
On Enabling Dynamically
Adaptable Internet Applications

by

Saleem Noel Bhatti

A dissertation submitted in partial fulfilment of the
requirements for the degree of

Doctor of Philosophy
of the

University of London

Department of Computer Science
University College London

University of London

May 1998

- 1 -

ProQuest Number: U642268

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest.

ProQuest U642268

Published by ProQuest LLC(2015). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code.

Microform Edition © ProQuest LLC.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

Abstract

Network applications operating over a packet-switched network, such as the Internet,

receive varying quality of service (QoS). Fluctuations in QoS can be due to a

combination of effects:

E l. variations in network behaviour due to network traffic from other sources

B2. variations in network paths due to the behaviour of routing functions

E3. the application resides on a mobile host

Fluctuations in QoS are observable over the lifetime of a single instance of an application,

as well as between different instances of an application. Such fluctuations in QoS can lead

to difficulties in operation for certain applications, particularly those with real-time media

flows such as voice and video. We would like to offer these applications mechanisms that

enable them to operate in environments where QoS can vary.

Research in progress within the Internet community considers schemes to provide

resource reservation mechanisms. Resource reservation allows the application to make

QoS requests to the network in terms of constraints defined by values of certain QoS

parameters. However, it is unlikely that resource reservation will be ubiquitous in the

short to medium term (next 2-5 years). Internet resource reservation using RSVP

(Resource reSerVation Protocol) may not support sufficient receiver heterogeneity and is

not robust to IP level outages. Additionally, there may be scenarios in which resource

reservation may not be possible and/or practicable, e.g. mobile/wireless environments.

We argue that the network applications of the future will have to become dynamically

adaptable in response to fluctuations in network QoS. Even where excellent end-to-end

resource reservation capability is available to counter the effects of E l and E2 above,

applications will still need to be adaptable to cater for the effects of E3. In order to allow

dynamic adaptability, there is a need for a general, flexible and practicable mechanism

that allows an Internet application to make assessments of available QoS. In conjunction

with user preferences and other application-specific information, QoS assessments should

allow the application to make decisions about how it should adapt its flows in order to

- 2

match the available network QoS. We make two contributions to address dynamic

adaptability for Internet applications: the QoSSpace and the QoSEngine.

The QoSSpace models a multi-dimensional space, with each of its dimensions defined by

a QoSParam. A QoSParam is a value derived from a real measured QoS parameter

value, such as data rate or jitter. An application’s flow capabilities (flow-requirements)

are used to specify regions of operation within QoSSpace, called QoSRegions. The

network QoS is also expressed in terms of the same QoSParams and mapped into the

QoSSpace. The QoSSpace forms part of the QoSEngine. The QoSEngine generates

QoSReports. QoS Reports contain QoS information summaries that are an indicator of

the relative compatibility between an application’s flow-requirements and the network

QoS.

The QoSSpace can be seen as the QoSEngine “front-end”. The “back-end” to the

QoSEngine is a QoS information processing function that evaluates the network QoS in

terms of QoSParams. The QoSEngine “back-end” maps the network QoS measurements

into the QoSSpace. The QoSEngine then compares this mapping with the regions defined

by QoSRegions to produce QoSReports. These consist of region compatibility values

(RCVs) for each of the QoSRegions. A RCV for a QoSRegion is a measure of the

compatibility between the network QoS and the QoS required to support that QoSRegion.

The application uses the RCVs to help it make decisions about how to adapt its behaviour,

i.e. change its flow-requirement.

The QoSEngine and QoSSpace are defined to be independent of any particular network

technology. Additionally, we show that the QoSSpace and QoSEngine have the potential

to be generally applicable to adaptable applications, and parameters other than network

data (such as battery life, cost, host load, etc.) could also be used to derive QoSParams.

We demonstrate the function and applicability of the QoSSpace and QoSEngine by the

simulation of a dynamically adaptable audio tool.

- 3 -

Acknowledgements

Graham Knight has played the role of mentor and Devil’s Advocate. During the time over

which I have completed my work, he has always been extremely patient and reigned in

my wilder thoughts with solid, common sense, as well as encouraging me to pursue my

ideas. He has also been kind enough to give me the resources and time to do this work

when I probably should have been doing something else. Graham has always been ready

to give up his own time in order to discuss my work with me. I owe him a debt of

gratitude that will be hard to repay.

Jon Crowcroft’s oracular knowledge has kept me on the straight and narrow, while his

holistic inputs have kept me on my toes! Whenever I have marched into his room for a

“quick chat” he has always made time to talk to me, and I have yet to walk out of such

meetings without having learnt something.

I would like to thank Graham Knight, Steve Wilbur, Stephen Hailes and Jon Crowcroft

for their extremely helpful feedback on this work. I would also like to thank the

anonymous reviewers who have made useful comments on the parts of this work that

have found their way into papers.

I am grateful to Mark Handley at MIT (USA), Franco Sirovich at Systems Wizards s.p.a.

(Italy), Kate Lance at connect.com.au Pty. Ltd (Australia), and Dieter Gantenbein at IBM

Labs Zurich (Switzerland) for allowing let me use hosts at their sites in order to take

network measurements.

There are many people within the Department, past and present, who have been kind

enough to share their thoughts with me, and have provided me with valuable experience

by giving me the chance to work with them.

My thanks to Prof. David Hutchison (Lancaster) and Prof. Chris Mitchell (Royal

Holloway) for examining this work.

My parents, Daisy and Peter, my sisters, Pauline and Neena, and my BroBroBro, Andrew,

have always encouraged me ever onwards. I thank them for their love and support.

Finally, for looking after me when I was holed-up in our box-room with a stack of papers

and a couple of workstations; for putting up with many lost evenings and weekends over

the past years; for her love, kindness and support; for making it all worthwhile, my thanks

and love to my wife, Catriona.

- 4 -

Notes

References to IETF work-in-progress: IETF Working Groups produce Internet-Draft

(I-D) documents that have no official status and should not be quoted other than as “work-

in-progress”. Abstracts of the current I-D documents are available in the file

l i d - a b s t r a c t s . t x t

at the FTP locations shown below:

Africa: f t p . i s . c o . z a / i n t e r n e t - d r a f t s

Europe: f t p . n o r d u . n e t / i n t e r n e t - d r a f t s

f t p . n i s . g a r r . i t / i n t e r n e t - d r a f t s

Pacific Rim: m u n n a r i . o z . a u / i n t e r n e t - d r a f t s

US East Coast: f t p . i e t f . o r g / i n t e r n e t - d r a f t s

US West Coast: f t p . i s i . e d u / i n t e m e t - d r a f t s

Information about the IETF WGs can be found at http://www.ietf.org/

URLs: all URLs were checked to be correct at the time of writing but their longevity

cannot be guaranteed.

Glossary: a collection of selected acronyms and definitions appears before the

References.

5 -

ftp://ftp.nordu.net/internet-drafts
ftp://ftp.nis.garr.it/internet-drafts
http://www.ietf.org/

Table of Contents

Page

Abstract...2

Acknowledgements.. 4

Notes... 5

Table of Contents..6

List of figures.. 9

List of tables...12

1. Introduction...13

1.1 Network aware applications.. 13

1.2 Overview...17

1.3 Thesis...20

1.4 Goals and approach...20

1.5 Outline of dissertation..21

2. The evolution of Internet applications...23

2.1 Towards integrated services networks...24

2.1.1 Integrated services in the Internet..25

2.2 Mobile applications...25

2.3 Network layer and transport layer protocols...26

2.3.1 Protocols for transporting QoS sensitive flow s...28

2.3.2 Congestion control and flow control... 30

2.4 Getting information from the user of the application..31

2.5 Getting information from the network...32

2.5.1 Timeliness of network measurements... 33

2.5.2 Noise in network measurements..33

2.6 Giving information to the network...36

2.6.1 Application capability... 37

2.6.2 Network capability...38

2.6.3 Resource reservation... 38

2.6.4 Reservations about reservations... 39

6 -

2.6.5 Differentiated services... 40

2.7 Application adaptation and heterogeneity..41

2.8 Chapter summary.. 44

3. Adaptability in Internet applications..46

3.1 Description of adaptation capability...47

3.2 Requirements for dynamic adaptability... 48

3.3 QoS architecture..49

3.3.1 QoS principles...50

3.3.2 QoS specification... 52

3.3.3 QoS mechanisms.. 54

3.4 Flow-requirement modelling... 57

3.4.1 QoS mapping.. 57

3.4.2 QoS parameter value monitoring... 58

3.5 Supporting adaptability in applications.. 59

3.5.1 Operating system support..59

3.5.2 Distributed systems support... 59

3.5.3 Media flow scaling and filtering.. 60

3.5.4 Support for dynamic QoS assessment for flows.. 62

3.6 Chapter summary...63

4. Dynamic QoS assessments...66

4.1 The problem... 67

4.2 Control systems and adaptation...68

4.3 QoSSpace and QoSParams...70

4.4 QoSRegions... 71

4.5 NetQoSRegion...74

4.6 QoSReports and the region compatibility value (RCV)..75

4.6.1 Parameter compatibility value function (PCVF)...76

4.6.2 Examples showing the dynamics of the PCVF.. 77

4.6.3 Region compatibility value function (RCVF)..81

4.6.4 QoSiRegions - QoS intermediate regions.. 82

4.7 The interface between the application and the QoSEngine, laq............................ 84

4.8 Discussion..87

4.9 Chapter summary...89

5. Processing QoS parameter measurements...91

5.1 The problem... 92

- 7 -

5.2 Fuzzy adaptive prediction (PAP).. 93

5.3 Fuzzy adaptive smoothing (FAS)... 95

5.4 Performance of the FAP... 99

5.4.1 FAP response to pre-defined waveforms... 100

5.4.2 FAP response to noise in the steady s ta te .. 103

5.4.3 FAP response to random signals with random noise.......................... 104

5.5 Producing NetQoSRegion values..106

5.6 Discussion.. 110

5.7 Chapter summary...113

6. Enabling dynamically adaptable applications..114

6.1 The problem..114

6.2 An example application - daat (dynamically adaptable audio tool)..................115

6.3 User preferences: adaptation policy.. 116

6.4 An application adaptation function (AAF) for daat.. 117

6.4.1 Effects of varying values for q_time and q_compatibility..........................122

6.5 A mobile scenario of the daat: power conservation demonstration...................127

6.6 Use of QoSiRegions.. 130

6.7 Discussion..134

6.8 Chapter summary...137

7. Summary and conclusions.. 139

7.1 Integrated services via the Internet... 140

7.2 Adaptability: an essential part of the QoS framework..141

7.3 Contributions of this w ork ...142

7.4 Limitations and future work...143

Glossary..146

References.. 150

Appendix A: RDJ probes... 166

Appendix B: A short fuzzy logic prim er.. 168

List of figures

Page

Figure 1.1: An audio conference scenario... 14

Figure 1.2: A mobile application scenario... 15

Figure 1.3: Interaction between the application and the network.......................................18

Figure 2.1 : Interactions between the user, the application, and the network for

adaptation.. 32

Figure 2.2: A connectivity scenario between UCL and M IT ... 34

Figure 2.3: RDI probes estimate of capacity between d a r h u and t h e a k s t o n (see

Figure 2.2)... 35

Figure 2.4 RDJ probes estimate of capacity between p o t e e n and

n o r t h . l e s . m i t . e d u (see Figure 2.2)..36

Figure 4.1 : The QoSSpace and the Interface laq...68

Figure 4.2: A schematic diagram of a general control system.. 69

Figure 4.3: A QoSSpace defined in terms of three QoSParams.. 70

Figure 4.4: An example of a general QoSRegion definition with three QoSParams 72

Figure 4.5: An example QoSRegion definition for an audio flow..................................... 73

Figure 4.6: Scenarios for the evaluation of WITHIN in the PC V F...................................76

Figure 4.7: Two scenarios for changing values of P .. 80

Figure 4.8: Response to large, sudden changes in P .. 81

Figure 4.9: QoS intermediate regions - QoSiRegions...83

Figure 4.10: Example use of a QoSiRegion..84

Figure 4.11: A schematic diagram of the internal functions of the QoSEngine.............. 85

Figure 5.1: The back-end for the QoSEngine... 92

Figure 5.2: Using EWMA: the effects of changing ...94

Figure 5.3: The response of FAP to large spikes in values of P ...95

Figure 5.4: Definition of CIV (change-in-value)..96

Figure 5.5: Using fuzzy adaptive smoothing (FAS) to remove spikes of duration K from

the input.. 97

- 9

Figure 5.6: (a) defintion of LARGE and SMALL; (b) mapping for change-in-value

(C lV)to > ..97

Figure 5.7: A schematic diagram of the FAS-FAP estimator for producing QoSParam

values.. 98

Figure 5.8: Use of fuzzy adaptive smoothing (FAS) and fuzzy adaptive prediction

(FA P).. 99

Figure 5.9: FAP and KMR response to noise in steady sta te .. 100

Figure 5.10: FAP and KMR response to linear change...100

Figure 5.11: FAP and KMR response to sine w ave...101

Figure 5.12: FAP and KMR response to a square wave..101

Figure 5.13: FAP and KMR response to triangle wave... 101

Figure 5.14: FAP and KMR response to sawtooth w ave......................................102

Figure 5.15: Comparison of FAP and KMR response: different waveforms (see Table

5.1) .. 102

Figure 5.16: Comparison of FAP and KMR response: different noise levels (see Table

5.2) ...104

Figure 5.17: (a) input SNR figures; (b) SNR improvement for KMR; (c) SNR

improvement for FA P...106

Figure 5.18: A schematic diagram of the QoSEngine back-end......................................107

Figure 5.19: FAS-FAP {K = 2) with RDJ probes: d a r h u - t h e a k s t o n (see Figure

2.2) ...108

Figure 5.20: FAS-FAP {K = 2) with RDJ probes: w a f f l e - t m n s e r v e r 108

Figure 5.21: FAS-FAP {K = 2) with RDJ probes: g r a p p a - k n a b e108

Figure 5.22: FAS-FAP {K = 2) with RDJ probes: d a r h u - p o t e e n109

Figure 5.23: FAS-FAP {K = 2) with RDJ probes: m o u n ta in d e w - m y p o n g a 109

Figure 5.24: FAS-FAP {K = 2) with RDJ probes: p o t e e n - n o r t h109

Figure 6.1: The application adaptation function (AAF)..115

Figure 6.2: Simple AAF algorithm for daat in pseudo-code..120

Figure 6.3: QoS information flows between the simple AAF and the daat application

 120

Figure 6.4: daat with AAF using d a r h u - t h e a k s t o n data, q_compatibility = 0.8,

qjtime = 6 0 s ...121

Figure 6.5: daat with AAF using w a f f l e - tm n s e r v e r data, q_compatibility = 0.8,

qjtime = 6 0 s ...121

- 10-

Figure 6.6; RDI for daat with AAF using d a r h u - t h e a k s t o n data with

q_compatibility = 0.8; (a) q_time = 90s; (b) q_time = 120s; (c) q_time = 180s ... 123

Figure 6.7: Flow rate for daat with AAF using d a r h u - t h e a k s t o n data with

q_compatibility = 0.8; (a) qjtime = 90s; (b) q jim e = 120s; (c) q_time = 180s ... 123

