
This is a pre-print draft of a book chapter, to appear in:
Technology-enhanced learning: Design Patterns and Pattern Languages (eds Peter Goodyear &
Simos Retalis). Sense Publishers, Rotterdam.
Do not quote without permission.
For copyright queries, please consult:
SENSE PUBLISHERS B.V.,P.O. Box 21858, 3001 AW Rotterdam, The Netherlands
Fax: +31(0)787070632, www.sensepublishers.com,
peter.deliefde@sensepublishers.com

The distributed developmental network - d2n: a social
configuration to support design pattern generation

Niall Winters, Yishay Mor and Dave Pratt

Abstract
DiSessa et al. (2004) conducted a comparative study of how research teams design, de-
velop and evaluate TEL software, in the context of component-based educational pro-
gramming. They identified the issue of the social configuration of the production team as
“a critical family of issues that are easily marginalized” (p.117). These social configura-
tions are loosely equivalent to what Activity Theorists refer to as the rules and division of
labour (Engeström, 1987) in the activity system of TEL production. DiSessa et al. (2004)
studied four such configurations in detail and noted their relationship with the evolution
of the technology and its use. These models suggest different ways of bringing the vari-
ous participants involved in TEL development together. Based on the definition of inter-
disciplinarity (van den Besselaar and Heimeriks, 2001; Gibbons, 1994), in this chapter
we detail how to support participants from different disciplines to work together in small,
product-oriented groups, using design patterns.
Our patterns were developed in the context of the Learning patterns for the design and
deployment of mathematical games project, funded under the Kaleidoscope Network of
Excellence of the European Union. Our primary aim was to develop patterns that worked
at the interface between disciplines. They were focused on pragmatic ways to have teach-
ers and technologists productively engage with each other. Furthermore, many patterns
were developed from the use of particular tools in educational contexts, where the tools
were developed from scratch as outputs of research projects. There was a reflection in the
patterns of the need for participants to understand each others’ practices in order to
achieve integrated development. DiSessa et al. (ibid) reflect on the fact that teachers can
find it “difficult and sometimes intimidating to participate as equal contributors in a tech-
nology-based development process” and suggest that effective management of collabora-
tion can address this problem.
As distinct from DiSessa’s four models, we identified a somewhat more complex
emerging structure, that of a development network, where distributed groups with local
expertise use a pattern language to share their expertise, sometimes in collaborative long-
term projects, sometimes in ad-hoc exchanges. A detailed analysis of this model is
presented in this chapter. What is clear at this stage is that a successful model needs to
empower all partners in the design process, avoiding ‘producer-consumer’ and ‘sage-

laymen’ relationships.

Biographies

Niall Winters

Niall Winters (PhD in Computer Science, University of Dublin, Trinity College) is a
RCUK Academic Research Fellow at the London Knowledge Lab, where he researches
the ways in which interdisciplinary design and deployment can be supported in
technology enhanced learning. Currently, his is involved in four research projects funded
by the EPSRC/ESRC and the European Union. Niall has held visiting research positions
with the Everyday Learning Group at Media Lab Europe in Dublin, and the Computer
Vision Lab at Instituto Superior Tecnico in Lisbon.

Yishay Mor

Yishay Mor is currently a PhD student with the School of Mathematics, Science and
Technology at the Institue of Education. Yishay holds an MSc in computer science from
the Hebrew University, Jerusalem. He has previously worked as a researcher with the
project Learning Patterns for the design and deployment of mathematical games and with
the WebLabs project. Before that he designed and developed web-based network
management software for Cisco Systems.

Dave Pratt

Dave Pratt (PhD in Mathematics Education, University of London, Institute of
Education) is Professor of Mathematics Education at the Institute of Education, where he
researches the relationship between mathematical thinking and the design of digital tools,
often building learning environments as part of that research. Recently he has led
Kaleidoscope projects on the design and deployment of mathematical games and on the
construction of on-line materials for the study of design research, a methodology
commonly adopted in his own research and in that of his doctoral students. He has
published in many international journals and was, before that, a teacher of secondary
level mathematics for 15 years.

1. Introduction
One of the reasons the development of technology enhanced learning (TEL) design
patterns is a complex process is because it is dependent upon expertise from a number of
disciplines. Each discipline brings to the field their own practices and experience;
software developers rely on well-trialled engineering principles when building software;
teachers are well versed in course and activity design and so on. If the challenges raised
by TEL are to be adequately addressed, interdisciplinarity, defined as follows
(Committee on Science, Engineering and Public Policy, 2004) needs to play a central
role:

Interdisciplinary research is a mode of research by teams or individuals that integrates information,
data, techniques, tools, perspectives, concepts, and/or theories from two or more disciplines or
bodies of specialized knowledge to advance fundamental understanding or to solve problems whose
solutions are beyond the scope of a single discipline or field of research practice.

The aspect of interdisciplinarity that we focus on is the sharing of design knowledge
across domains (including, but not limited to computer science, educational technology,
teaching and pedagogical design). This is of fundamental importance as without it TEL
artefacts risk being biased towards one of the dimensions of development (e.g.
technically rich but pedagogical poor). Design patterns can directly address the challenge
of interdisciplinarity if they are developed in a manner whereby they encapsulate the
various types of design knowledge. The first question is how to support this process.
In this chapter, we take a two-pronged approach to this problem, describing a model of
development – a characterisation of how development can occur and its associated social
configuration – a description of the ways in which participants collaborate. More
specifically, we are required to define the model of pattern development and the structure
of the pattern development team. We established an interdisciplinary model of
development interrelated with a distributed development network (d2n) social
configuration. The key point of this social configuration is that distributed groups with
local expertise use a pattern language to share their expertise, sometimes in collaborative
long-term projects, sometimes in ad-hoc exchanges.

