Units for Statistics 1

(NUTS) British regions (11) —with boundaries that approximately

coincide with the traditional ones (Fig. 3). Many of the telecom

regions—those corresponding to Scotland, South West, London

and the East of England—closely match the forms of historically

and administratively important regions. In fact, on average about

80% of pixels fall within a corresponding (by largest overlap)

telecom region. While not surprising, this finding seems to

corroborate our method: we would indeed expect an agreement

between the administrative boundaries and those found from

human interaction, as they probably evolved together, over many

centuries of mutual interplay—cohesive patterns within society

promoting change in administrative boundaries and the latter, in

turn, affecting human interaction.

The most obvious difference between the two maps is that

Wales, and to a lesser extent Yorkshire, seem to have been

incorporated into regions dominated by the major cities of the

West and East Midlands regions, respectively. Moreover, we have

also ‘‘found’’ a new region developing to the west of London. The

Figure 2. Defining regions through the spectral modularity optimization of telecommunications networks. a - even with just three
regions we obtain a total modularity of 0.31, indicating a fairly good network partitioning. b - the final partitioning of Great Britain yields a modularity
of 0.58. c - further fine tuning according to the process suggested by Newman [16] increases the modularity to 0.60.
doi:10.1371/journal.pone.0014248.g002
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first finding supports hypotheses that have long circulated in the

transport and regional studies literature: detailed commuting data

from the 2001 census was used to generate regions where 95% of

trips are internal to that region, finding that Wales, in spite of its

unique cultural and linguistic heritage, is well integrated with its

English neighbours to the East [29]. Also, the resulting northern

and southern Welsh regions match extremely well with our maps.

The second finding, of a new region just west of London,

corroborates an earlier study of a ‘Western Crescent’ of high-tech

activity [30]: a cohesive area that generally scores extremely well

Figure 3. The core regions of Britain. By combining the output from several modularity optimization methods we obtain the results shown in
this figure. The thick black boundary lines show the official Government Office Regions partitioning together with Scotland and Wales. The black
background spots show Britain’s towns and cities, some of which are highlighted with a label.
doi:10.1371/journal.pone.0014248.g003

Borderline
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in measures of economic activity and low levels of deprivation, as

measured by Gross Value Added (GVA) and qualifications (NVQ)

for Berkshire, Buckinghamshire, and Oxfordshire [31]. Our

partitioning, in short, seems to capture human interaction more

accurately than the official NUTS regions. We also overlaid a map

of modern English-only dialects [32]. Even if the boundaries of 16

dialects were not well defined, we could informally estimate that

the East of England and, in particular, East Anglia matched up

fairly well with our corresponding region (around 60% overlap

between regions), although the overall overlap between telecom

regions and corresponding - by largest overlap - dialects regions

was only around 25%. This is what we would expect in country

that has undergone centuries of linguistic integration.

There are other metrics for which the partitioning scores better

than NUTS. Per our initial hypothesis our regions would produce

fewer disturbances to the network of human interaction. This can

be seen in Text S3, where we show that boundaries obtained with

all modularity partitioning methods always cut fewer ties across

the network. Another measure by which our partitioning scores

better is that our predicted boundaries cross areas with very low

population density (50% that of the official boundaries).

The above partitioning of Great Britain using telecommunica-

tion data also suggests the extent to which each region is integrated

into the country as a whole. To measure this, we calculate the call

time ratio, defined as the percentage of time a region talks to itself.

By this measure, Scotland is the region least connected to the rest

of Great Britain, followed by North Wales, South Wales and

Greater London. What is particularly striking about Scotland is

that the call time ratio is 76.7%, meaning that just 23.3% of all call

time placed or received in Scotland goes to or comes from another

part of the country (as a comparison in a random network we

would have only 37% call time ratio). Scotland appears to be

loosely coupled with the rest of Great Britain in a way that Wales

emphatically is not. In other terms, if Scotland and Wales were to

become independent from the UK, and if the detrimental effect of

the secession were considered proportional to the number of

external connections, the effect on people would be approximately

twice more disruptive on Wales than Scotland.

All of the above analysis is based on the pattern of landline calls,

but our method could easily be used on other networks in the

future: data from mobile phones could be an indicator of more

personal (as opposed to household and business-oriented) human

interaction [33], while databases from credit card companies could

highlight commercial links between individuals. One could even

imagine applying a similar analysis to the movement patterns of

each individual, and determine boundaries that would minimize

their disturbance [34–36]. All together, these approaches could

lead to a new perspective in regional studies, transportation

planning and economic geography.

Supporting Information

Figure S1 Defining regions through the spectral modularity

optimization. Results of five different modularity optimization

algorithms.

Found at: doi:10.1371/journal.pone.0014248.s001 (5.66 MB TIF)

Text S1 Inferring the network of human interactions from

calling data.

Found at: doi:10.1371/journal.pone.0014248.s002 (0.05 MB

DOC)

Text S2 Definition of modularity.

Found at: doi:10.1371/journal.pone.0014248.s003 (0.19 MB

DOC)

Text S3 Comparing different modularity optimization methods.

Found at: doi:10.1371/journal.pone.0014248.s004 (0.06 MB

DOC)

Text S4 Subsampling the network data.

Found at: doi:10.1371/journal.pone.0014248.s005 (0.04 MB

DOC)

Text S5 Comparison with null model.

Found at: doi:10.1371/journal.pone.0014248.s006 (0.04 MB

DOC)
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