Figure 6.8: RDI for daat with AAF using w a f f l e - tm n s e r v e r data with

q_compatibility = 0.8; (a) qJim e = 90s; (b) qJim e = 120s; (c) qJim e = 180s ... 124

Figure 6.9: Flow rate for daat with AAF using w a f f l e - tm n s e r v e r data with

q_compatibility = 0.8; (a) q jim e = 90s; (b) q jim e = 120s; (c) q jim e = 180s ... 124

Figure 6.10: RDI for daat with AAF using d a r h u - t h e a k s t o n data with q jim e =

60; (a) qjom patib ility = 0.85; (b) qjom patib ility = 0.9; (c) qjom patib ility =

0.95s 125

Figure 6.11: Flow rate for daat with AAF using d a r h u - t h e a k s t o n data with q jim e

= 60; (a) qjom patibility = 0.85; (b) qjom patib ility = 0.9; (c) qjom patib ility =

0.95s 125

Figure 6.12: RDI for daat with AAF using w a f f l e - tm n s e r v e r data with q jim e =

60; (a) qjom patibility = 0.85; (b) q jom patib ility = 0.9; (c) q jom patib ility =

0 .95 126

Figure 6.13: Flow rate for daat with AAF using w a f f l e - tm n s e r v e r data with

q jim e = 60; (a) qjom patibility = 0.85; (b) q jom patib ility = 0.9; (c)

qjom patib ility = 0.95...126

Figure 6.14: daat power consumption in the mobile host...129

Figure 6.15: Simple modifications to the AAF for daat to use QoSiRegions (see also

Figure 6.2)... 131

Figure 6.16: State-flapping for daat without QoSiRegions...133

Figure 6.17: State-flapping removed using QoSiRegions and the modified A A F 133

11

List of tables

Page

Table 2.1: An example of some application-derived QoS parameters.............................. 37

Table 3.1: Interpretation of the five QoS principles from [CAH96]..................................50

Table 3.2: Interpretation of QoS specification from [CAH96]...52

Table 5.1: Comparison of FAP and KMR response: different waveforms (see Figure

5.15)..102

Table 5.2: Comparison of FAP and KMR response: different noise levels (see Figure

5.16) ... 103

Table 6.1 : daat audio encoding schemes.. 116

Table 6.2: daat audio encoding schemes and cost for CPU and battery......................... 127

- 12-

1. Introduction

As communications and computing are integrated, and distributed applications become

the norm rather than the exception, there is now a wide range of network technologies and

a whole host of applications expected to work across those different network

technologies. The Internet protocol (IP) [IPv4, IPv6] is a packet switched network layer

protocol that can be supported by just about any network technology. This is useful as it

provides a common interface to network connectivity and hides the specifics of the actual

underlying network technology. However, what IP cannot hide is that each of the

different network technologies has different capabilities: different data rates, different

delay characteristics, different error characteristics. We say that each network technology

offers a different quality of service (QoS). Additionally, when IP is used for

internetworking in wide area communication, there are many different networking

technologies making up the underlying end-to-end network. In such situations, the QoS

seen by an instance of an application at the communication end-points could vary

dramatically during its lifetime, as well as between different instances of that application

throughout the network.

1.1 Network aware applications

Many current applications that rely on network communication have one thing in

common - they assume that the network resources that they require will be available to

them throughout the course of their operation. In particular, these applications assume that

the network will maintain a certain QoS guarantee while the application is operating. The

QoS guarantee required by the application could be very weak (e.g. file transfer only

requires best-effort) or it could be quite strong (e.g. real-time video communication may

- 13-

require guarantees on available data rate, delay bounds and jitter bounds). In today’s

Internet, it is rare for the QoS seen by an application instance to remain consistent

[Pax97a, Pax97b], especially in the wide area, but this can also be true in the local area

environment. Additionally, with the advent of mobile computing (portable hardware

platforms), the physical connectivity that an application has to the network may be

changing frequently. While this varying QoS may not be so important to applications such

as file transfer that can make do with a best-effort service, interactive applications and

real-time applications with QoS sensitive traffic flow s’ (such as audio and video) may

suffer when there are QoS fluctuations. Consider the following two scenarios:

Scenario la: an audio conferencing tool using a packet switched network may experience

large fluctuations in the delay, throughput, error rates and loss for the transmitted audio

data. This will depend on the network load and state o f the links both in the backbone

network and the transit networks. This is the situation today for the Internet, and is

depicted in Figure 1.1.

Scenario 2a: a user with a mobile host uses services located on an office LAN. The user

can connect the mobile host using BR-ISDN (Basic Rate ISDN) from home, use a digital

mobile phone link whilst travelling to work on the train, and then connect the host to the

office LAN (directly) once at work. In each case, the change in connectivity means a

change in the QoS. This is depicted in Figure 1.2.

a -

a -

Internet

TN transit network

host running audio conferencing application□
Figure 1.1: An audio conference scenario

A How is a seq uence o f packets that are sem antica lly related to each other. Packets b e lo n g in g to a How m ay be

identified by inform ation such as their source address, destination address, port num bers or an app lication sp ec if ic

label, e .g . protocol indentifier.

- 14-

□ISDN

GSM

TNInternet
PSTN

host running conferencing application GSM global system for mobile communication
ISDN integrated services digital network

11— U ^ ^ PSTN public switched telephone network
mobile host running conferencing application transit network

Figure 1.2: A mobile application scenario

So, an application may experience changes to its physical connectivity as well as its QoS.

Any of the following may contribute to the QoS fluctuation:

E 1. variations in network behaviour due to network traffic from other sources

E2. variations in network paths due to the behaviour of routing functions

E3. the application resides on a mobile host

In general, the more routing hops and network elements there are on the route between

source and destination, the greater the QoS fluctuation that is experienced. Across the

Internet, this is due primarily to the effects of E l [Pax97a] and E2 [Pax97b]. However,

the behaviour of the individual network elements will also play a part, e.g. buffering

strategies, queuing/servicing mechanisms, routing-table look-ups, etc.

For both of our scenarios, IP hides the connectivity changes, and we can generalise that

the applications fluctuations in QoS. We can quantify the QoS variations in

terms of (instantaneous) measurements of QoS parameters, such as delay, jitter, available

network capacity (data rate), etc. For instance, with our mobile user, the (maximum

possible) throughput that the application has may be 128Kb/s on BR-ISDN, 9 .6Kb/s on

the digital mobile phone link and up to lOOMb/s on 100BaseT. This may drastically

change the way in which the host is utilised, as applications may become unusable in

certain conditions. It is possible for a user (with the appropriate expertise) to manually

configure the host and applications for use in each connectivity scenario. However, not all

users have the correct expertise or knowledge about the network, so ideally, we would

like applications to be usable whenever possible by allowing them to dynamically adapt

their operation in order that they can still offer a service to the user.

- 15-

To appreciate the need for dynamic adaptability, consider again our two scenarios:

Scenario lb: when the audio tool detects changes in the QoS that is being offered to its

audio stream, it can adapt its behaviour to cope. For instance, current audio tools (such as

rat [HSK98] and vat [vat]) adapt the size o f their play-out buffers as they detect the delay

variation of the received packets. However, if these applications could obtain information

about other parameters, they may be able to adapt further. For example, rat and vat allow

the use of several different audio encoding schemes, with differing packet sizes and data

rates which, currently, must be configured manually. With appropriate information about

throughput, loss and error rates, a particular rat or vat instance could dynamically adapt

itself to pick the best audio coding scheme to use for the particular network conditions

experienced at that time.

Scenario 2b: the user is involved in a multimedia conference that has flows for data,

voice and video. When the user is at home (using BR-ISDN) only the audio and data

flows are enabled (possibly the video is enabled but with a small-sized picture and low

refresh-rate). When the user is on the train (using a mobile phone link) only the audio

flow is enabled. When the user gets to work (using a LAN) then all three flows are

enabled. In this way the user has remained part of the conference, but the conferencing

application has adapted its service in order to cope with the change in the user’s

connectivity via the detected QoS.

Note that the examples in the scenarios consider only the network QoS issues, and not

distributed architectural issues, such as resolution of receiver heterogeneity. For example,

in a wide-area, multiparty audio conference, the many instances of the audio tool will

each experience different QoS, and so may all decide to adapt differently, e.g. by each

choosing a different audio encoding scheme. Some additional application-level

mechanisms would be required in order for all instances of the audio tool to synchronise

and/or locate proxy applications that are acting as audio transcoding or filtering gateways

[KHC98, YGHS96].

So, in the future we would like to have the option of building dynamically adaptable

applications that are network aware, and can change their flow-requirements to get the

best from the offered communication conditions.

- 16 -

1.2 Overview

We use different descriptions for our view of the application, the flow and the network.

An application may operate in different modes. Each of these modes may have one or

more flow-requirements^ for each of its flows, associated with that mode. The flow itself

may operate at various set-points^ within the same flow-requirement. The QoS

experienced by a flow is expressed as the network QoS as seen by that flow. For

example, an Internet audio application may have several modes in which it can operate,

such as “high”, “medium” or “low” quality modes. Each mode may uses one or more

flow-requirements for the audio flow it generates, e.g. “high” quality may use PCM

encoding, “medium” quality may use ADM6 or ADM4 encoding and “low” quality may

use GSM or LPC encoding. Each flow-requirement is identified by a different name and

has a different flow construction. While the flow is operating in a particular flow-

requirement, it may also have a set-point within that flow-requirement. For example, an

audio application may adjust the size of its audio play-out buffer to cope with jitter for the

flow. This same adjustment may occur in any of the flow-requirements. The distinction

between the flow-requirement and the set-point may be see as the distinction between a

course-grained, discrete description of the flow construction and a finer-grained, intra-

flow-requirement description.

Each mode may support the use of one or more flow-requirements. The choice of

application mode will depend on user input (e.g. user preferences), information from the

network (e.g. information about which flow-requirements the network can support) and

other application-specific information. The application modes are application-specific.

Our eventual goal is to allow the application to make assessments about how it should

choose between a number of flow-requirements. We are not concerned here with the

application modes (other than there may be one or more flow-requirements associated

with an application mode) or the set-point (other than that the set-points exist within a

flow-requirement).

This work considers how to enable dynamically adaptable Internet applications by

providing then with a QoS summary of the compatibility between flows and the network.

A QoS processing function has been developed that measures the relative compatibility

 ̂A flow-requirement for a flow is a specific flow construction expressed in terms of QoS service requirements.

 ̂A set-point for a flow is a well-defined, steady operating point for the flow.

- 17-

between the network QoS and the application’s flow requirements. The compatibility

measurements can be used by the applictaion to make changes to its flow construction in

order to make use of the available network QoS. The starting point for our approach is the

model shown in Figure 1.3. We note three distinct areas of interest, each logically

separated by a well-defined interface:

1. the interaction between the user and the application (via interface 1,̂ ,)

2. the interaction between the application and the QoSEngine (via interface I^q)

3. the interaction between the QoSEngine and the network flows (via interface 7,̂ ,,)

Our work concerns only the part highlighted in the dashed box in Figure 1.3. We model

the application as the generator and/or receiver of network flows (also called traffic flows

or media flows). In this context, a flow is described as a sequence of packets that form a

single unidirectional stream carrying information between a given source and given

(unicast or multicast) destination [IPv6]. The granularity of a flow is application-specific

e.g. it may be a single, homogeneous media stream such as audio, or the flow may be a

logical channel carrying a variety o f multiplexed traffic. The application sends flows over

the network and may also receive flows. Figure 1.3 shows a single flow but there may be

many flows being sent from or received by the application. We say that the application

tlows exist in QoSSpace.

region decision
information QoSReports

control information
from user, e.g. |

user preferences

traffic flow information
(e.g. measured from traffic flow)

nternet

application QoSRegion
information

traffic flow

0 QoSSpaceapplication

QoSEngine

^ application adaptation function AAF

Figure 1.3: Interaction between the application and the network

user-application interface
aq application-QoSEngine interface
qn QoSEngine-network interface

The QoSSpace models a multi-dimensional space, with each of its dimensions defined by

a QoSParam. A QoSParam is a value derived from a real measured QoS parameter

value, such as data rate or jitter. An application’s flow capabilities (flow-requirements)

are used to specify regions of operation within QoSSpace, called QoSRegions. The

network QoS is also expressed in terms of the same QoSParams and mapped into the

QoSSpace. The QoSSpace forms part of the QoSEngine. The QoSEngine generates

QoSReports. QoSReports contain QoS information summaries that are an indicator of

the relative compatibility between an application’s flow-requirements and the network

QoS.

The QoSSpace can be seen as the QoSEngine “front-end”. The “back-end” to the

QoSEngine is a QoS information processing function that evaluates the network QoS in

terms of QoSParams. The QoSEngine “back-end” maps the network QoS measurements

into the QoSSpace. The QoSEngine then compares this mapping with the regions defined

by QoSRegions to produce QoSReports. These consist of region compatibility values

(RCVs) for each of the QoSRegions. A RCV for a QoSRegion is a measure of the

compatibility between the network QoS and the QoS required to support that QoSRegion.

The application uses the RCVs to help it make decisions about how to adapt its behaviour,

i.e. change its flow-requirement.

The QoSEngine and QoSSpace are defined to be independent of any particular network

technology. Additionally, we show that the QoSSpace and QoSEngine have the potential

to be generally applicable to adaptable applications, and parameters other than network

data (such as battery life, cost, host load, etc.) could also be used to derive QoSParams.

We demonstrate the function and applicability of the QoSSpace and QoSEngine by the

simulation of a dynamically adaptable audio tool.

The interface ha is likely to be application-specific and so we do not consider this in our

work. Our aim with respect to this interface is to ensure that we do not impose any

constraints on its design or operation. We assume that ha exists in some form. The

interface Ign is where the QoSEngine would receive measurements from the network.

Again, this interfcae could be application specific and we must not constrain its operation.

We also assume some measurement mechanism exists and can provide the raw QoS

paramater values for a flow that are required by the QoSEngine.

- 19-

1.3 Thesis

The QoSSpace and QoSEngine attempt to provide a general and flexible network QoS

model. The application’s interface to the model should be relatively simple and hide the

complexities of the network and its traffic flows, as well as the operation of the

QoSEngine [CAH96], Also, the operation of the QoSEngine should not be restricted to

any particular network technology or any particular application. The QoSEngine should

be able to function in any environment in which IP can function. We offer the following

thesis:

It is possible to design d'general and practicable network QoS model

that will enable Internet applications with QoS sensitive flows to make

adaptation assessments dynamically, by monitoring the QoS being #

1.4 Goals and approach

The goals of this work were to define:

G l. the functions of the QoSSpace and the QoSEngine

G 2. an interface to allow interaction between the application and the QoSEngine (/,„/)

Our main goal was G l, which has been investigated using simulation. The work has

considered how information about the compatibility between the network QoS and the

application flow-requiremnents can be represented. The interaction between the tlow and

the network has also been modelled. A specific engineering design for the information

modelling and the interactions between the user, the applictaion and the network have

been investigated. Specific processing functions have been defined that can combine

measurements from the network with the application-derived flow requirements to

produce QoS summaries indicating the suitability of the network to support particular

Ilow-requirements.

0 2 has been defined as an abstract interface, laq, in sufficient completeness only to allow

any necessary testing of G l. The interface allows information to be passed between the

application and the QoSEngine without constraining how the QoSEngine itself is

engineered. The applictaion passes its flow-requrements to the QoSEngine, and the

QoSEngine can pass QoS summaries back to the application across laq.