The d2n configuration was chosen so as to directly link the ways in which patterns are
developed to interdisciplinary practice. The aim was to have participants work together
on pattern development in an interleaved, iterative and integrated manner, while avoiding
the potential pitfalls of multidisciplinary approaches. (In multidisciplinary approaches,
each participant maintains their own disciplinary approach, effectively creating silos
within the team that can lead to little or no integration). This was a challenge for two
reasons. First, the process of developing TEL design patterns is complicated by the fact
that within the field, both knowledge of design patterns and the process by which they are
developed are less established than in other fields, such as software engineering. Thus,
the potential of design patterns needs to be made aware to all participants. Second,
interdisciplinarity, while often promoted as a laudable aim, is difficult to support in a
pragmatic manner. One of the reasons for this is because barriers exist to developing a
common understanding of a topic, making the establishment of common ground difficult
(Caruso and Rhoten, 2001). Furthermore, working in an interdisciplinary manner implies

that opportunities for participants to collaborate on the development of patterns exist.
However, managing collaborative practice to afford such opportunities can be complex
for a number of reasons (diSessa, Azevedoa & Parnafes, 2004):

• Divergent views: TEL relies on input from many communities. Each has their
own perspective on how to approach and solve problems. Therefore there is a
danger that the design patterns developed may be biased towards one particular
domain. Participants may also have different priorities in relation to the role of
technology in education which need to be negotiated. In particular, in relation to
design, participants may view the role of teachers and learners within the team
very differently.

• Social hierarchy: diSessa, Azevedoa & Parnafes (ibid) point out that
“[t]echnologists tend to have high status or, in a self-fulfilling manner, assume
they have high status compared to educators, especially teachers”. Related to the
above point, the teachers’ role can be supported by educational researchers,
particularly in supporting them in abstracting their practice into design patterns
(see Section 5.1)

• Community-specific practices: In any collaboration there is always the danger that
participants are strongly affiliated with their own domain. Part of the practice of
working in an interdisciplinary manner is overcoming this hurdle. The process of
developing design patterns is one way of scaffolding practice, as the patterns can
become a means through which collaborative discussion occurs. Additional
support may be found at an institutional level, if interdisciplinary practice is
valued.

In the Learning Patterns project, we have attempted to deal with these issues using the
d2n. Configured in this way, over the course of a year, the team produced in excess of 120
patterns (http://lp.noe-kaleidoscope.org/outcomes/patterns/). As the d2n configuration is
distributed in nature a means of supporting collaborative development at a distance was
central to the process. Thus, we designed and built a web toolkit, which facilitates
participants to undertake pattern development in a flexible manner. Furthermore, the
toolkit is designed to support a “flowing engagement” between participants, mediating
their practice but critically not getting in the way of it (Gross and Do, 2007).

1.1.The interdisciplinary model of development
As outlined in the introduction, a model of development is a characterisation of how
development can occur. More specifically, it is a way of thinking about how to go about a
particular development practice (diSessa, Azevedoa & Parnafes, 2004). Examples might
include how to develop code or how to develop TEL resources. The important thing is
that any model is not an idealised mode of practice. Instead it should be viewed as a
guide to supporting implementation of a social configuration. In our case, when focusing
on developing design patterns, we want an interdisciplinary model of development and
therefore need to detail the characteristics that such a model will have:

http://lp.noe-kaleidoscope.org/outcomes/patterns/

• Design knowledge is captured in the form of design patterns: this emphasises that
design patterns are the construct around which interdisciplinary practice is
facilitated (see Section 3)

• The viewpoints of all participants have equal validity: Alexander (1979) promoted
that idea that pattern languages have the explicit aim of externalizing knowledge
to allow accumulation and generalization of solutions and to allow all members of
a community or design group to participate in discussion relating to the design.

• Design patterns are co-constructed by participants: While patterns can be created
by anyone, their evolution should be a community process

• Participants make every effort to work across domains: participants contextualise
their perspective motivating their work for others to understand

• Patterns can emerge from the intervention of existing artefacts in particular
settings: when developing patterns, it is not necessary to build new tools but it can
also be a welcome source.

2. Related work: social configurations for development
Design pattern development in TEL is interdisciplinary. The elicitation and iteration of
design patterns are well known to be dependent upon team development and critique
(Retalis, Georgiakakis and Dimitriadis, 2006; Baggetun, Rusman and Poggi, 2004). As
such, understanding the social configuration of teams and how this supports collaborative
practice (in our case the sharing of design knowledge) is of critical importance. In
attempting to undertake interdisciplinary development, the social configuration of the
development team plays a significant role. The social configuration is defined as the ways
in which participants collaborate and how this collaboration is structured. Before going
on to discuss the d2n configuration in more detail, we first present related configurations
from software engineering and TEL.

Within the field of software engineering there has been an increasing interest in social
structure, in particular within the Open Source movement. The overarching aim is to
improve the planning of code development and software releases from understanding the
various social structures and configurations that occur in practice. Crowston and Howison
(2005) elaborate an idealised model of open source development based on four case
studies of open source projects in the domain of computer science (see Figure 1).