- 20 -

specifically, the research has considered how Gl may be realised on a packet-switched

network offering a connectionless, best-effort service, i.e. the Internet. Although some

adaptability mechanisms may already exist in specific applications (e.g. elastic buffering

to counter jitter in audio play-out), or for specific network technologies, our aim was to

provide a mechanism that is general and flexible enough to be used on any network

technology that can support IP.

We have developed a model of the network QoS (QoSSpace/QoSEngine) and

applications flows (QoSRegions). We have simulated the operation of the QoSEngine

using pre-defined input waveforms, as well as network data captured from hosts on the

Internet.

Note that it was not the purpose of this research to define such functions as resource

reservation or control of QoS within the network (e.g. RSVP [RSVP] and ST2+ [ST2+]).

It was to provide a network QoS model that can assess the QoS being offered by the

network to the application’s flows, and to allow the generation of QoS summaries that the

application can use to make adaptation decisions.

1.5 Outline of dissertation

We examine the context for the work, providing the motivation and the current state of

the art in Chapters 2 and 3:

• Chapter 2 examines the background for this research by considering the evolution in

the use of the Internet and Internet applications. In particular, we consider the needs of

QoS sensitive applications, such as those applications with real-time constraints and

applications that make use of QoS sensitive data flows.

• Chapter 3 considers related work, including other approaches to solving the network

resource-usage problem. We list and discuss a set of requirements for enabling

dynamic adaptability. Other adaptation mechanisms currently being researched are

discussed.

Chapter 2 and Chapter 3 highlight design constraints or engineering constraints that we

have applied to our work by examining existing work in related areas. We then go on to

describe our contribution in Chapters 4, 5 and 6:

• Chapter 4 presents the QoSSpace, our abstraction of the network in the QoSEngine,

and the generation of QoSReports, our QoS information summary. We describe how

-21 -

we determine compatibility between the network QoS and the applications flow-

requirements. Included here is a discussion of the application’s interface to the

QoSEngine. The interface to the QoSEngine is an abstract definition. This is in order to

keep the model free from the constraints and biases of any particular programming

language binding. However, the simple abstract types make it possible to realise a

software interface easily.

• Chapter 5 describes the QoSEngine back-end and the way it processes measured

network QoS parameter values. The QoSEngine back-end uses a fuzzy logic

processing system to counter the effects of noise in the measured QoS parameter

values. A qualitative analysis of dynamics as well as a quantitative performance

analysis is presented.

• Chapter 6 discusses how the QoSEngine can be applied. We use an example audio

application and investigate its behaviour in a simple scenario using real network data

as well as constructed data. We show how the QoSReports from the QoSEngine can be

used to allow the application to make dynamic adaptation decisions based on measured

network data and user preferences through a simple application adaptation function

(AAF). We also highlight practical issues to be considered in designing an AAF.

We conclude in Chapter 7 with a summary of the main contributions and limitations of

this research, and identify the key aspects to be addressed in the future.

- 22-

2. The evolution of Internet applications

Today’s network users wish to use the Internet and Internet Protocols for a whole range of

applications: from E-mail to World Wide Web (WWW) access to IP-telephony [Sch96],

to name but a few of the ever increasing range of multimedia applications. All these

applications may require different QoS guarantees to be provided by the underlying

network. An E-mail application can make do with a best-effort network service.

Interactive or real-time voice (and video) applications require (some or all of) delay, jitter,

loss and throughput guarantees in order to function. Web access can make do with a best-

effort service, but typically requires low delay, and may require high throughput

depending on the content being accessed. As well as the application’s functional

requirements are the preferences and requirements of the people using those applications.

Such user preferences may modify the operation of the application - some users may

want “high” quality audio, some are happy with “low” quality" ;̂ some may be prepared to

wait longer for their Web pages or E-mail to download than others^. In trying to satisfy

the user, the application and the network must interact and co-operate to adapt operation

of the application as required.

The Internet protocols were never designed to cope with such a sophisticated demand for

services [Cla88]. Today’s Internet is built upon many different underlying network

technologies, of different age, capability and complexity. Most of these technologies are

The definition of “high” and “low” will typically be application specific.

 ̂Everyone will request the “highest” quality service unless there is a trade-off between quality and financial cost. Use of
cost-based service provisioning, based on differentiated services for example, is currently of great interest within the
Internet community.

- 2 3 -

unable to cope with such QoS demands. The explosive growth in the use of the Internet

has resulted in much of the network being heavily loaded or overloaded. So there is a

need to allow controlled use of resources.

In this chapter, we consider the way the use of Internet applications is evolving and what

this means for the Internet applications of the future. We start with an overview of the use

of the network, network protocols and network apphcations, then move on to application-

level protocols and mechanisms. In particular, in considering the interaction between the

network and the application, we look at these two areas:

• retrieving information about resource availability/utilisation from the network;

• giving resource requirement information to the network.

2.1 Towards integrated services networks

People today wish to use the Internet for many different applications. Some of these

applications already exist on application specific networks, e.g. voice on POTS, data on

X.25 [X.25], CATV networks for analogue broadcast television. As the ability to use a

more diverse range of applications becomes available to an increasing number of people,

there is a higher demand for these applications. To supply the demand and provide access

to such a diverse range of applications, it would be impractical to maintain access to each

of the application specific networks for each user. So, over the past two decades or so,

there has been a move to provide a single integrated services network that can support the

provision of any and all of these applications, e.g. N-ISDN (narrowband-ISDN), B-ISDN

(broadband-ISDN). Although, in principle, such a network should be able to provide very

good QoS guarantees, the notion of a single, ubiquitous network technology is not

realistic (and in fact today’s Internet services are provided across networks that consist of

many different technologies). The Internet protocols are widely available, generally easy

to use, have well-defined software APIs, and can operate on many network technologies.

Consequently the Internet is being seen as a means for allowing access to integrated

services [DT97]. However, the Internet and Internet protocols were not designed to

support the wide range of QoS profiles required by the huge plethora of current (and

future) applications. This deficiency is currently being addressed by the IETF INTSERV

(Integrated Services) WG^ [RFC1633].

http://www.ietf.org/html.charters/intserv-charter.html

- 2 4 -

http://www.ietf.org/html.charters/intserv-charter.html

2.1.1 Integrated services in the Internet

In [CSZ92], the authors speak of the Internet evolving to an integrated services packet

network (ISPN). Although they mainly address the importance of end-to-end delay for

flows, they clearly favour the ability of applications to have functionality that performs

flow adaptation in response to fluctuations in network QoS. The IETF INTSERV WG has

proposed an architecture for evolving the Internet to an ISPN [RFC1633]. To support the

architecture, INTSERV have produced a set of specifications for specific QoS service-

levels based on a general network service specification template [RFC2216] and some

general QoS parameters [RFC2215]. The template allows the definition of how network

elements should treat traffic flows. With the present IP service enumerated as best-effort,

currently, two service-level specifications are defined:

• controlled-load service [RFC2211]: the behaviour for a network element required to

offer a service that approximates the QoS received from an unloaded, best-effort

network

• guaranteed service [RFC2212]: the behaviour for a network element required to

deliver guaranteed throughput and delay for a flow

Also specified is how to use a signalling protocol, RSVP [RSVP], to allow the use of

these two services to be signalled through the network [RFC2210]. INTSERV also define

SNMPv2 MIB extensions [RFC2213, RFC2214] to allow remote monitoring and

management of network elements that support these network services. Part of the

INTSERV work is the definition of an architecture for a QoS Manager (QM) entity that

co-ordinates flow activities and resource usage at the end system [INTSERVQM].

Note that this architecture requires that the network elements and applications have

semantic knowledge about the service-levels for the application flows, as specified in the

service templates.

2.2 Mobile applications

As computing devices such as laptops, palmtops and PDAs (personal digital assistants)

continue to increase in computing power, users will require similar applications to run on

these mobile hosts as they currently have on desktop hosts. It will become increasingly

impractical for applications to be re-engineered specifically for mobile platforms, so

applications will have an increasing requirement to be designed for adaptable operation in

order to cope with mobile environments.

- 2 5 -

The Internet community has recognised the requirement for mobility support and has

produced specifications to allow nomadic IP hosts to maintain network connectivity

[RFC2002, RFC2005]. Mobile IP hosts have a home location from which they may

wander to a foreign network, i.e. a network that does not have the same IP network

address. The mobile host locates a foreign agent within the foreign network and informs

its home agent about its location with respect to the foreign agent (by way of a care-of-

address). The home and foreign agents then ensure that packets destined for the mobile

host are re-routed to the mobile host by the use of a tunnelling mechanism between them

[RFC2002]. The reverse path (from mobile host to sender) will typically not traverse the

tunnel, and will be delivered through normal routing mechanisms, but work is in progress

that will allow binding updates from the mobile host (e.g. in IPv6). These binding

updates contain information about the new location of the mobile host to allow a more

direct IP communication path. This deals with mobility at the macro-level, providing end-

to-end routing of IP packets and movement across IP networks during communication,

but does not consider micro-level mobility issues (e.g. link-layer hand-off between cells),

relying on link-layer or physical layer mechanisms for such capability. This is in keeping

with a general goal of IP to be usable over any network technology. There are also

specifications for encapsulation of packets for tunnelling [RFC2003, RFC2004] as well as

a SNMPv2 MIB [RFC2006] to allow remote management of devices using IP mobility.

Indeed the scheme presented above typically sets up asymmetric communication paths,

and even when binding updates allow symmetric paths, the fluctuations in the end-to-end

IP path topology can have adverse affects where higher level protocols rely on feedback

from the receiver [BPK97]. Although IPv6 has much better mobility support than IPv4,

QoS issues have yet to be fully addressed. Mobile applications that have connectivity via

wireless links may also experience QoS fluctuations due to environmental conditions.

Transport-level protocols may experience increased errors in received packets, and

reliable transport protocols, such as TCP, behave adversely when there is a burst of packet

loss (more than one packet) during hand-off between cells [CI93]. Mobile computing is

an area that has great need for adaptable applications in order to enable ubiquitous and

continuous access [Kat94].

2.3 Network layer and transport layer protocols

A key feature in the design of the Internet protocol (IPv4 [IPv4]) was that it should be

simple. From [IPv4]:

- 2 6 -

The internet protocol is specifically limited in scope to provide the

functions necessary to deliver a package o f bits (an internet datagram)

from a source to a destination over an interconnected system o f networks.

There are no mechanisms to augment end-to-end data reliability, flow

control, sequencing, or other services commonly found in host-to-host

protocols.

IPv4 provides a simple packet delivery service that gives no guarantees on QoS. Although

IPv4 has some simple flags and a precedence indicator available for use in the type of

service (ToS) field [RFC 1349], support for the ToS is not well deployed. Also, when

IPv4 was designed, it was required to work on many network technologies, so there are

no QoS features in the design that were specific to any particular network technology.

Furthermore, not all network technologies and network paths can support even the limited

form of QoS requests made in the ToS field. Consequently, the ToS field has rarely been

used for QoS control purposes, but there is now work in progress to revive the use of this

field [DIFFSERVl]. IPv6 introduces (potentially) better awareness of QoS into IP by

providing an 8-bit traffic-class field and a 20-bit flow-Iabel in the packet header,

allowing IP traffic to be marked for special handling by routers. The exact mechanisms

and procedures to process QoS in IPv6 packets have yet to be agreed. INTSERV propose

a flow-based scheme with applications signalling their requirements to the network (we

discuss resource reservation later in Sections 2.6.3 and 2.6.4). DIFFSERV intend the

packets to be marked within the network (e.g. by ingress routers), and that the IPv4 ToS

field and the IPv6 traffic-class field should have the same syntax and semantics.

TCP (transmission control protocol) [TCP] was designed to provide reliable end-to-end

(point-to-point) communication on top of IP by setting up a logical connection that uses a

scheme of acknowledgements and re-transmissions. TCP also provides congestion

control, flow control and recovery mechanisms [RFC2001, JacSS, Jac90], but the

behaviour of these mechanisms is not designed to be controllable by the human user or by

the application. Additionally, retransmission for end-to-end reliability as used in TCP is

typically unsuitable for QoS sensitive flows (especially real-time interactive flows such as

those for conferencing), as the delay introduced with an end-to-end retransmission

scheme can be too large^.

’ This does not preclude the use of re-transmission on individual links that make up the end-to-end path.

- 2 7 -

For transporting real-time or QoS sensitive flows, retrieving resource usage information

from the network, and signalling the applications’ (and users’) QoS requirements to the

network, additional protocols and mechanisms are required.

2.3.1 Protocols fo r transporting QoS sensitive flows

With QoS sensitive flows, we see two major concerns:

1. making sure that the packets in the flow are matched to the QoS available in the

network

2. making sure that the handling of the packets end-to-end supports the semantics of the

flow

For the first of these points, we can use some combination of:

• tell the network what is required for a particular flow so that the QoS is fixed for the

duration of the flow, i.e. make a resource reservation for the flow. Typically, this may

involve a negotiation between the application and the network, where several different

reservations may be attempted and when one is successful, the application can use an

appropriate flow-requirement

• adapt to the (possibly fluctuating) QoS offered by the network by changing the

construction of the flow in some application specific way, e.g. lower the transmission

rate, decrease packet size, etc

For the second point (packet handling), only the application really knows how to deal

with the flow as, in general, only the application knows the full semantics of the flow -

the meaning of the ADU (application data unit). The information syntax of the ADU can

(should) be de-coupled from the information semantics in that the network does not need

to handle the information other than to transport it between end-systems [CT90, Laz92]. It

is also argued in [CT90] and [Laz92] that any protocol control processing/signalling

regarding the ADU is kept out-of-band, i.e. the application-level control signalling is not

synchronised with the ADU processing/transmission in order allow greater flexibility,

especially with respect to engineering options. This is typified in many communication

reference models that show a separate control-plane and user plane, e.g. B-ISDN. Our

interpretation of this is that the semantic information about a flow that is passed to the

network should be kept to a minimum, reflecting common application requirements, and

- 2 8 -

that the application should use additional application-level signalling procedures to

control or manage the transport of any specific flow^.

The Internet community has adopted this approach. The main protocol used for QoS

sensitive data flows is RTF (real-time transport protocol) [RTF]. RTF is a general

protocol providing an end-to-end delivery system for QoS sensitive flows. RTF itself is

not a protocol for negotiating and guaranteeing QoS; rather it provides a framework in

which to build QoS sensitive applications. RTF has an associated simple signalling

protocol, RTCF (real-time transport control protocol), that allows QoS information such

as delay, jitter, loss, etc. to be sent between senders and receivers. The relevant features of

RTF are:

• it is an extensible framework

• it uses IF and UDF allowing unicast and multicast communication

• it supports the notion of a communication session, which may consist of many flows

• it supports identification of a session and participants in a session

• it supports dynamic group membership (members can leave and join a session)

• it allows synchronisation and timing of packets within a single flow

The features reflect general requirements for a communication protocol and RTF is used

as the basis for transporting many different flow types including various audio and video

formats [RFC2205, RFC2198, RFC2190, RFC2035, RFC2032, RFC2029, RFC1890].

Note that RTF is not designed to provide any mechanisms for inter-flow synchronisation

or the description of session semantics (e.g. description of flows) - this is considered to be

an application-specific issue. However, recent work shows that such session control is

generally needed in many multimedia delivery scenarios (especially in conferencing

systems) and other work addresses this [RTSF, SDF, Shu97, HWC95].

Retrieval of information from the network about the QoS experienced by a flow is not

supported directly by IF. We can split the problem into two: taking a measurement and

distributing that measurement information. All QoS architectures support some method of

distributing measurement information [CAH96]. RTF supports time-stamping

 ̂This reflects the Internet philosophy of keeping the state in the network to a minimum, thereby keeping the network as
simple as possible.

- 2 9 -

mechanisms and also allows transport of other (application-specific) QoS parameter

measurements. We say more about the measurement process itself, later.

2.3.2 Congestion control and flow control

The first attempts at QoS control for the Internet were designed to makes flows adaptive

to combat congestion (congestion control) within the network due to high volumes of data

(compared to the network capacity), and to try and allow the end-to-end delivery rate of

data to be controlled (flow control). It is useful to discuss the properties of such

mechanisms in the context of adaptable systems. Initially, such mechanisms were often

built into network protocol and transport protocol operation, and were not designed to be

controllable by the user. More recently, schemes have been proposed that are built into

the application and allow some form of adaptability (e.g. [KHC98, VRC98]). There are

some interesting and relevant issues:

• detecting network QoS variations in the network

• the behaviour of protocol operation when there are QoS fluctuations

• adaptation mechanisms

There are various schemes for congestion control and flow control in TCP (e.g. [Jac88,

Jac90, WC91]), as well as for QoS sensitive packet flows (e.g. [Kes91, KMR93, BTW94,

BV96]). Many of the schemes (especially TCP schemes) function in similar ways because

they [YR95]’:

1. model a closed-loop feedback control system with the feedback coming from the

network (e.g. the remote host) to adjust the set-point with respect to the traffic flow

2. rely on the fact that all users mn the same algorithm, are willing to co-operate and will

receive a fair-share of the network resources

3. work to be “kind” to the network as well as provide a “good” service to the user

4. use end-to-end delay as a measure of network congestion

5. do not use the raw delay values but typically apply some sort of smoothing mechanism

to form an estimate of the current delay (e.g. TCP is based on the use of [KP87])

The first point shows that these mechanisms are trying to be adaptive in response to

changing network conditions. The second point is less tme today than in the past

 ̂This small list extracts general items of interest; see [YR95] for a full taxonomy and overview.

- 30-

[LLSZ96], and, certainly within an integrated services network, some applications may

require more resources than others may. “Fair” does not necessarily imply “equal”

[DKS90], as some users may be willing to pay a premium for a “superior” service that

allows access to more resources. Additionally, where there is no single mechanism or

algorithm for adaptability, two different users with applications of equivalent

functionality, the same user preferences and the same network QoS may get different

adaptation behaviour. The (desired) property in the third point is found to be poorly

achieved in some cases, and the use of acknowledgement packets as timing/clocking

devices is found to be questionable [ZSC91]. The last of these points is of particular

interest as whatever smoothing function these mechanisms apply must be accurate enough

to give a true reflection of the current state of the network. We discuss this further in

Section 2.5.

The adaptation action is to change the transmission rate. In TCP, the mechanism used is a

conservative back-off policy (multiplicative decrease, additive increase), that has the

granularity of a byte. This adaptation mechanism is not accessible for manipulation by the

application. In an application with QoS sensitive data flows, however, such a policy and

such small granularity of data transfer may not be suitable. For example, audio

applications typically send ADUs contain a “time-slice” of audio (e.g. 20ms, 40ms or

80ms ADU “size” are possible in vat [vat] and rat [HSK98]). These applications require a

different model which reflects the ADU flow granularity and allows access to the

adaptation process, i.e. based on adaptation of flow-requirement (as well as set-point).

We note that the mechanisms above all rely on information about the flow measured from

the network in order to adapt the flow-requirement and set-point (and perhaps the

application mode), and that the adaptation decision depends on having a good estimate of

some QoS parameter for that flow. Also, very importantly, the adaptation behaviour is

application-specific.

2.4 Getting information from the user of the application

User preferences affect the behaviour of an application by selecting a mode of operation

for the application. User preferences are often concerned with presentation of information

at run-time and may be quantitative (e.g. font size, picture size, frame rate, etc.) or

qualitative (e.g. “large” text, “high” quality picture). Typically, the latter are preferred, as

they require less technical expertise from the user. For example, it is easier to give the

non-technical user an enumerated choice of “high”, “medium” and “low” quality for a

-31 -

voice application than to ask the user to pick a particular audio encoding scheme given

information about its QoS parameters such as data rate, error tolerance, etc. There are

many mechanisms for soliciting and obtaining user preferences and we do not consider

these in our work. However, what is of importance is that the user is not necessarily

concerned with the details of operation of the application but simply wants the application

to perform reasonably well given the user’s preferences and the application’s operating

conditions.

As shown in Figure 2.1, a decision function must take information from the user and

network resource information (e.g. QoS measurements for a flow) as well as information

that is application specific (dynamic runtime information as well as static information

about capabilities), and use this to make an adaptation decision. The adaptation behaviour

might involve changing the flow-requirement and application mode. Typically, an

application relies on a user to implement the decision function by selecting the correct

user preferences. For example, if a user preference indicates transmission of high quality

video even when connected using a low-speed link, the application will try to service this

request and it is up to the user to figure out why things do not work. To assess whether or

not the user preferences are feasible, the application needs information from the network

about the network resources available to it.

user preferences

runtime application specific information ^ decision

application capabilities ------- ^ function

network resource information

adaptation decision

Figure 2.1 : Interactions between the user, the application, and the network for adaptation

We would like to be able to move as much of the decision function into the application as

possible. This does not necessarily mean that the decision function is totally automated,

but may be semi-automated (or even totally under user control), with the application

presenting a user-friendly QoS summary to the user for them to make an informed

selection of the user preferences.

2.5 Getting information from the network

Information about network QoS is typically expressed as values of QoS parameters such

as delay, jitter, available capacity, loss, etc. This information may be obtained in a number

of ways:

- 3 2 -

• via local mechanisms, e.g. from the communication stack on the host

• via application-specific mechanisms, e.g. via proprietary signalling

• as control messages from the remote receivers, e.g. using RTP/RTCP [RTP]

• from network management tools, e.g. the RTFM MIB [RFC2063, RFC2064, RTFMl,

RTFM2, RTFM3], using SNMP [SNMPv2]

• from a QoS/resource manager that receives information from the above mechanisms

We must appreciate that there is likely to be no single best, ubiquitous solution for getting

information about the resources within the network. The best mechanism may depend on

the network environment or the application’s function or both, but only the application

(application designer) is in a position to make that assessment [SRC84]. So, any network

model that requires information about QoS parameters should not put any constraints on

where that information should come from [CAH96]. However, any measurement process

we use, as well as having its own behaviour and errors, will also be affected by noise and

delay.

2.5.1 Timeliness o f network measurements

If we have a system that allows us to receive measurements from the network, not only

are these measurements noisy, but they are also always out of date due to network delays.

So, when we need to use the values of some parameter, we require an estimate of its likely

current value, rather than use the measured value directly. This immediately poses a

problem - in order to predict the current value we need to:

1. remove noise from the measurement

2. have a model of the measured parameter that allows us to make a prediction

2.5.2 Noise in network measurements

It is not always possible to separate the noise from the normal system perturbation. The

following treatment of measurements is from [KK92]. Consider a QoS parameter, P. In

general, we have no knowledge about the distribution of the values of P, so we treat it as a

random variable. We can consider values of P as a sequence [pi ,p2 ,---, Pk, Pk+j}, and we

represent this as:

P a+1 (2 . 1)

where:

- 3 3 -

Pk the value of the parameter P at time k

Wk system perturbation

The sequence of measured values { } is represented as:

Pk =Pk

where:

(2.2)

Pk

Pk

Ilk

the measured value o f the parameter P at time k

the value of the parameter P at time k

observation noise

We also, in general, have no knowledge about the values of observation noise, Uk, and so

it too appears as values from a random variable, U. As both P and U are random

variables, we cannot predict their values accurately. We can see the difficulties by

considering the scenario depicted in Figure 2.2.

Figure 2.2 shows a real scenario of some hosts connected by several different network

technologies using IPv4. We use a simple, lightweight scheme of probes, which we will

call RDJ (rate, delay and jitter) probes (see Appendix A for details), to take

measurements of “available capacity” (data rate) along the network path between the

hosts.

Consider first the path between the hosts theakston and darhu. We have a network route

that contains 3 router hops. The LANs are both lObaseT and the ISDN connection

between adnams and ascend uses a single B-Channel (i.e. maximum of 64Kb/s). Figure

2.3 shows a traceronte [traceroute] for the path between darhu and theakston, clearly

showing that the hop between ascend to adnams (hop 2 to hop 3) is the delay bottleneck.

theakston.cs.ucl.ac.uk
128.16.20.2

adnams.cs.ucl.ac.uk
128.16.16.14 ^

ISDN

cisco.cs.ucl.ac.uk
128.16.6.150

ascend.cs.ucl.ac.uk
128.16.64.128

r S '— .

north.lcs.mit.edu
18.26.0.4

IPv4 host U E l IPv4 router

_ 1 1
Internet L - J

darhu.cs.ucl.ac.uk
128.16.8.177

poteen.cs.ucl.ac.uk
128.16.8.78

ISDN integrated services digital network

Figure 2.2: A connectivity scenario between UCL and MIT

- 3 4 -

During the time that the measurements were being taken, no other traffic other than the

RDJ probes crossed the ISDN line. The graph in Figure 2.3 shows the available capacity

on this path as measured by the RDJ probes. We note that:

• because there is no other traffic being sent, we know that the system perturbation is

zero with respect to the B-Channel, so all the fluctuations are due to noise

• the amount of noise on the graph appears to be large, with many spikes (outliers) in

the data

• as we know the network configuration, that the overall path has a very light load‘°

and that there is no other traffic on the ISDN line, we could look at the graph and

make a reasonable intuitive guess that the available capacity on the path is 57Kb/s' '

d a r h u . c s . u c l . a c . u k % t r a c e r o u t e - n t h e a k s t o n
t r a c e r o u t e t o t h e a k s t o n . c s . u c l . a c . u k (1 2 8 . 1 6 . 2 0 . 2)

30 hops max, 40 b y t e p a c k e t s
1 1 2 8 . 1 6 . 6 . 1 5 0 3 ms 3 ms 2 ms
2 1 2 8 . 1 6 . 6 4 . 2 8 3 ms 3 ms 5 ms
3 1 2 8 . 1 6 . 1 6 . 1 4 31 ms 33 ms 30 ms
4 1 2 8 . 1 6 . 2 0 . 2 32 ms 30 ms 31 ms

d a r h u . c s . u c l . a c . u k %

darhu - theakston, 08:52:20 Sun 8 Feb 1998

if

0 200 400 600 800 1000 1200 1400 1600 1800
time [s]

Figure 2.3: RDJ probes estimate of capacity between d a r h u and t h e a k s t o n (see Figure 2,2)

If we examine Figure 2.4, the path between poteen and north, we do not have the same

level of a priori information about the network. The traceroute in Figure 2.4 reveals

delay bottlenecks (e.g. hop 5 to hop 6) but tells us nothing about the nature o f the network

or the presence (or otherwise) of other network traffic. Indeed, the graph seems to indicate

the behaviour of the measured value of R is modal (seems to fluctuate - almost

periodically - between values of ~30Kb/s and ~250Kbs), and we can not determine why

without additional information. It is difficult to make an assessment of the available

capacity on this path simply by looking at the graph, let alone on a measurement by

measurement basis in real-time.

T he m ciisurem cnts w ere taken b etw een 7 .00am imd 1 1.00am (U K tim e) on Sundays, a period w hen the cs.ucl.ac .uk

netw ork traffic is very light.

" 57K b /s is about what on e can expect, a llo w in g for protocol overhead (PPP, IP, T C P) so m e in e ffic ien cy and any
error/bias in the m easurem ent process itself. Large ftp transfers from theakston (a W ind ow s N T v4 .0 Intel-based
m achine) m easures sim ilar ligures.

- 3 5 -

poteen.cs.ucl.ac.uk %traceroute -n north.les.mit.
traceroute to north.lcs.mit.edu (18.26.0.4)
3 0 hops max, 4 0 byte packets
1 128.16.6.150 2 ms 2 ms

edu
poteen - north.lcs.mit.edu, 07:29:22 Sun 8 Feb 1998

2 ms
2 ms
2 ms
3 ms

3 ms

2 1 2 8 . 4 0 . 1 4 . 2 4 5 2 ms 2 ms
3 1 2 8 . 4 0 . 2 0 . 2 5 4 2 ms 2 ms
4 1 9 4 . 8 3 . 1 0 0 . 6 2 3 ms 3 ms
5 1 9 3 . 6 3 . 9 4 . 8 5 3 ms 5 ms
6 2 0 7 . 4 5 . 2 0 6 . 2 4 1 87 ms 85 ms 85 ms
7 2 0 7 . 4 5 . 1 9 9 . 2 3 3 103 ms 103 ms 103 ms
8 1 4 4 . 2 2 8 . 1 6 4 . 6 1 106 ms 107 ms 106 ms
9 1 4 4 . 2 3 2 . 5 . 9 3 106 ms 105 ms 106 ms

10 1 4 4 . 2 3 2 . 5 . 6 106 ms 107 ms 106 ms
11 1 4 4 . 2 2 8 . 1 8 0 . 1 0 107 ms 108 ms 108 ms
12 4 . 0 . 2 . 2 2 113 ms 112 ms 112 ms
13 4 . 0 . 1 . 2 0 2 129 ms 129 ms 128 ms
14 1 9 2 . 2 3 3 . 3 3 . 3 131 ms 141 ms 129 ms
15 1 8 . 1 6 8 . 0 . 1 4 128 ms 127 ms 132 ms
16 1 8 . 1 0 . 0 . 1 131 ms 131 ms 134 ms
17 1 8 . 2 4 . 1 1 . 1 131 ms 156 ms 147 ms
18 1 8 . 2 6 . 0 . 4 133 ms * 137 ms

200 400 800 1000
time s

1400 1600 1800

poteen.cs.ucl.ac.uk %

Figure 2 .4 R D J probes estimate of capacity between p o t e e n and n o r t h . i c s . m i t . e d u (see Figure 2 .2)

2.6 Giving information to the network

If the application knows the user preferences, can map them on to its own functional

capability aii(J knows the network capability, it can determine the flow-requirement it

should use. It can then use the network in two ways with respect to the network:

• actively: it can ask the network to support its chosen flow-requirement by giving the

network a description of the QoS it requires for that flow-requirement. This may, in

general, involve a negotiation during which this initial QoS request may fail and the

application must make a QoS request for another of its flow-requirements

• passively: it chooses an initial flow-requirement in which to operate and then changes

its flow-requirement, as required, depending on the QoS it detects is being offered to it

by the network

Let us consider the active case in this section. We will assume that a QoS mapping of the

user preferences is available. The application now needs:

• a mechanism for specifying its own functional capabilities (its flow-requirements) in

terms of the requirements of its flows (QoS specification)

• a mechanism for mapping those flow requirements into something the network can

understand, i.e. a statement of its resource requirements (QoS mapping)

• to signal its network resource requirements to the network (which the network needs to

propagate to the network elements along the communication path for that flow) and

notify the application of success or failure, as required, i.e. it needs to make a resource

reservation

- 36-

We look at each of these in turn.