Figure 1 An idealised social structure of Open Source development (taken from

Crowston and Howison (2005))

The model consists of a small set of core developers responsible for major coding,
supported by co-developers who primarily submit bug fixes. Active users provide use-
cases and bug reports and test new releases. Finally, there are the passive users of the
software who do not contribute directly to development. Scacchi’s (2002) research
supports this model. He notes that open source programmers take on particular roles in a
development model where their contributions are shared on moderated community
websites. Discussion and critique takes place within related forums or threaded emails.

In the software engineering community, in particular the object oriented programming
community (see, for example http://www.industriallogic.com/training/dpw.html), pattern
production is often facilitated at conference workshops. Indeed, we too have developed a
workshop model (http://lp.noe-kaleidoscope.org/outcomes/workshops/). The focus of
workshops is to aid participants to create patterns by themselves. However, this approach
has limitations in that workshops are often (but not exclusively) focused on seed pattern
development.

The social configuration of TEL teams can be considered to be less researched than their
open source community equivalents. However, that is not to say that interesting research
has not been done. A particularly illuminating study was undertaken by diSessa,
Azevedoa & Parnafes (2004) who compared how research teams design, develop and
evaluate TEL software, in the context of component-based educational programming.
They identify the issue of the social configuration of the production team as “a critical
family of issues that are easily marginalized” (p.117). They studied four such
configurations in detail. We briefly summarise their structure as follows:

• The Integrated Team Model: Teams are structured into small, product-oriented
groups

• The Two-Legged Model: Interaction is structured between two distinct teams
(educationalists, technologists)

• Member-Sustained Community Model: “[An] Internet-based community of
experts – teachers, researchers, developers, and others –that self-organizes to
publish, share, find, critique, and improve software resources and associated
materials’’ (Roschelle, Pea, et al., 1999, p. 2, cited).

• The LaDDER Model: Four layers of participants. The focus is on empowering
participants with less technological expertise, especially teachers and students,
to solve as many of their own technology problems.

Each social configuration proposes a way to co-develop artefacts (in the case of diSessa,
Azevedoa & Parnafes, software components). Critical to all four configurations is the
relationship between educationalists and technologists. Each aims to structure this
relationship – and the collaborative processes that go with it – in particular ways. As
such, each can be viewed as operating on a ‘spectrum of collaboration’. On the one hand,
emphasis is placed on providing structures to support educators in working with
technologists. On the other, there is a focused effort on maintaining an active and self-

http://lp.noe-kaleidoscope.org/outcomes/workshops/
http://www.industriallogic.com/training/dpw.html

organizing community of TEL participants.

We note here that whichever social configuration one chooses to investigate,
complexities will arise. There is always a balance to be maintained between the
pragmatics of technical development and the reality of classroom deployment on the
ground. Indeed, diSessa, Azevedoa & Parnafes found that teachers (within the Integrated
Team Model) found it “difficult and sometimes intimidating to participate as equal
contributors in a technology-based development process”. Furthermore, maintaining a
workable coupling between domains of expertise is a significant challenge in order to
avoid participants solely focusing on their own area of expertise.

3. A social configuration: the distributed development
network (d2n)

The distributed development network as a social configuration for developing design
patterns evolved during the learning Patterns project. This was a 1-year project involving
partner institutions across six European countries with expertise in computer science,
educational technology, teaching, pedagogical design and games. The network further
involved partner schools in three of the six countries, with 21 people making up the core
of the team. The main aim of the project was to identify, elaborate and connect design
knowledge from the various domains of expertise within and across the project and
capture this knowledge in the form of an emerging set of design patterns.

By its very nature then, the development network is distributed in nature. Expertise is not
co-located but rests with participants who are geographically dispersed. While some
partners may have differing expertise available at their particular location, others may
not. The distributed network structure of our development model thus requires a hub – a
place where multiple perspectives on a problem could be shared and discussed.
Furthermore, this hub must support the elicitation and construction of design patterns in a
meaningful manner. Effectively this means that each of the main stages (Winters and
Mor, 2008) of pattern development – identification, development, refinement – must be
able to be undertaken in a distributed manner. In our case, building a hub necessitated
the construction of a web toolkit (see Section 4) with distributed pattern development
occurring primarily online, augmented by a small number of face-to-face meetings and
workshops (see Section 4.3). Importantly, the development network and the web toolkit
to support it are tightly coupled – one cannot exist without the other.

The next characteristic of the d2n development model is that is has to support pattern
development by those who are very familiar with the process but crucially must also
provide “ways-in” for participants who are novices in the practice. Mechanisms need to
be provided for participants to leverage their everyday experience and practices in order
to support them in bootstrapping their development of patterns. We chose case studies as
the mechanism. This choice was motivated by Yin (1994) who posits that case studies
work well for describing interventions (in our case TEL artefacts) and the settings in
which they occur. Moreover, the need to accommodate the concerns of diverse design

partners drives the author of a case study to identify the critical elements in their TEL
design process, with respect to what design decisions worked and why, reflecting key
choices that were made.

It is important that d2n supports a cyclical link between design and deployment. This
needs to be maintained throughout the pattern development cycle. Participants with
different expertise need to be able to “dip” in and out at any stage of the cycle. Therefore,
the thinking underpinning any stage of pattern development, i.e. how participants
conceptualise their own area of expertise, has to be available for open critique in a
manner that is accessible to others. Such critique should be supported throughout the
development process.

In designing the d2n social configuration, it is clear not only that interaction between
participants is primarily mediated by data (i.e. hierarchical and cross-linked knowledge-
domain typologies – visual mindmap overviews of subject areas, narrative form case
studies and structured design patterns, what we term design objects) but these data are
generated and contributed by participants themselves. The data form the basis for on-
going process of pattern development. The critical point is that as d2n continues over
time, the patterns become the central construct and focus around which interaction
between participants occurs. The model’s distributed nature foregrounds participants’
data contribution and analysis over discussion via ‘sage-layman’ relationships. This is a
very important structural component in supporting interdisciplinary practice. We want to
avoid a dipolar structure between educational and technology strands (broadly defined)
and instead facilitate a practice of informed mutual development. The ideal is that the two
strands become almost indistinguishable.

4. The d2n web toolkit
Maintaining an effective distributed development network requires a set of supporting
tools which are functionality rich while being easy to use. The d2n web toolkit was
designed and developed with this aim in mind. This toolkit supports identifying,
developing, mapping, sharing, discussing and classifying design objects, i.e. elements of
design knowledge. The design of the system was iterative, and in a sense auto-reflexive,
as it embodies many of the patterns it hosts. Indeed, most of the issues noted here are
represented as patterns in our language. The full technical description of the system is
beyond the scope of this chapter, and can be found in (Pratt et al, 2007). In this section
we highlight some of the key issues that emerged from or experience in designing,
developing and using the system.

4.1.Form follows practice: embedding the social configuration in
interface design

To a large extent, the success of the toolkit was due to the measure by which it was
attuned to the social practices of the community it served. Starting from a minimal set of
features, enhancements were continuously added as participants’ needs were identified.

These needs, and hence the emerging features of the system, reflect the social dynamics
within the community. Examples include the manifestation of collaborative development,
demarcation of authorship and contribution, and an open-process culture. Each of these
aspects was supported by particular mechanisms of interaction. These are the “protocols,
formal structures, plans, procedures and schemes [that] reduce the complexity of
articulating cooperative work” (Schmidt and Bannon, 1992 cited in Grinter, 1995). Thus,
the mechanisms are standard operating procedures that govern how a team interacts.

(i) Manifestation of collaborative development
Design objects are in “perpetual beta”, constantly being refined and reconfigured by
participants. Design objects are simultaneously a representation of existing knowledge
and a means for constructing new knowledge. The particular balance between the two
shifts over time. A newly minted design pattern is often little more than a flagged issue
for investigation. This investigation proceeds through analysis of case studies and
interdisciplinary debate. Eventually, the pattern matures to an encapsulated unit of
knowledge, which can be used as a building block in larger structures. This trajectory of
design object refinement, and the social process which drive it, need to be represented in
the user interface. In our case, these were captured by elements such as the pattern status
and ranking, and the design-object discussion forums.

Each pattern is assigned a state depending on its level of completeness: seed, alpha, beta
and release. Seed patterns often represent ideas, which were noted during discussion or
while developing other patterns. They are essentially placeholders, which would probably
not make much sense to anyone other than their authors. Once they undergo the initial
editing cycle, they are promoted to alpha state. This state signifies patterns which require
refinement before they are submitted to public review – the beta state. The feedback from
this review will be used to bring the pattern to its final release state. We note here that the
process by which a pattern moves through these states is non-trivial – see (Winters and
Mor, 2008) for a methodology of how to do so. The second indicator, ‘rank’ provides the
authors with a meta-review of how significant the community of patterns authors view
this pattern. This can be a guide as to where the user may wish to allocate their time on
pattern development. State and rank are displayed clearly on the header of each pattern
page (see Figure 2 and Figure 3) and in the table view of all patterns (see Figure 4).

Figure 2: header of a pattern in release state, with a ranking of 4

Figure 3: header of a pattern in seed state, with a ranking of 2

Figure 4: status and rank columns on the left of the patterns table

The collaborative dynamics of discussion, disambiguation and refinement are captured by
the design object discussion forums and versioning. A discussion forum and list of
historical versions is attached to each design object – typology, case study, pattern
(Figure 5) or the structure of the language as a whole (Figure 6). With the discussion
forum for each pattern the critical issues relating to how the pattern developed will have
been detailed, as it is often the case that pattern development will have been spurred on
by discussion with other pattern authors.

Figure 5: fragment of the Content Embedding pattern, with versions and discussion
forum

Figure 6: Overview view of the pattern language, with versions and discussion
forum

Discussion forums proved highly valuable in cases requiring intensive coordination
across disciplines, thus involving multiple authors and multiple objects. Notably, in the
development of the typologies, we needed to remove redundancies and identify
intersection points. This need was addressed by leaving comments on each other’s
forums.

They were used significantly less in the case of self-contained objects, such as case
studies and patterns. Partially, this is due to the lack of a robust notification mechanism:
since the typologies discussion was localized in time and web-space, participants could
keep track of the forums activity. By contrast, sporadic comments on a large number of
objects are hard to follow. Both the success of forums, in the case of typologies, and their
relative failure, in the case of patterns, support the argument that interface design should
follow social configuration. Had we found the time to apply this principle in the later
case, we would have provided a means for notifying authors of all activity on all objects

they are involved in (e.g. by email or RSS).