2 .6 .1 Application capahility

The simplest, general, way for an application to express its requirements to the network is

by describing the requirements of the application-level flows. Typically, these will be

performance bounds defined in terms of quality of service parameters and traffic

characteristic specification using parameters such as those in Table 2.1.

The traffic characteristic is commonly defined in terms of a token bucket filter, {Rb, B b)

where R b is the normal transmission speed (units bytes/s) and B b is the bucket depth (units

bytes). B b might be chosen to be a multiple of the (maximum or mean) ADU size. This

method is used in [RFC2216] by INTSERV, which defines a FlowSpec to consist o f a

RSpec (the flow requirements) and a TSpec (the traffic characteristics). The idea o f a

FlowSpec was first proposed in [RFC 1363]. The exact number and type o f parameters

required for the RSpec and TSpec will vary, depending on the service level requested

[RFC2211, RFC2212]. The RSpec and TSpec must be defined by the application designer.

This requires the designer to have detailed knowledge and understanding of the

characteristics of the traffic flow for the application and the way these characteristics

should be described using such a specification'^.

throughput, R the minimum data rate required for this

flow

bits/second [b/s] or

bytes/s [B/s]

delay, D the end-to-end delay for the data flow seconds [s]

jitter, J the inter-packet delay variation seconds [s]

ADU (packet) error

rate, E a d u

the ratio of ADUs containing bit errors

to correctly delivered ADUs

ADU (packet) loss

rate. La

the ratio of lost ADUs to ADUs

delivered without errors

Table 2.1: An example of some application derived QoS parameters

'■ Our exp erien ce sh o w s it is not a lw ays true that the designer is aw are o f the exact traffic characteristics o f the
applications, as this m ay, in general, depend on the particular u sage o f any instance o f the application.

- 3 7 -

2.6.2 Network capability

There must also be a specification of what the network is capable of. In the INTSERV

model, the description of the network element capabilities is defined in terms of one of

the INTSERV templates [RFC2216].

However, recall that in the INTSERV architecture we noted that there is a guaranteed

service and a controlled-load service. These abstractions are each a QoS service-level,

and reflect the way in which the QoS specification is honoured by the network. Given the

same TSpec, the guaranteed service has a greater probability of meeting the TSpec than

the controlled load service, which in turn will have a greater probability of meeting the

TSpec than the best-effort service

In terms of our discussion, this allows specification of the requirements for one or more

flow-requirements.

2.6.3 Resource reservation

Our application designer now knows how to define what is required in terms of QoS for

an application’s flow-requirements and there are mechanisms available that can gather

measurements from the network. We must now try to make sure that the network (i.e. the

network path that the data will traverse) will support the requested QoS. This is the job of

a signalling protocol such as RSVP [RSVP] or ST2+ [ST2-I-]. The INTSERV architecture

favours RSVP, so we confine our discussion to RSVP. A comparison of RSVP and ST2+

is presented in [MESL94] and [Bas96]. A more detailed description of RSVP is given in

[WC97], and only a simple outline is presented here.

RSVP allows the application and routers in the network to signal each other about the

resources that need to be allocated for a communication session. It can be used for

multicast or unicast communication. RSVP identifies communication sessions by use of

the destination IP address and port number, and the transport protocol identifier (as

carried in the IP protocol field). All packets that form part of a session are given the same

QoS. There may be many sessions between any receivers and senders. We can equate an

RSVP session with our current notion of a flow, but RSVP allows many RSVP-flows per

session. Senders initiate resource reservation by sending a Path message to the

An analogy might be that of registered, first class and second class post, respectively; each will get the letter there but
give you different levels of service (and cost different amounts).

- 3 8 -

receiver(s). The routers that see the Path message hold some resources and make a note of

the route of the message. The routers then wait until a Resv message is received along the

reverse path from a receiver, or the sender transmits a PathTear message, or the Path

request times out. If the Resv is received, the held resources are allocated. If either the

PathTear is seen or the Path request times out, then held resources are released. This last

mechanism is a distinguishing feature of RSVP - it uses soft-state (which must be

periodically refreshed) held in routers so that it does not need support from any particular

network technology, and end-system failures do not tie up resources. At the end of a

session (or when a receiver leaves a multicast group) the sender transmits a PathTear to

release resources (or a receiver sends a ResvTear). RSVP can effectively provide a per-

flow reservation capability.

Note that the use of RSVP requires the application to be aware of the protocol interaction

for RSVP so that it can control how the session uses resources. This awareness could be

passed on to the user to allow the user to make more subjective decisions, e.g. on cost

versus QoS service-level. For example, the application makes RSVP requests for

guaranteed service and controlled-load service and the network could reply with an

indication as to the cost of both services. The user could then make a decision to request a

controlled-load service, which may be less costly.

2.6.4 Reservations about reservations^"^

Why do we need dynamic adaptability if we have resource reservation? We have

mentioned that resource reservation with RSVP is a useful mechanism for applications

with QoS sensitive data flows. However, as IP cannot rely on any particular network

technology-specific mechanisms, RSVP uses a soft-state technique with a two-pass

protocol. We summarise the main problems with RSVP below [SB95, WGS97]:

1. during reservation establishment if the first pass of each of two separate reservation

requests are sent through the same network element, where one request is a super-set

of the other, the lesser one may be rejected (depending on the resources available),

even if the greater one eventually fails to complete (of course it is possible to re-try)

2. if the first pass does succeed, the router must then hold a considerable amount of state

for each receiver that wants to join the flow (e.g. in a multicast conference)

This title taken from a Panel Session at the Fifth International Workshop on Quality of Service (IWQOS’97), 21-23
May 1997, New York, New York, USA.

- 3 9 -

3. the routers must communicate with receivers to refresh soft-state, generating extra

traffic, otherwise the reservation will time out

4. complete heterogeneity is not supported, i.e. in a conference everyone must share the

same service-level (e.g. guaranteed or controlled-load), though heterogeneity within

the service-level is supported

5. if there are router failures along the path of the reservation, this results in IP route

changes, so the RSVP reservation fails and the communication carries on at best-effort

service, with the other routers still holding the original reservation until an explicit

tear-down or the reservation times out

Resource reservation could be expensive on router resources and adaptation capability is

still required within the application to cope with reservation failures or lack of end-to-end

resource reservation capability. Indeed the shortcomings of RSVP, especially with respect

to scaleability, have been acknowledged by the Internet community and it is now

recommended for use only in restricted network environments [RFC2208]. Such concerns

about resource reservation have directed the Internet community to consider alternatives;

specifically differentiated services [DIFFSERVl]. Without resource reservation, we

require a more flexible and dynamic adaptation capability within the application.

So, good dynamic adaptation capability in the application has value even where resource

reservation might be an option.

2.6.5 Differentiated services

The IETF DIFFSERV (Differentiated Services) takes a different view of using

network resources. This work is still at very early stages, so there are several schemes

being discussed [DIFFSERV2, DIFFSERV3, DIFFSERV4, DIFFSERV5, DIFFSERV6,

DIFFSERV?]. The general model is to define a class-based system where packets are

effectively marked with a well-known label in the IPv4 ToS field or IPv6 traffic-class

field [DIFFSERVl]. This label identifies the service-level the packet will receive, much

like a letter can be marked as registered, first class or second class delivery. This is a

much coarser granularity of service, but reflects a well understood service model used in

other commercial areas. The DIFFSERV model is different to RSVP. A key distinction of

the DIFFSERV model is that it is geared to a business model of operation, based on

administrative bounds, with services allocated to users or user groups. Whereas RSVP can

40-

act on a per-flow basis, the DIFFSERV classes may be used by many flows. Any packets

within the same class must share resources with all other packets in that class, e.g. a

particular organisation could request a Premium (low delay) quality with an Assured (low

loss) service-level at a given data rate from their provider. The packets are treated on a

per-hop basis by traffic conditioners, routers that determine the way a packet should be

treated based on a policy that is selected by examining the value of the ToS/class-field.

The policy could be applied to all the traffic from a single user (or user group), and could

be set up when subscription to the service is requested [DIFFSBRV3], or on a

configurable profile basis [DIFFSERV2, DIFFSERV?]. The DIFFSERV mechanisms

would typically be implemented within the network itself, without requiring runtime

interaction from the end-system or the user, so are particularly attractive as a quick means

of setting up tiered services, each with a different price to the customer.

The RSVP mechanism seeks to introduce well-defined, end-to-end, per-flow QoS

guarantees by use of a sophisticated signalling procedure. The DIFFSERV work seeks to

provide a “virtual pipe” with given properties in which the user still requires adaptation

capability if there are multiple flows competing for the same “virtual pipe” capacity.

Additionally, the DIFFSERV architecture means that different instances of the same

application throughout the Internet could receive different QoS, so the application needs

to be adaptable. Indeed, in [DHT95], the authors conclude that coarse-grained

differentiation based on service-classes with application adaptation should be sufficient

for multimedia applications:

I f we accept the idea that all members o f the same class should be treated

equally, we find very little use fo r reservation. In fac t we see two [uses for]

the reservation procedure: a revenue opportunity fo r network operators

and a prioritization tool fo r network recipients.

2.7 Application adaptation and heterogeneity

In Section 2.5, we talked about getting QoS information from the network, and in

Section 2.6 we talked about the need for passive applications that do not use resource

reservation, but adapt to network changes based on this QoS information. Once the QoS

information has been received, the application must interpret it to make a decision about

whether or not it should change its flow-requirement. Such a decision must be made not

http://www.ietf.org/html.charters/diffserv-charter.htm]

-41 -

http://www.ietf.org/html.charters/diffserv-charter.htm

only in an application-specific manner, but will be subject to user preferences. However,

we can see that the application must somehow determine which of its flow-requirements

can be supported by the network given the network QoS information it has, and only then

can it make a sensible decision about how to act with respect to the user preferences.

When the network QoS is seen to be fluctuating rapidly, the application must be able to

make decisions that do not result in “state-flapping” (instability) - any decision making

function must be stable with respect to the functionality of the application and the user

preferences.

Consider again Figure 2.2. It is unrealistic to suppose that the kind of detailed a priori

information we have about the darhu-theakston path (network configuration, link

capacity, knowledge of network traffic) will be available to a user in all circumstances, at

all points in the network, and at all times. Certainly this is not true in the case of the

poteen-north scenario. Furthermore, let us consider that the information about the

available capacity is to be used by an application to make a decision about how it should

behave and operate. Even if such information was readily available a priori for all

possible network paths for a user, that user would then need either to make an adaptation

decision based on that knowledge or pass that knowledge to the application (somehow)

and tmst that the application could make a suitable decision. There are some problems

here:

• the user would need to be very knowledgeable to make a sensible decision based on

the kind of QoS information that we have presented thus far. Not only would the user

require detailed information about the network, but also detailed information about the

operation of the application

• even if this first point was true, in a more complex (i.e. realistic) scenario, the user

would need to share the network resources on the paths with many other traffic flows.

So, there is a strong possibly that there would be many, rapid variations in QoS. The

user would need to make many adaptation decisions during the use of the application.

Such a process may require much of the user’s time and attention, so we need support

for an automatic QoS assessment process that would ease the user’s task or allow the

application to make a decision

• there is currently no general model by which the application can come to a decision as

such a decision in a particular connectivity scenario can only be achieved by the result

of the interaction between user, application and network

- 4 2 -

The last point is crucial; how can the application make an adaptation decision? One could

argue that the application can make the decision based solely on network information as

in Scenario lb (Section 1.1). However, consider the case of Scenario lb or Scenario 2b

when different instances of the application are running over different networks, but are

now using different resource reservation schemes or different service-levels, and are

controlled by different user preferences. The amount of information required to make the

adaptation decision is large and complex; it is becoming increasingly difficult for the

application to make the decision. This complexity is evident in the following anecdotal

scenario.

When the multimedia research group at UCL are to have a wide-area conference across

the Internet using tools such as rar [HSK98] and vie#[M J95],they typically spend some

time before the conference assessing the network quality and decide which audio

encoding to use and the rate of the video. During the course o f tHe coiiference, there will

be someone at many (sometimes each) o f the conference sites rnonitoring the conference

quality. These people will communicate out-of-band in order to make co-ordinated

adjustments to the operation of rat and vie as the quality changes (e.g. change the audio

encoding or drop the video so that the audio can continue at reasonable quality).

There are three key points in this scenario:

1. the decision as to how to adapt is made through the expert knowledge and experience

o f the users

2. the decision making process requires all participating sites to come to the same

decision, i.e. they have the same expertise and knowledge (“same algorithm”)

3. the tools themselves rely on the humans to make the major decisions about the state of

the applications (user preferences)

In this chapter, we have noted that there are mechanisms that may aid the application in

obtaining information about the QoS offered by the network for a particular flow, as well

as allowing the application to request QoS guarantees from the network. However, in the

face of heterogeneity, it is still very hard to enable the application to make dynamic and

automatic QoS assessments, or allow the user to make an informed change o f user

preferences. There is no capability that allows assessment of all the QoS information

available to the application. We need to offer the application a mechanism that provides a

suitable QoS information summary that allows it to dynamically make an assessment of

- 4 3 -

how it should adapt. It may then be possible for it to interact with the user in order to

change flow-requirement or mode, or even make an adaptation decision automatically.

2.8 Chapter summary

People now wish to use the Internet to provide access to integrated services. This includes

the use of applications with QoS sensitive data flows, which require different QoS

services from the network. The Internet protocols were never designed for such

sophisticated use, but there is now work in progress to address these issues within the

IETF INTSERV WG. INTSERV has produced a QoS architecture and defined two QoS

service-levels, namely guaranteed service and controlled-load service. These can be

requested by applications using RSVP. (Section 2.1.)

Additionally, applications have to run on mobile hosts, in environments where the QoS

can vary. The Internet community now has specifications to ensure end-to-end

connectivity for mobile hosts, but issues concerning QoS have yet to be addressed. This

means that applications running on mobile hosts will have to be adaptable to the QoS

available in their particular network environment. (Section 2.2.)

TCP and UDP alone cannot support applications with QoS sensitive data flows.

Mechanisms such as flow control and congestion control in TCP are not controllable by

the application. The application cannot control exactly the way it sends data using TCP,

so application specific transport/session mechanisms must be built on top of UDP. Such a

protocol is RTP, which allows some application level signalling. Information about QoS

parameters such as throughput, delay, and jitter can be passed between application

instances using RTCP. However, RTP is not designed to get information from, or send

information to, the network elements. (Section 2.3.)

In order to be adaptable, the application needs a QoS mapping to allow it to interpret the

user preferences in terms of its own capabilities and the network’s capabilities

(Section 2.4). It also needs to get QoS information about flows from the network, i.e.

measurements of QoS parameters. However, measurements from the network are always

out of date and contaminated with noise, so there is a need to find a suitable estimation

and error-filtering mechanism. (Section 2.5.)

If the application is operating actively, using resource reservation, it also needs to send

control signals to the network, e.g. to request QoS services. This is done using a resource

reservation protocol such as RSVP. In order to specify the QoS it requires for its flows,

- 4 4 -

the application must define QoS flow performance specifications in terms of QoS

parameters. A particular network path may not always support per-flow reservations as

that provided by end-to-end mechanisms such as RSVP, or RSVP could fail during the

lifetime of a flow. Other QoS mechanisms, which do not necessarily act on a per-flow

basis (such as differentiated services), may be in operation. So, the application must still

be prepared to adapt. (Section 2.6.)