(ii) Demarcation of authorship and contribution
Collaborative authoring systems often either highlight individual authorship (e.g. blogs)
or blur it altogether (e.g wikis). Yet most communities engaged in the collaborative
construction of digital artefacts employ a much finer social structure of authorship and
contribution. Typically, each object will have one primary author, several secondary
authors, and many ad-hoc contributors. Such is the case in most open-source projects
Crowston and Howison (2005) and in pattern language communities (Schuler, 2002, for
example).

In our community, each typology had one editor-in charge, each case study was offered
by one or two participants, and each case study had one main author – although, in the
case of workshops, this author represented a group. Occasionally, the lead on a particular
design object would shift from one author to another. In all cases, there was a wider
group of contributors who would review and critique the design object under
development.

In order to streamline the collaborative process, these structures of authorship and
responsibility need to be made salient. This was achieved in the toolkit by distinguishing
discussions from edits, and displaying author names along each version and forum
comment, as well as on the index view of pattern and case studies.

(iii) Open-process culture
One of the early decisions of the project team was to make not only the products of our
work free and open, but also to expose the process itself. This decision implies that all
versions and all discussions of all our design objects are accessible to the public through
the project website. The rationale behind this policy is twofold. Obviously, it creates a
possibility for unexpected feedback and contributions from experts from outside the
group. It also enriches out offering: by exposing the social configurations and dynamics
from which our language emerged, we enable others to evaluate and hopefully adopt
these to serve similar endeavours.

Openly sharing our work process raises a risk of overloading newcomers with excessive,
immature knowledge. For example, roughly a third of the patterns in the database are still
in seed state. Such patterns will make little sense to a casual viewer. If such a user would
browse through the collection unguided, she might be overwhelmed and confused by
these.

To address this issue, the site provides two views on our work (Figure 7): the outcomes
view aims to present the fruits of our work in the most accessible form, while the
workspace view presents them in full detail, including historical versions and discussions.

Figure 7: outcomes vs. workspace views
The trails view, described in Section 4.2, is another mechanism for tackling the tension
between veterans and newcomers views of the language.

4.2.Multiple contexts, multiple representations
The d2n social configuration is diverse not only in the domains of expertise it
encompasses, but also in the intensity and character of the activities participants
undertake. These dimensions define a space of contexts of use. While the underlying set
of design objects may remain the same, the users’ perception of them and their desirable
varies dramatically. To support the various contexts effectively, the web toolkit offers
targeted representations of design objects. The problem of navigating the pattern
language is a primary example of this issue. Possible contexts for this activity include: a
public review (e.g. at a conference), groundwork for a new design initiative, resource
management, structural editing, and newcomer’s enculturation.

Figure 8: overview visualization of the pattern language
When presenting the language for public review, it is critical to offer reviewers a lucid
and immediately accessible visual representation of the language. This representation
would serve as a backdrop for a frontal verbal presentation, leading to a more in-depth
discussion. The overview perspective affords such a representation (Figure 8). This

perspective does not support navigation, but provides a good initial impression of the
language.

Figure 9: Browsable tree view of the pattern language

The overview perspective quickly becomes ineffective when shifting to a more detailed
review, either in the course of a review discussion or when using the language as a
resource in design practice. The browse perspective (Figure 9) was designed to support
such contexts. This perspective allows the viewer to traverse the hierarchy of patterns
with a quick view of each pattern’s summary, homing in on patterns of interest. While
effective for its intended context of use, this representation lacks a lot of meta-data which
is essential in other contexts.

Figure 10: index view of the pattern language

Core members of the network will need to perform resource management and systematic
editing tasks. They might need to work through all patterns in a particular state,
promoting them to the next. They might want to review all their contributions and
eliminate redundancies, or focus on those patterns that their peers found most useful. To
support such a context of activity, the index perspective (Figure 10) offers a sortable
tabular view of the language. This view flattens the structure, assuming a familiarity with
the language as a whole. While being highly effective for experiences contributors in
focused tasks, it is nearly impenetrable for novice viewers.

Figure 11: A trail leading newcomers through a usage sceario

One of the hardest challenges for pattern languages is the entry problem (Winters and
Mor, 2008). Our approach to this issue employs a trails perspective. A trail is an informal
illustrative account of how patterns were derived or how they might be used. The purpose
is to provide a starting point for detailing a particular practice that the pattern language
covers (for example “beginning the design process”, Figure 11) in narrative form,
providing links to each of the patterns used. The aim is not to present the narrative as
hard data or detailed analysis, but rather as an aid for the reader to gauge the nature of the
patterns approach. It offers an initial opportunity for readers to begin to understand the
deep, complex and structured relationships between patterns, while knowing that these
relationships can, and have been successfully explored and mapped in an interdisciplinary
manner. Furthermore, trails allow for exploration at both the abstract and specific levels
by constructing the narrative to ‘drill-down’ through the levels of the language hierarchy.

Figure 12: Editing the language structure in FreeMind

Finally, there is the occasional task of restructuring the hierarchy of the pattern language,
incorporating new patterns and reconfiguring categories. This complex task requires a
malleable comprehensive representation of the language structure. The nature of this task
suggests that it would be done by one or two members, who are intimately familiar with
the language, sitting at a single computer, at a single session. Since structural changes can
be far-reaching, they need to be done en-bulk. With this context in mind, the logical
mode of work is to download a map of the language – pattern names and links – and
manipulate it using a graphical desktop editor. This was achieved by using the open
source FreeMind program. The language structure is discussed by the core team using a
forum, as mentioned in Section 4.1. Following each round of discussions, one or two
team members will edit the map in FreeMind, and upload a new version – to feed into the
next round of discussions.

4.3.Blended usage
When considering a web-based environment for collaborative development of design
objects, and its context of use, one would expect these to be limited to distributed
scenarios. Initially, this was the assumption underlying the design of the d2n toolkit. With
time, we realized that it provided invaluable tools for a much broader set of situations. On
one hand, the toolkit proved to be an effective individual design research workspace. On
the other hand, it emerged as a powerful resource in pattern workshops (Mor and

Winters, 2008b). In the former case, the authors have used the toolkit as an aid for
detailed analysis of their work in previous projects. The results of that analysis are
currently being prepared for publication.

The later case is perhaps the more surprising. The project conducted a series of pattern
workshops, in which practitioners and researchers from diverse fields met to share their
knowledge and discuss questions which emerge from their experience. These workshops
used participant-contributed case studies as a central resource. Working in groups, these
case studies were mapped to the typologies and compared to peer's experiences.
Eventually design patterns were distilled from the case studies.

Figure 13: using the toolkit in pattern workshops

The toolkit was an enabling asset from the moment participants registered for the
workshop until they returned to their homes. Using it, participants contributed case
studies in advance. These contributions were used to anchor the group discussions. The
typologies guided the discussion and allowed participants to quickly orient themselves
with the work of peers from remote disciplines. Patterns were recorded on the site as they
emerged in conversation and then revisited and refined. Finally, each group presented its
findings to the assembly by displaying the new design objects they have created on the
whiteboard.

In retrospect, perhaps the utility of the toolkit in blended contexts is not so surprising: if a
tool is good enough to support collaboration in distributed communities, it should first be
productive in less demanding contexts, which do not require intensive collaboration, or
where communication is unmediated.

5. Discussion
The key driving consideration behind the distributed development network (d2n) was to
promote a social configuration that supports the practice of collaborative pattern
development. In this section, we delineate the complexity of this process along three
lines:

• Facilitating abstraction by participants
• Web toollkit usage for supporting pattern development

• Designing for collaboration

5.1.Facilitating abstraction by participants
One of the key problems to be faced when developing design patterns is supporting
participants to think in an abstract manner. As a prerequisite to writing patterns,
participants must develop the skills to generalise from the specific contexts of their
everyday practice – to see the general in the particular (Mason & Johnston-Wilder, 2004).
There were a number of problems to deal with: (i) initiating the process of abstraction,
(ii) understanding the relationships between patterns as the language grew and (iii)
understanding where in the hierarchy a pattern fitted.

(i) Initiating the process of abstraction
This is a complex and difficult topic that sought to address as part of our IDR
methodology for pattern development, detailed in (Winters and Mor, 2008). Here we only
provide a brief outline. A first step in recognising aspects of experience that may have
more general significance is to explore ways for participants to conceptualise their own
area of expertise in a way that is accessible to others. This needs to be described in a
manner which pertains to the problem domain at hand. To address this aim we used the
coupling of typologies with case studies. By mapping the practices and content detailed
in the case studies to the set typologies, the aspects of practice are immediately
categorised for discussion. This provides a starting point for participants to see the
general across instances captured by specific cases. Moreover, the process of doing
abstract is a process of learning. In a sense, the participants learned how to develop
patterns as a process of doing abstraction. Béguin (2003) support this perspective when
referring to the close relationship between design and learning. He suggests that effective
design should be constructed as a process of mutual learning involving users and
designers and argues that the products only reach their final form through use. This
should be reflected in an iterative design process, which allows the users and designers to
collaboratively shape their concept of the product and its actual form simultaneously.
Such an approach, if sometimes not explicitly stated in these terms, motivates the social
dynamics of collaborative abstraction, elaboration and refinement of design objects. As
noted in Section 4.1 the web toolkit follows these dynamics closely.

(ii) Understanding the relationships between patterns through visualisation
In our case, this proved particularly difficult for those from a non-computer science
background. The difficulty lies in the apparently semantic-free nature of a high level
design pattern for participants, typically teachers, whose normal practice is rooted in
concrete action – for example, planning to teach specific children with very particular
aims and objectives. Only by drilling down to lower level patterns could such participants
find the level semantics that could be related to their normal practice (see Tripp (1985) on
educational generalisation and (Winters and Mor, 2008)). Knowing which high level
pattern might contain within it familiar practice involves seeing the particular in the
general (Mason & Johnston-Wilder, 2004), the inverse challenge to that discussed in (i)
above. As noted in (Winters and Mor, 2008), this was a problem because the inheritance
relationships between patterns (i.e. Elaborates, Elaborated by, Follows and Leads to)
proved complex to understand. This was compounded by the fact that, aside from a small

number of face-to-face project meetings, the relationships had to be conveyed within the
web toolkit. The various viewpoints were a partial solution to this problem: the principle
was to foreground the visual. In particular the live-view – in essence a clickable
hierarchical map of direct (Follows and Leads to) relationships between all of the design
patterns – proved helpful. This was because the level of complexity in understanding all
of the relationships at any one time was removed. By simply viewing the mindmap, a
participant could see where any pattern fitted in the “bigger picture”. Furthermore, at the
highest level, patterns were clustered into categories, thus dividing the language into
more manageable sub-components. In the live-view the five categories were the entry
points into the language. When any pattern was clicked, its direct relations are shown.