Even if excellent resource reservation capability is available, the application is faced with

heterogeneity due to user preferences, different network conditions across the Internet,

differing resource reservation regimes and QoS mechanisms, as well as host mobility.

This means that the application needs to have adaptation capability. However, with such a

diverse and heterogeneous range of connectivity and QoS possibilities, it is unreasonable

to expect the user to be knowledgeable enough to set user preferences to select the correct

application mode and flow-requirements for a given QoS/connectivity scenario. So, we

would like to offer application mechanisms that offer a QoS information summary that

can be used to make adaptation decisions dynamically, or that help the user to make

informed choices of user preferences. (Section 2.7.)

- 4 5 -

3. Adaptability in Internet applications

In Chapter 2, we looked at the way the use of the Internet is changing, with users now

expecting enhanced services. From the discussion, we draw two main conclusions:

1. applications with QoS sensitive flows need to be adaptive

2. there is a need for mechanisms to help those applications make adaptation decisions

In this chapter, we build on these conclusions by examining some of the issues raised in

Chapter 2, and also look at the way that adaptability is being addressed in current

research.

We start by giving a clearer description of adaptability and listing a set of requirements

for supporting dynamic adaptability in end-systems. We then formalise the discussion on

QoS presented in Chapter 2 by introducing the notion of a QoS framework. We discuss

how general application QoS requirements fit in with enabling adaptability for Internet

applications. Our aim in this chapter is to emphasise the importance of adaptability and

especially the reason for choosing the main subject of our work. So, we examine the

issues in current research into adaptability and show that the item of work on which we

have chosen to concentrate is not currently being addressed adequately elsewhere.

- 46 -

3.1 Description of adaptation capability

We have argued for the need for dynamic adaptability in applications, but we first need to

clarify our description of adaptability. We can think in terms of two classes of

adaptability’ :̂

• dynamic adaptability: during operation the application monitors network resources

during its operation and changes its flow-requirement according to the QoS offered by

the network to the flow

• static adaptability: the application evaluates the network resource availability when it

begins operation and then assumes that the QoS will be available during its period of

operation, so continues to use the same flow-requirement

It is clear that either Scenario lb or Scenario 2b (Section 1.1) could operate under either

class of adaptability if the users so wished. Applications that have static adaptability may

need the support of resource reservation for ensuring end-to-end QoS. The limiting case is

that the application has static adaptation capability with only a single mode or flow-

requirement, i.e. it is actually a non-adaptive application and requires an end-to-end QoS

guarantee. We have argued (Section 2.7) that dynamic adaptability is desirable in a best-

effort network as the QoS can fluctuate during the operation of the application. However,

there is another distinction between static and dynamic adaptability. We can consider that

static adaptability may be provided using existing network management techniques and

resource reservation mechanisms. For example, if our mobile host in Scenario 2b

(Section 1.1) has a SNMP agent running, then it can detect which interface (ISDN, GSM

or Ethernet) is active and discover its capability. It could then make a resource reservation

based on this information (using RSVP), and then assume that the QoS will be constant

throughout this period of operation'^. Additionally, resources could be renegotiated

during the lifetime of the flow. However, if resource reservation is not practicable or

possible, and the QoS fluctuates during the period of operation of the flow, then

additional mechanisms for adaptation are required. This example suggests that the

availability of both static and dynamic adaptability, together, appears to be useful.

[Cam97] also notes static and adaptive response to QoS fluctuations.

Even if using RSVP within the Internet, this assumption may not hold, as explained in Section 2.6.4

- 4 7 -

3.2 Requirements for dynamic adaptability

We assume that the application can support different flow-requirements, each of which

requires a different quality of service from the network. We offer the points listed R1 to

R8 (below) as necessary and sufficient requirements for enabling dynamically adaptable

applications, based on our discussion in Chapter 2. R1 to R8 help us to examine related

work as well as to determine the design for our suggested solution.

R l. QoS integration interfaces: the provision of an adaptability mechanism requires

interaction between the user, the application and the ne twork^so we need to be able

to offer integration of functional elements at each of the interfaces between these

respective entities (see Figure 1.3)

R2. QoS mapping: the abstractions for expressing QoS at the user-application interface

and at the application-network interfaces could be very different, so a mapping

mechanism is required, which should be kept as simple as possible

R3. QoS specification: in order to allow adaptability, there must be stable flow-

requirements defined for the application flows, so we need a mechanism for

specifying the flow-requirements, which should be kept as simple as possible

R4. QoS compatibility assessment mechanism: an application adaptation needs to

know when to change flow-requirement, so we need a mechanism to assess the

network QoS and indicate which flow-requirements can be supported by the network

R5. QoS information separation: the behaviour of the application may be controlled not

only by network QoS information, but additional application-specific information or

user preferences, so the use of the QoS information about flows should not unduly

constrain the design or operation of the application

R6. QoS mechanism separation: any adaptation decision is an application-level issue,

so the QoS information made available from the network should be easily useable

and accessible by the application and the mechanisms for its provision should not

unduly constrain the design or operation of the application

R7. QoS encapsulation: the representation of network QoS information should offer an

abstraction that is not confined by any particular network technology, but seeks to

hide the complexity and details of the network technology, i.e. presents an

application-level viewpoint

In fact, we also need the co-operation and support of the end-system, the host on which the application instance is
currently executing, but we say more about this later. Also, recall that our work considers only the application-
network interaction.

- 4 8 -

R8. QoS heterogeneity: the representation of QoS information should be consistent in

the face of heterogeneity in network service provision, e.g. if the same data rate is

available at different service-levels (say guaranteed and controlled-load) a flow-

requirement that uses that data rate should still be achievable

We have chosen to model our application as consisting of flows that have well-defined

flow-requirements. The application’s use of any one of the flow-requirements is

dependent on the QoS within the network. The flow-requirements and the network QoS

can be expressed using QoS parameters. We can state a very simple overall requirement:

the application needs to have information that allows it to assess when it should change

flow-requirement.

3.3 QoS architecture

In Section 2.8, we highlighted the following items in describing adaptable applications:

Q l. QoS architecture

Q2. QoS information

Q3. QoS service-levels

Q4. QoS flow performance specifications

Q5. QoS parameters

We have seen that in fact the need for an application to be adaptable is because it

experiences fluctuations to its network QoS. So we need a framework in which to talk

about QoS issues that is suitable for addressing R l to R8 in terms of Q l to Q5.

A description of the elements for a comprehensive generalised QoS framework for

providing end-to-end QoS in distributed multimedia systems are formulated in [CAH96].

[CAH96] pulls together a large body of current work and also includes a review of some

recent approaches to QoS architectures from various different data communication,

distributed systems and telecommunication communities^^. [CAH96] suggests a

generalised framework that is based on the following:

• QoS principles: five principles governing the design of the framework

• QoS specification: for allowing the definition of QoS services and QoS requirements

[CAH96] is a comprehensive survey and review, so we do not produce a full survey of QoS architectures, and choose
only to examine points of relevance and interest.

- 4 9 -

• QoS mechanisms: for describing the elements that allow the provisioning and control

of QoS services

The remainder of this section discusses the dynamic adaptation requirements R1 to R8 in

terms of this generalised framework. We draw on work not only from the Internet

community, but also from related data communications and telecommunications areas.

This helps us to understand the role of dynamic adaptability in terms of the larger goal of

QoS awareness for Internet applications.

3.3.1 QoS principles

Our interpretations of the five QoS principles in [CAH96] are given in Table 2.1.

integration QoS must be configurable, predictable and maintainable over all

architectural layers to meet end-to-end QoS (across end-system

modules, protocol stacks and network components)

separation media transfer, control and management are functionally distinct

architectural activities, and will be application-specific

transparency applications should not be required to deal with the complexities

of the underlying QoS specification, QoS management, and QoS

maintenance mechanisms and procedures

asynchronous

resource

management

the timelines governing the management of resources (end-system

or network elements) should be de-coupled from the timelines for

normal operation of the application

performance keep things as simple and efficient as possible, leaving the

application (or application manager) with the final say

T able 3.1: Interpretation o f the five QoS principles from [CAH96]

Our main concern is the first principle, that of integration. We make the following

distinction between the provisioning of end-to-end QoS and enabling dynamic

adaptability:

50-

For the provisioning o f end-to-end QoS, the user/application is telling tlw

network what is required and asks that the network should
" " f

adapt/configure itself to comply to the user's/application’s requirements,

i.e. static adaptation. In enabling dynamic adaptability, jJie application _ ̂
_ i
receives infonnation about the QoS tW t the network can offer, ahd71-f

changes its flow-requirement to c g r ^ y with the nepyorJçcàpabiUHes.

With this in mind, the principle of integration does not have to apply so strongly for

adaptable applications. Our integration needs, R1 are somewhat weaker, as we do not

need QoS to be “configurable, predictable and maintainable over all architectural layers” .

What we require is a well-defined interface between the application and network to

receive an application-oriented view of the network capabilities; i.e. something that is

easily usable and understandable at the application level.

Our weaker integration requirement is both an advantage and a disadvantage. It is an

advantage in that it requires looser coupling between the various architectural components

giving greater freedom in system design, and this is consistent with R5 and R6. In fact,

this looser integration is a requirement for Internet applications, as IP is not biased

towards to any particular network technology. QoS architectures seeking to offer end-to-

end QoS guarantees show tight coupling between the application-level QoS parameters

and the QoS parameters required for a particular network technology [Cam97, HILY96,

CCH94]. This is not to say that such tight coupling does not adhere to the separation

principle, but such lower-layer dependencies are not in keeping with the IP philosophy.

The disadvantage with the lack of integration with any particular network technology is

that it means we need a very general network abstraction to support R7 and R8. Also, we

need mechanisms for mapping QoS parameters between application and network

abstractions, and we cannot (directly) exploit any network specific support mechanisms

for QoS that might exist in a particular network technology, e.g. such as in ATM^^.

The other principles listed in Table 3.1 match our requirements fairly well. The separation

principle and the asynchronous management principle both support R5 and R6. The

transparency principle supports R6 and R7. Performance transparency is defined in a

S o m e see this “ low er-layer b lindness” as one o f the m ajor disadvantages o f IP-based applications in general, and so m e

see it as the reason w h y IP has been so successfu l.

-51 -

more prescriptive manner than the other principles in [CAH96], but points to [SRD84]

and [CT90] (amongst others) as guidelines to dealing with design and engineering issues

related to performance. This mainly concerns the use of:

• application layer framing (ALF): designing ADUs as the unit of processing with an

end-to-end, application-level view, e.g. sending audio packets as audio time-slices that

may allow the flow as a whole to tolerate some loss or re-ordering

• integrated layer processing (ILP): trying to avoid serial/pipeline operations on

ADUs where integrated operations may be possible, e.g. perhaps combined

compression and error control

3.3.2 QoS specification

Our interpretation of the QoS specification from [CAH96] is given in Table 3.2.

flow synchronisation

specification

the degree of synchronisation between related flows, e.g. when

separate video and audio streams require synchronisation

flow performance

specification

a description of flow requirements expressed in terms of QoS

parameters, e.g. minimum throughput, maximum jitter, etc.

level-of-service

(service-level)

the way in which the flow specification is honoured, e.g.

guaranteed service, controlled-load service

QoS management

policy

a description of the way that non-conformance to the end-to-end

reservation should be handled, e.g. adaptation required by

application and media flows

cost of service the price that the user is willing to pay for certain end-to-end QoS

Table 3.2; Interpretation of QoS specification from [CAH96]

It is clear from the discussion presented already that defining flow performance

specification in terms of QoS parameters is important for describing the flow-

requirements. Additionally, the service-level required may be important to the individual

users and may determine the cost of the service, e.g. guaranteed-load is a “better” service

than controlled-load so would cost more. However, we argue that the service-level should

not be specified by the application (in support of R8). The application should be prepared

to be more flexible in its adaptation capability [DHT95], leaving service-level selection to

the user. Three reasons for this are:

52-

1. the service-level may determine the cost of the service [Kel97] and users usually wish

to control how much they pay

2. network heterogeneity, lack of resource reservation or network element failure may

mean that a particular service-level is not available at a given time at a given point in

the network

3. new, additional service-level definitions may be introduced that are more suitable (in

terms of functionality or cost) for use in a given situation, e.g. adaptive service-level

[LLB97, CCH96]

Additionally, if cost-based feedback is available from the network, then cost may not have

to be specified separately and could be treated as a QoS parameter. Although not related

to the performance of the flow it acts as a defining constraint in the same way as, say,

defining minimum data rate or maximum jitter for a flow. However, the value of making

this explicit as in [CAH96] is that it highlights the importance of cost as a feedback

control mechanism in future services [SCEH96].

When guaranteeing end-to-end QoS, there may be requirements for flow synchronisation

between different media that have temporal relationships, e.g. audio that accompanies a

video stream. However, the way in which the synchronisation is handled may not only be

application-specific, but also depend on the users. For example, video and audio streams

that are part of a remote teaching activity may require different synchronisation

depending on the subject being taught and the type of teaching. If the subject being taught

is a foreign language, say French, then good synchronisation and quality for both audio

and video is required so that lip synchronisation with sound can be seen by the student

[HS97]. When the lecture subject is History of Art, the requirements may be for sufficient

data rate to transfer slides containing full-colour, high quality art images relatively

quickly (e.g. in the order of a few seconds), but with telephone quality audio, and looser

synchronisation between audio and video. So, while the formulation of descriptions for

flow synchronisation are valuable, the way that they affect adaptability of an application

will depend on application-specific requirements and user preferences. There is also a

possibility that these requirements change during the operation of a particular application

instance. For example, while the remote instructor delivers the History of Art lecture,

higher delay and jitter is tolerable on the audio and video than during the question and

answer session at the end of the lecture. For our adaptability requirements we do not need

to have mechanisms to directly support synchronisation, though any mechanisms we do

propose should not constrain the application from applying synchronisation constraints.

- 5 3 -

The argument presented for flow synchronisation specification (above) also applies to the

QoS management policy. This will be subject to user preferences and application specific

behaviour. [CAH96] suggests that the specification of QoS management policy should be

made clear before the application starts operating. This would certainly be of value to the

network for controlled allocation of resources, and makes sense in the context of trying to

assure end-to-end to QoS. However, in our consideration of dynamic adaptability, the use

of the application typically requires interaction from the user in order to determine its

adaptation requirements. The user preferences may not be known until after the

application is running, or may change during operation of the application (viz. the History

of Art lecture example). [CAH96] states that QoS management policy:

... captures the degree o f QoS adaptation (continuous or discrete) that the

flow can tolerate and the scaling actions to he taken in the event o f

violations to the contracted QoS [CCH96]

In our work, we chose to make a separation between what '’Hhe flow can tolerate’’’ and the

''scaling actions to be taken”. We argue that the former is a property of the media and the

latter is an application-specific requirement that includes interaction with the user. Flow

performance specifications can be used to indicate the flow-requirements that are possible

for a flow and can be determined by the application designer. The action to be taken on

fluctuations ("violations”) of QoS is a dynamic adaptation decision and cannot be

determined by the application designer a priori. It is the difference between the

application designer saying, “I know what is sensible for the flow” and the user saying, “I

know what is sensible for the application to do for me”. Ultimately the application’s

functional constraints have the final say on which flow-requirement(s) is (are)

functionally possible, but this should not dictate how the user would like the application to

behave, i.e. how adaptation should take place. For example, the different requirements in

the remote teaching scenario for the audio and video flows during the main part of the

lecture and then during the question and answer session at the end of the lecture.

So, the flow performance specification, service-level specification and cost of service

specification support R3, but the way in which the QoS management policy is finally

determined cannot be specified exactly before run-time.

3.3.3 QoS mechanisms

In [CAH96], QoS mechanisms are listed in three categories:

- 5 4 -

1. QoS provisioning mechanisms: providing QoS mapping of QoS flow specifications

at different system levels; admission testing to help determine the ability of a system to

accept a flow; resource reservation protocols for signalling end-system and network

system elements to arrange allocation of the resources required for the flow

2. QoS control mechanisms: deal with control of the transmitted media flow and

involve the functions of flow shaping, flow scheduling, flow policing, end-to-end flow

control and flow synchronisation

3. QoS management mechanisms: allow monitoring of system QoS parameter values to

provide information for the QoS maintenance mechanism; QoS maintenance to ensure

that the required QoS is achieved throughout operation; QoS degradation notifications

in case of lower-level network failures; QoS signalling to allow users to specify

sampling and notification intervals; QoS scalability including flow filtering and flow

adaptation

Many of these mechanisms are for setting up and maintaining end-to-end QoS, so we

extract only the ones of interest to our dynamic adaptation considerations.

QoS mapping is required to support R1 and R2. The representation of information should

lend itself to a sensible mapping that hides the complexity of the underlying model from

the user as well as allowing representation of the required information about the

application flows (in support of R7). QoS admission testing (admission control) is

effectively a mechanism to allow the application to assess if the network can support a

particular QoS requirement for a flow in a static adaptation scenario. This again is mainly

a resource reservation issue, and does not concern us for our run-time, dynamic adaptation

considerations. However, success or failure notifications from an admission test act as

control information for any static adaptation or may offer a starting point (the first flow-

requirement) for our dynamically adaptable application. (Indeed, the value of using

admission control for an Integrated Services Internet has been questioned [She95].)

Example schemes for admission control are presented in [BFMM94] and [JDSZ95].

Control of the flow in our dynamic adaptation scenario covers only aspects of flow

shaping, flow policing and end-to-end flow control. If we consider that the application

mode change results in the change of the flow-requirement, this may be either as a result

of QoS changes in the network or QoS changes at the receiver. Where the QoS changes

- 5 5 -

are in the network, the change of flow-requirement acts as a form of self-policing that is

shaping^^ (changing) the flow in order to match the flow characteristics to those in the

network. Where the QoS change is at the receiver, the change in flow-requirement is

effectively an end-to-end flow control. The application may need to know and care which

of these two is actually happening, but the flow itself does not - it simply responds to the

application’s flow-requirement change decision.

The situation is complicated further when multicast is used. Application-level signalling

may be required in order for the decision process to be finalised, as senders and receivers

may need to synchronise flow-requirement changes and/or application mode changes

[KHC98].

Ultimately, the application’s behaviour dictates how these mechanisms are used and

interact with each other. We have already discussed how flow synchronisation is

considered to be an application-level issue (Section 3.3.2). Part of the adaptation decision

may be to assess the synchronisation requirements between any new flow-requirements

for currently active flows, which can only be done on a per-application instance basis.

Flow scheduling and flow policing may be achieved through co-operation between the

application, end-system and the network. Scheduling mechanisms in the end-system are

important to ensure that the correct end-system resources are available to allow flow

ADUs to be transmitted at the correct intervals (e.g. [LMM93]). If the packet scheduling

is also maintained within the network (say as part of a resource reservation mechanism or

a class-based scheme, e.g. [FJ95, WGCJF95]), then the flow is likely to remain fairly

stable. In the absence of any such mechanisms, the QoS experienced by the flow

fluctuates and adaptation is required. So, for dynamic adaptation purposes, we are not

concerned with the existence of any scheduling and policing mechanisms in particular,

just the observable effects of their presence or lack of presence. For example, there may

be a cost associated with the adaptation process in the end-system, but in many cases this

is only a significant issue to server end-systems and client end-systems with high-end use

[SW97, L+96]. In situations where evaluation of such a cost is significant, general

This is not actually the normal sense of how shaping and policing functions operate. They are normally considered to
be functions within the network rather than the end-system.

- 5 6 -

modelling techniques are still maturing [MK97], Indeed, [YL95] and [FPM95] suggest

that the application could be engineered to be adaptable to the host load itself^.

QoS monitoring and QoS notifications are closely linked for supporting dynamic

adaptation. We have said that we can think of the flows as consisting of well-defined

flow-requirements that are a function of the QoS parameters for the flow(s) of the

application. A QoS evaluation function is required to sample the values of the QoS

parameters for the flows at (application-defined) intervals and issue a report of how a

flow’s requirements are being met. [CAH96] talks of a QoS degradation notification

only, but we will generalise (to support R4) and say that the QoS evaluation function

issues reports that notify QoS changes, indicating the suitability of the network QoS to

support a particular application flow-requirement. A QoS change report generated by a

QoS evaluation function must be in a simple yet informative construction in order to

support R l, R2 and R7.

3.4 Flow-requirement modelling

We have argued that an essential part of an adaptation mechanism is the ability to map

QoS requirements (between user, application and network), and to allow monitoring of

QoS parameter values. We now examine each of these in turn.

3.4.1 QoS mapping

QoS mapping allows the mapping of QoS requirements from user to application and from

application to the network (and end-system). The QoS requirements from the user are

expressed as user preferences. The mapping of these is an application-specific issue (see

Section 3.3.2) and is not considered in detail in this work. We are concerned with the

mapping between the application and the network (in both directions).

The application must specify the flow performance requirements. These are typically

defined in terms of QoS parameters, such as those presented in Table 2.1. The mapping

should be as simple as possible but without losing any context and keeping the amount of

semantic information to a minimum. The generally accepted technique is to specify per-

flow traffic characteristics plus a service-level. The service-level is an enumeration, each

value of which express well-known semantics, so the mapping is simple as long as the

Host load can often be used as a rough indicator for competition for end-system resources, and its value is usually
accessible on general use end-systems.

- 5 7 -

network is aware of the service-level semantics. For traffic characteristics, the form of

specification in general use is the token bucket [RFC 1363, RFC2215]. This is because it

was believed that such a traffic characteristic presents an easy modelling technique,

which, with an on-off traffic source, provides a worst-case scenario for a burst of traffic

from that source. An analysis of such traffic sources in [Oec97] states that this belief^^ is

not true. However, [Oec97] points out that it is not yet possible to determine the actual

worst-case traffic pattern.

So, while the token bucket still remains in common use and has been adopted by the

INTSERV WG, any mapping of flow specification that we use should not attempt to rely

heavily on that model.

3.4.2 QoS parameter value monitoring

In Section 2.5, we looked at the problems associated with taking measurements from the

network in terms of noise and timeliness. We said that we need a way to estimate

accurately the value of a QoS parameter.

We will need to apply our estimation mechanism to many QoS parameter values for each

of many flows for a single application, and many applications may exist on a single end-

system. So, for our estimation mechanism we must choose methods that:

• are computationally inexpensive to implement in software, so they can be used on

hardware platforms containing general purpose processors

• keep the amount of state required to a minimum (e.g. number of previous

measurements)

Techniques with such properties for estimation based on the use of an exponentially

weighted moving average (EMWA) estimator are widely used with communication

protocols (e.g. [Jac98, Kes91, KMR93, SEFJ97]). EWMA is computationally inexpensive

and requires little state information. A modification of the EMWA allows practicable

adaptive estimation using a heuristic method [KMR93] or by the use of fuzzy logic

techniques [Kes91, KK92]. The adaptive mechanisms add fixed computational overhead

to the basic EWMA, but make the EMWA more reactive to system perturbation, whilst

retaining the ability to filter noise.

... or “myth” as stated in the title of [Oec97].

-58

3.5 Supporting adaptability in applications

We chose to split the current research in supporting dynamic adaptability for applications

into four main areas:

1. operating system support

2. distributed systems support

3. media flow scaling and filtering

4. support for dynamic QoS assessment for flows

We examine each of these in turn.

3.5.1 Operating system support

As we have already stated, we do not consider the specifics of the end-system or

operating system within our work. However this remains an important issue for server

systems and clients that have high-end requirements [SW97, L+96]. There are arguments

that the application should be dynamically adaptable to CPU load [KH97, YL95]. End-

system considerations are certainly of value where hosts have limited resources, e.g.

limited power capability on mobile hosts. (We present a simple example of how our

proposed solution could be integrated with such support in Section 6.5.)

3.5.2 Distributed systems support

Much of the activity in addressing QoS deals with support for end-to-end QoS guarantees

[CAH96]. As such, the distributed systems support for adaptability mainly addresses

static adaptation (perhaps allowing dynamic re-negotiation of QoS during operation).

Other works consider adaptive ability in networks to cope with mobility, e.g. [Cam97,

BCDRF97, DWEB97]. In our context, the dynamic adaptability decision is made within

each application instance. So our need in a distributed system (in the first instance) is

simply to transport the QoS information used for the decision-making (and perhaps the

adaptation decision information itself) to other parts of the application if required. In a

general distributed application scenario, there may be additional requirements to co­

ordinate the adaptation activities with other mechanisms such as resource reservation,

media scaling and filtering, and other application-specific activities.

There is currently much research into information distribution and application co­

ordination mechanisms for distributed systems, for example, [HCB098, GHMY96,

- 5 9 -

BCDRF97, DWFB97]. [HCB098] is an architecture proposed by the IETF MMUSIC

(Multiparty Multimedia Session Control) as a framework for multimedia

conferencing applications. It does not explicitly address adaptability, considering it to be

an application-level issue. However, it does incorporate the elements of the INTSERV

WG, allowing both loosely-coupled (no floor control as in [BTW94]) and tightly-coupled

(strict floor-control) conferences. [GHMY96] also has an architecture based around the

Internet protocols but is geared more towards tightly-coupled co-ordination with static

adaptation. [BCDRF97] and [DWFB97] use middleware support (ANSA [ANSA] and

CORBA [CORBA], respectively) for an integrated approach based on static adaptation.

CORBA is also used in [Cam97], which seeks to provide a QoS control architecture.

[Cam97] also supports the notion of static and active adaptation but the algorithms for the

decision making are executed at the network level and the transport level, and not by the

application, the application having submitted its adaptation capability (effectively its

possible flow-requirements) to the network.

Our dynamic adaptation requirements are for per-instance adaptation. So, our adaptation

QoS summarisation function must be capable of working in (logical) isolation to produce

QoS summaries (QoSReports in our model) for a particular instance of an application

on an end-system. This means that the QoS summarisation function (the QoSEngine in

our model) does not necessarily require distributed systems support. However, the

adaptation decision function (the AAF in our model) might need such support in order

to gather additional (application-specific) information to make an informed decision on

how it should actually change mode and/or flow-requirement. Effectively, our

requirements are for QoS summaries that reflects a local, per-flow view of QoS, delivered

in a form that the application can easily use in a more distributed manner, if required.

3.5.3 Media flow scaling and filtering

We examine the way in which it is currently possible for flows to be adapted. The kind of

adaptation possible can be categorised as:

• rate adaptive: the flow (and application) can change its construction in order to vary

the throughput required for the flow, i.e. ADU delivery rate

http://www.ietf.org/html.charters/mmusic-charter.htm]

- 6 0 -

http://www.ietf.org/html.charters/mmusic-charter.htm

• delay adaptive: the flow (and application) has a degree of flexibility in its tolerable

end-to-end delay, i.e. delayed ADU delivery

• jitter adaptive: the flow (and application) has a degree of flexibility in the variation of

its end-to-end delay, i.e. variable ADU inter-arrival time (some effects may be due to

ADU mis-sequencing in transit)

• error adaptive: the flow has the capability of tolerating different amount of errors in

ADUs, i.e. lost ADUs or ADUs received with non-correctable errors

Rate adaptation is possible through use of multiple streams of different rates, media-

scaling [D+93] (continuous [BTW94] or discrete using hierarchical or layered coding

[Sha92]), filtering [YGHS96] or transcoding [AMZ96]. Using multiple streams is the

easiest approach to engineering in the transmitter. However, this requires the flow to be

available in several different encodings, is not very efficient and may require complex

synchronisation if there are many flows and users involved. Also, if two users require

different rates but share the same path, then both streams must traverse that path.

In the hierarchical or layered coding approach a single media flow is split into several

individual sub-flows, each of which adds additional detail or quality to a base sub-flow

(e.g. [AMV96, CCH96, MJV96]). This has better scaling properties for multicast. For

example, audio or video can have higher frequency components in separate sub-flows: an

application must read the base sub-flow, but can select the amount of quality (number of

additional sub-flows) that is required. In fact, each of the streams can be treated as a

separate flow with different QoS in the network [CCH96]. Such an approach is fairly

flexible and efficient with resources but may require additional flow synchronisation,

and/or better dynamic delay, jitter and error adaptability in the application, especially if

the separate sub-flows do not have the same QoS. Another possibility may to be provide

resource reservation for each sub-flow [CCH96]. For our dynamic adaptation

considerations, synchronisation is not a concern and each sub-flow can be treated either as

an individual flow or as flow-requirements for a single flow.

Filtering techniques transform the bit-stream of the flow in some way. In fact, filtering is

a general term describing flow transformation. Filters can be used to perform hierarchical

coding, frame-dropping, transcoding (codec filter) and splitting/mixing of streams

[YGHD96]. One common method of filtering is transcoding [AMZ95, YGHS96],

changing the stream encoding to that of another format. Other types of filtering are

-61

possible. The activation of a filter might be handled by the network, or an application-

level gateway, or at the source - again an application-level decision.

Errors can be handled through forward error correction (EEC) or retransmission.

However, EEC can be computationally expensive, and end-to-end re-transmission is not

always suitable for real-time media. So, error adaptability is often required at the

application level. Schemes also exist for coping with loss by using redundant encoding

[RFC2198, BV96, HSHW95]. The exact nature of the redundancy used depends on the

amount of lost or erroneous ADUs. A flow may also change its construction to have

smaller ADU sizes to cope with lost ADUs.

Delay and jitter adaptability is typically handled by use of elastic buffering. However the

delay and jitter constraints must be within acceptable bounds for the application and the

flow. Note that rate, delay and jitter adaptability are marked (at the beginning of this sub­

section) as being supportable by both the media flow and the application. Remember that

even if the flow construction supports adaptation capability, it must make sense for the

application and its user (e.g. the two different lecture scenarios in Section 3.3.2). We note

that [BV96] proposes an encoding scheme incorporating redundancy that allows

combined rate, error and jitter control using distinct and well-defined flow-requirements

for the audio flow.

So, we see that flows and applications can be adaptive, but co-ordination is needed

between the application and the network. QoS information from the network is required in

order to make decisions about dynamic adaptability. However, the application can only

co-ordinate dynamic adaptation if it has a sensible way of assessing network QoS.