(iii) Understanding where in the hierarchy a pattern fits
Once the pattern language begins to be populated the problem of where to place new
patterns and how they are to be related to the patterns that are already part of the
language structure arises. One way for participants to gain an insight into this problem
was to cluster related patterns into mini-language or trails. Structuring a language by a
distributed multidisciplinary network is a hard task, and involved work in several
contexts and lengthy discussions. Typically, the pattern contributor – or a more
experienced editor – would search the index view for related patterns and study them,
then download the map and rearrange it to accommodate the new pattern. Once uploaded,
team members would observe the changes in overview and browse perspectives, and
discuss them in the forum. This might lead to further off-line edits, and occasionally to
the addition or merging of patterns.

While the issue of abstraction is common to any social configuration for developing
design patterns, in d2n it was a particularly acute problem, given the primarily distributed
nature of development. Seeing the general in the particular and the particular in the
general requires a structuring of attention more easily arranged through face-to-face
encounters. The real-time interactive nature of face-to-face discussion together with cues
implicit in gesture and tone seemed critical in teasing out the patterns in experience and
the meaningfulness of patterns during the workshops.

5.2.Web toolkit usage for supporting pattern development
Interaction between participants within the d2n social configuration was heavily reliant
upon the web toolkit. As is common in the open source community, there were core
pattern developers, co-developers and active developers. In the main, the core pattern
developers took ownership of the seed patterns they submitted. It was often the case that
pattern development proceeded via the input of 2-3 other co-developers. In particular,
these interventions were to detail the pattern from another disciplinary perspective –
adding information that they felt was missing. This was primarily evidenced by the
versioning of patterns, where the evolution can be seen.

A common way of iterating a pattern was by filling in the ‘problem’ section with a few
sentences, often linked to a particular example or case study. Next, a bulleted pointed list
of the pattern steps would be filled in. At a later stage the context section would be added

to. Here is where co-developers primarily played a part – illuminating the context via the
typology structure. If the pattern related other examples, they were added to further
illustrate the context (Winters and Mor, 2008).

It was usual for core developers to become much more experienced at developing the
patterns than active developers. In cases where active developers submitted patterns in an
incorrect format, or where they were missing crucial details, the core developers would
sometimes contact them for clarifications regarding their intention for the pattern. This
again goes back to the problem of having to think in an abstract manner when developing
patterns.

The pattern relationships were either added at this stage or at the very beginning of the
process. Indeed, as the language emerged over time, this proved to be somewhat
problematic as dealing with multiple inheritances was encumbered by the toolkit design.
In any future version, this would be taken care of automatically, as inconsistencies did
arise.

5.3.Designing for collaboration
How any tool facilitates collaboration can be analysed using the design principles
promoted by Gross and Do (2007). The functionalities of the web toolkit did support
people in performing their intended actions, i.e. developing patterns. This is evidenced by
the fact that as a distributed team we developed over 120 patterns, many of which where
seeded at workshops but developed via the toolkit. The key design consideration was to
promote the patterns as the central construct around which collaboration occurred. The
interplay between developers was focused on making patterns ‘better’. This means that as
the pattern language developed, the number of resources available on the web toolkit
increased, thus promoting further collaborative shaping of the language. In the best case,
this was an iterative cycle between design and deployment. The d2n social configuration
thus supported collaboration in a participatory manner, where the evolution of techno-
pedagogic design patterns was the goal.

We found that the functionality of the web toolkit did affect the intended outcomes of
working as a distributed development network. The key to the toolkits success was in the
combination of high-level principles, such as those described above, with attention to
minute detail, such as a wiki-style quick linking mechanism, and unobtrusive templates
for design patterns. Yet, many desired features were never deployed, and their absence
was a notable obstacle. For example, the mapping of patterns to typologies was tediously
manual, links between objects were not updated automatically, and visualisation of the
single pattern is still an open challenge. As noted in Section 4.1, due to the emergent
functionalities of the web toolkit, the interaction design did improve over the course of
the project, directly addressing participants’ needs.

Given the complexities of developing patterns in a distributed manner, d2n can be
considered to have worked well, as evidenced by our outputs. We found definite
advantages to capturing practice as it happened over time. In particular, ‘process capture’
proved useful when mapping the structure of the language. Sustainable collaborative

pattern development, without the supporting resources offered by the web toolkit, would
have been problematic. Email, for example would not have provided the team with the
necessary overview of all the participants work.

6. Conclusion
The design, implementation and evaluation of TEL artefacts (software, pedagogic plans,
learning resources etc.) demand an interdisciplinary approach. The implication of this is
that the development process is an inherently complex one, encapsulated by the
overarching challenge of supporting the relationships between technologists and
educationalists. This led us to study the ways in which collaboration between participants
can be characterised by an interdisciplinary model of development, where the social
configuration of the team is distributed in nature. The first rationale behind the distributed
development network (d2n) was to support patterns development over a long timeframe,
in the order of months. As such, online facilitation was required, fitting in with
participants’ busy schedules. Furthermore, collaborative development occurring in this
way affords expertise from a view community of participants to be leveraged. It also has
the potential to scale, harnessing the collective intelligence of the contributors, which is a
key underlying principle of Web 2.0 (O’Reilly, 2005).

As noted in the (note to editor: introduction to this book), design patterns are normative.
Alexander always viewed them as having wide benefits. In developing TEL resources the
same argument is also true: a TEL resource should leverage as much empirical evidence
as possible so that combined with high-level technical skills, artefacts of worth can be
produced. This provided a second rationale behind d2n: to provide a means for all
participants to share their design knowledge, with the intention of producing worthwhile
artefacts. This normative focus on sharing design knowledge formed the bedrock of our
collaborative efforts.

However, we must also be clear on the limitations of our approach. Supporting any
development network takes time and effort. Each participants need to feel that their
contribution is valued and that their perspective is not ‘over-ridden’ in the quest for
interdisciplinarity. Here a potential advantage of the d2n is evident: by working in a
distributed manner, participants have the time to reflect on the pattern development
process, providing a slow-burn evolution of the language. Rather than a concentrated
focus (that work occur during workshops, for example), d2n provides that time and space
for negotiation around the ways in which each pattern can develop. This can go some
way towards building an increased understanding of how participants (in particular
teachers) engage in design work (Goodyear, 2005).

From the experience of the Learning Patterns project, the social configuration of any TEL
team is critical to its success. In this chapter, we have explored how to support
interdisciplinary in a distributed form. We have seen the potential of this configuration to
support pattern development. However, it is only a starting point. There are many
challenges remaining before patterns become a core resource tool for the TEL
community. We see d2n as a stepping-stone in this direction.

Acknowledgments
We thank X, Y and Z.

References
Alexander, C. (1979) The Timeless Way of Building. New York: Oxford University Press.

Baggetun, R., Rusman, E., & Poggi, C. (2004). Design patterns for collaborative
learning: From practice to theory and back. In L. Cantoni & C. McLoughlin (Eds.),
Proceedings of the World Conference on Educational multimedia, hypermedia and
telecommunications, AACE, Lugano, Switzerland (pp. 2493 – 2498).

Béguin, P. (2003) Design as a mutual learning process between users and designers
Interacting with Computers, 15(5), 709-730.
http://dx.doi.org/doi:10.1016/S0953-5438(03)00060-2 last accessed 15 September 2006

Caruso D. and Rhoten D. (2001) Lead, Follow, Get out of the Way:
Sidestepping the Barriers to Effective Practice of Interdisciplinarity.
http://www.hybridvigor.net/interdis/pubs/hv_pub_interdis-2001.04.30.pdf, last visited 3
November 2007

Committee on Science, Engineering and Public Policy (2004) Facilitating
Interdisciplinary Research. Washington D.C.: National Academic Press

Crowston K. & Howison, J. (2005) The social structure of free and open source software
development, First Monday, 10(2)
http://firstmonday.org/issues/issue10_2/crowston/index.html last accessed: 13 October
2007

diSessa, A. A.; Azevedo, F. S. & Parnafes, O. (2004), Issues in Component Computing:
A Synthetic Review, Interactive Learning Environments 12(1), 109-159.

Froehlich, J. and Dourish, P. (2004). Unifying Artifacts and Activities in a Visual Tool
for Distributed Software Development Teams, Proceedings of International Conference
on Software Engineering ICSE 2004, Edinburgh, UK, 387-396.

Goodyear, P. (2005) Educational design and networked learning: Patterns, pattern
languages and design practice, Australasian Journal of Educational Technology, 21(1),
82-101.

Grinter, R. (1995) Using a Configuration Management Tool to Coordinate Software
Development, Proceedings of the Conference on Organizational Computing Systems,
California, US, 168-177

Gross, M. & Do, E. (2007) Tools and Principles for Collaborative Design, Workshop on
Tools in Support of Creative Collaboration, Washington D.C. June 13-15
http://orchid.cs.uiuc.edu/CreativeCollaboration last visited 5 November 2007

Mason, J.H., Johnston-Wilder, S.J. (2004) Fundamental Constructs in Mathematics

http://orchid.cs.uiuc.edu/CreativeCollaboration
http://firstmonday.org/issues/issue10_2/crowston/index.html
http://www.hybridvigor.net/interdis/pubs/hv_pub_interdis-2001.04.30.pdf
http://dx.doi.org/doi:10.1016/S0953-5438(03)00060-2

Education Mason, J. Johnston-Wilder, S. (eds.) Routledge Falmer

O’Reilly, T. (2005). What is Web 2.0? Last retrieved from:
http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/what-is-web-20.html?
page=1, 28 October 2007.

Retalis, S. Georgiakakis, P. & Dimitriadis, Y. (2006), Eliciting design patterns for e-
learning systems, Computer Science Education 16(2), 105-118

Scacchi, W. (2002) Understanding the Requirements for Developing Open Source
Software Systems, IEE Software Proceedings 149 (1), 24-39

Schuler, D. (2002) A Pattern Language for Living Communication, Proceedings of the
Conference on Participatory Design, Malmö, Sweden, June 23-25, 434-436, CPSR, Palo
Alto, CA.

Tripp, D. (1985) Case Study Generalisation: An Agenda for Action, British Educational
Research Journal, 11(1), 33-43

Yin, R. (1994) Case study research: Design and methods (2nd ed.). Thousand Oaks, CA:
Sage Publishing.

http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/what-is-web-20.html?page=1
http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/what-is-web-20.html?page=1

	1.Introduction
	1.1.The interdisciplinary model of development

	2.Related work: social configurations for development
	3.A social configuration: the distributed development network (d2n)
	4.The d2n web toolkit
	4.1.Form follows practice: embedding the social configuration in interface design
	4.2.Multiple contexts, multiple representations
	4.3.Blended usage

	5.Discussion
	5.1.Facilitating abstraction by participants
	5.2.Web toolkit usage for supporting pattern development
	5.3.Designing for collaboration

	6.Conclusion