3.5.4 Support fo r dynamic QoS assessment fo r flows

Dynamic adaptability, generally, is not well supported in applications. As noted in

[PHKS97]:

. . .a user can configure the audio tool to match the characteristics o f a
particular network. Often however, the user does not have the
necessary knowledge to perform this task w ell...

Although the comments are specifically for an audio tool, they are generally applicable.

Applications show static adaptability and have some tolerance to rate, delay and jitter

variations, but, in general, rely on the user for correct tuning to operational conditions.

- 6 2 -

In the Section 3.5.2, we said that a dynamic QoS assessment function works in isolation

per end-system, per application instance. The fact that the mechanism can work in

isolation should not really be a surprise if we consider flow control and congestion control

algorithms for TCP, for example. Although each instance of the algorithm works in

isolation, the design of the system and the way it acts on the information it receives

ensures a distributed effect [MSM097]. (Such TCP-like behaviour is also possible for

multicast [VRC98].) However, unlike TCP, the final decision regarding a flow-

requirement change is left to the application (in co-operation with the user) not to the

protocol software entity. So, the stability of the application (and perhaps at least part of

the network) with respect to the application flow-requirement change is ultimately in the

hands of the application instance itself - “the application knows best” . The trade-off here

is between flexibility with respect to the user and application, against the possible risk of

application or (partial) network instability.

Applications use information from the network (e.g. in congestion control), or from

remote receivers (e.g. in flow control) to change their behaviour, relying on a feedback-

based control system in order to gain stability. The purpose of the QoS summary

(QoSReports in our model) should be to provide the application with feedback about the

compatibility of the network QoS with the application’s flow-requirements. Indeed, we

have seen that there may be other factors observable at the host (such as CPU load), not

just network QoS, that determines flow-requirement changes. The application must take

the flow-specific QoS information along with other application-specific input to make the

final decision about changing its flow-requirement.

To the best of our knowledge, there is currently no general, automatic mechanism

publicly documented that allows assessment of the network QoS from per-flow QoS

parameter measurements, to support dynamic adaptation in the way we have described.

3.6 Chapter summary

Applications with QoS sensitive data flows need to be dynamically adaptive and require

supporting mechanisms to enable such adaptability.

There are two classes of adaptability, static and dynamic. Applications that are statically

adaptable have more that one mode in which they can operate. Such applications choose a

mode of operation (or the user chooses a mode of operation for the application), and

assume that the network will support the appropriate flow-requirements for the period of

-63

operation. Dynamically adaptable applications may use similar mechanisms to those of

statically adaptive applications in order to start operation, but during operation they can

change flow-requirement as required to deal with QoS fluctuations in the network.

(Section 3.1.)

The requirements for supporting dynamically adaptive applications are; QoS interface

integration enabling communication between network and application; QoS mapping

between application and network; a QoS specification to describe flow requirements; the

ability to make QoS compatibility assessment based on measured network QoS data; QoS

information separation and QoS mechanism separation so that the application is not

unduly constrained in design or operation; QoS encapsulation to hide the complexity of

any network technology or QoS information mechanisms; and support for QoS

heterogeneity. (Section 3.2)

There has been much consideration of QoS architectures for ensuring end-to-end QoS.

Support for dynamic adaptability (as described here) is not fully considered in such

architectures. Although we find that a general QoS architecture provides support for many

of the QoS requirements listed above, we note that there are some key differences. These

are mainly with respect to the principle of integration, support for heterogeneity in QoS

service-levels and QoS management policy, in particular the separation of concerns

between which functions are left to the application and which are left to the QoS

architecture. We note that support for making dynamic adaptation decisions based on QoS

assessments is not supported. (Section 3.3.)

A key aspect of enabling dynamic adaptation is modelling the flow-requirements. The

mapping should allow per-flow descriptions, based on QoS parameter values, but should

not be constrained by any particular traffic characteristics. We also need estimation

mechanisms that can remove noise from QoS parameter measurements. Any mechanisms

we use must be computationally inexpensive, and cope with the wide heterogeneity in the

Internet traffic characteristics. (Section 3.4.)

A dynamic QoS assessment mechanism does not require specific support from the

operating system or a distributed systems platform, but system resources (such as host

load) may need to be taken into account in making decisions for changing flow-

requirement. So, the application as a whole may require specific support from either or

both of the operating system or a distributed systems platform for making adaptation

- 64 -

decisions. Techniques exist for adapting media flows, but no mechanism exists for

supporting dynamic QoS assessments and dynamic adaptation in the way we have

described. (Section 3.5.)

- 65 -

4. Dynamic QoS assessments

In Section 3.6, we ended with the following conclusion:

... no mechanism exists fo r supporting dynamic QoS assessments and

dynamic adaptation in the way we have described.

In this Chapter, we make our first contribution to addressing this problem. We define the

QoSSpace and QoSReports. The QoS Space is a model to allow interaction between the

network and the application. It has a well-defined interface and takes simple descriptions

of the flow-requirements - QoSRegions - which describe the requirements of the flow.

The QoSSpace and QoSRegions are defined in terms of QoSParam values. QoSParams

have a name and value. The flows and the network are said to exist in QoSSpace.

QoSReports are issued by the QoSEngine and quantify how well the QoSRegions match

the current network QoS.

We start by first clarifying the problem, based on the discussion in Chapter 2 and

Chapter 3, and our requirements R l to R8 listed in Section 3.2. This is followed by a

description of the QoSSpace and how QoSRegions (the model of the application’s flow-

requirements) are defined. We then describe the mapping of the QoSRegions and the

network QoS, NetQoSRegion, into the QoSSpace and look at the dynamics of our model.

We discuss the QoS related information required by both the QoSSpace and by the

application, and define the interface between them.

- 66 -

4.1 The problem

A mechanism is required that can give an indication of the ability of the network to

support any of a number of flow-requirements that the application might use. The

application modes may be functions of network QoS and other application-specific

information, so our mechanism cannot make the decision for the change of flow-

requirement for the application, but offers summaries of QoS information - QoSReports

- which represents the compatibility between flow-requirement and network QoS. In

general we are not aware of the following application-specific details;

• the way in which information from the current QoS Report will be used with

information from previous QoSReports in order to make a flow-requirement change

decision

• the way in which QoSReports must be evaluated with other application-specific

information or user preferences in order to make a flow-requirement change decision

For example, there may be a statistical or temporal sense in which the information in our

QoSReports has meaning to the application with respect to its current mode and flow-

requirement(s). This can only be assessed by the application. So, we chose to separate the

flow information from other application information (in support of R5) and say that the

application flow-requirements will be expressed separately as QoSRegions; information

that is specific only to the QoS requirements and constraints of the individual application

traffic flows. For example, in an audio conference, each audio application instance is

concerned only with QoS experienced by its flow. However, the conferencing application

as a whole may require all the separate instances of the audio application to synchronise

on the highest quality audio encoding that is useable by all the conference participants. As

we do not know how the application will use the QoSReports, the QoSEngine will simply

issue QoSReports that are based on an evaluation of the instantaneous state of the

network - a snapshot in time^^.

Our problem, then, is to devise a model that will report the suitability of the network to

support QoSRegions defined for an application’s flows. We have devised such a model

that represents a multi-dimensional space in which the application flows conceptually

exist and into which the network QoS is mapped. This is the QoSSpace. In Figure 4.1, we

We see later when we discuss the application adaptation function (AAF) in Chapter 6, that in fact we may need to
perform some “application-level smoothing in time” in order to control adaptation behaviour.

- 67 -

show il simplified version of Figure 1.3, highlighting the area of work considered in this

Chapter (dashed box). So, in this Chapter, we describe:

• the QoSSpace and QoSParams

• the QoSRegions for a flow

• the way in which the QoSEngine produces QoSReports

• the interface laq (in both directions)

Note that the AAF (application adaptation function) has been removed - we return to this

in Chapter 6.

r
QoSReports f

ua

Internet

application OoSRegion
information

user-application interface
application-QoSEngine interface
QoSEngine-network interface

application

O QoSEngine

Q QoSSpace

Figure 4.1: The QoSSpace and the Interface /„,

We start by clarifying the nature of the operation of our model.

4.2 Control systems and adaptation

Our model (Figure 1.3) has some similarities to that of a traditional control system

process. However, it has significant differences, both in its aims and its function, which

mean that the use of traditional control theory analysis and evaluation are not suitable.

Many adaptive mechanisms (e.g. congestion control) rely on the use of a control systems

approach to adjust their flows. A general control system is depicted in Figure 4.2.

In a traditional control system, the aim of the controller is to generate control actions that

keep the system at a set-point (a defined operating point for the system). The transfer

function uses measurements o f specific parameters from the output of the system to

feedback for the controller. The controller uses the feedback information with

- 6 8 -

other inputs to decide the control action it should take in order to maintain the required

system behaviour, i.e. maintain the set-point.

measurements

feedback

^ outputinput
control
action

controller

transfer
function

system

Figure 4.2: A schem atic diagram o f a general control system

If we compare Figure 4.2 with our model in Figure 1.3, we can identify similarities:

• the system is the application and the output is the flow as it traverses the network

• the measurements from the output are a set of QoS parameter measurements for the

flow

• the transfer function is analogous to the QoSEngine which generates the QoSReports

as a summary of system behaviour

• the controller is analogous to the AAF (application adaptation function) and the

control action will be to select a suitable QoSRegion, which may affect the system

(the application) and the output (the flow)

In a traditional control system, the transfer function tries to model the input/output

characteristics of the system, and the feedback is compared with a reference set-point

(typically an input to the controller) to determine the control action. However, our

dynamic adaptation scenario differs from the traditional control system in three important

ways:

1. the QoSEngine does not model the system input/output but provides a summary of the

relative compatibility of the network QoS offered to the flow and the possible

QoSRegions

2. the generation of the QoSReports can be controlled through manipulation of the

definition of the QoSRegions, which is analogous to modifying the transfer function

3. the behaviour of the AAF may be modified by user preferences or inputs from other

application specific sources, i.e. the controller is adaptable

-69

So, overall, while we do have a feedback control process, the measurements are processed

in a different manner to that of a traditional control system, and so the feedback is of a

different nature. A traditional transfer function may be identified by system analysis or by

empirical methods, but the QoSSpace is always the same abstraction (modified only by

the QoSRegions and QoSParams defined by each application), and the QoSEngine always

performs the same function (a compatibility test).

Essentially, the aim of our model is not the same as that for a traditional control system;

instead of attempting to maintain a set-point, our model seeks to allow the application to

select a QoSRegion.

4.3 QoSSpace and QoSParams

The QoSSpace is a multi-dimensional space in which flows conceptually exist, and into

which the network QoS is mapped. Flow-requirements are represented by QoSRegions,

where each flow may exist in one of a set of QoSRegions. The dimensions of the

QoSSpace are a set of QoSParams. This is depicted in Figure 4.4, which shows only

three QoSParams, but any number of QoSParams are possible.

Figure 4.3: A Q oSSpace defined in term s o f three Q oSParam s

The QoSParams are variables that are representations of real QoS parameters, such as

throughput, delay, jitter, etc, and have the same units as the QoS parameter they represent.

The QoSParam is an estimate of the current value of the QoS parameter, based on

measurements of that QoS parameter. QoSParams are chosen to suit the application, i.e.

the dimensions of the QoSSpace are application-specific (in support of R3). We consider

-7 0

the timescales of operation to be application-specific (in support of R5 and R6), and the

QoSSpace issues a QoSReport which is effectively a snapshot in time. However, the

application must ensure that measurements of QoS parameters are being taken as least as

often as QoSReports need to be generated. The interval over which measurements are

taken and QoSReports are generated will be application-specific. The network QoS is

evaluated and mapped into the QoSParam space by some mechanism (we describe a

suitable mechanism in Chapter 5). We choose to separate the abstraction of the QoSSpace

from any mechanism for performing the mapping of the network QoS in support of R5

and R6. We describe the application interface to the QoSSpace in Section 4,7. The

simplicity of the QoSSpace supports R7.

When we talk about a QoSParam we identify it simply by the QoS parameter it

represents, e.g. delay. The QoSSpace abstraction does not require knowledge of the

semantics of the QoSParams, other than:

• that they are REAL numbers

• the QoSParam values are on a linear scale

• that relational operators (=, <, >) make sense, semantically, for the QoSParam values

These three simple rules are necessary and sufficient. They are necessary in order to allow

the comparison of two values of a QoSParam in a meaningful way; and they are sufficient

as any other QoSParam semantics (e.g. “high values for a parameter are better than low

values”) are application specific. Use of REAL numbers rather than INTEGER values

allows a more convenient notation when using large numbers or high order units for

QoSParam values, e.g. 64.1 Kb/s instead of 64100Kb/s. The QoSSpace is not concerned

with the units of any QoSParam but the application is. The definition and number of

QoSParams in each QoSSpace is application-specific.

4.4 QoSRegions

We have chosen to think of the flows as having flow-requirements. These flow-

requirements are defined in terms of QoSParams by specifying the operating/performance

limits required for a particular flow-requirement. Each of these flow-requirements is

called a QoSRegion for the flow, and is a region in QoSSpace in which the flow can

operate. As an example, we may define a QoSRegion for a fictitious flow in terms of the

QoSParams Pj, P2 and P 3 . We use simple boundaries, which we call _lo and J ii\

-71

qrl = J o ,p ^ _ / z f) , , P2 - P2 _ (f!,, Rl _ /o, _ /zf)}

This statement identifies a QoSRegion called qrl, which is defined in terms of the

QoSParams Pi, P2 and P_i. qr l consists of a set of tuples, each of which has the structure:

where:

id

J o

hi

is a name identifying the QoSParam

is the low threshold value of the QoSParam

is the high threshold value o f the QoSParam

For simplicity, we have chosen to make QoSRegion boundaries rectilinear, qr l is

depicted in Figure 4.4.

Figure 4.4: An example of a general QoSRegion definition with three QoSParams

In general, a flow may have many QoSRegions, one for each of its flow-requirements.

For any set of QoSRegions for a flow:

• the number of QoSParam tuples specified need not be the same for all QoSRegions

• for any QoSParam tuple in the QoSRegion definition, either one of the _/?/ or J o

thresholds may be left undefined, as required, but at least one of them must be present

• QoSRegions may overlap

• some points in the QoSSpace may not belong to any QoSRegion

- 7 2 -

For N QoSParams, the QoSRegion is defined simply as:

(4.1)

As an example, consider the use of throughput, delay and jitter in place o f Py, P2 and P j,

as required for an audio flow. One QoSRegion may be defined as:

p a n = {{th roughpu t ,64 -} ,{de lay - ,500) ,{ j i t te r - ,500) }

This says that the QoSRegion pan , requires a minimum of 64Kb/s throughput, and can

tolerate a maximum of 500ms delay and a maximum of 500ms Jitter. The QoSRegion

p a n is depicted in Figure 4.5.

throughput

pom'
500ms
(jitter)

64Kb/s
(throughput)

delay

500ms
(delay)

jitter

Figure 4.5: An example QoSRegion definition for an audio flow

For this same audio flow, other encoding schemes could be possible, and so other

QoSRegions would be defined. The definition of the QoSRegions for a flow acts as a QoS

specification for the application (in support of R3), and also serves as a QoS mapping

from application view to a network view through the QoSSpace (in support o f R2).

Note that the model is not concerned with the semantics of the QoSParams or any

relationships between them - this is left for the application to control. Also, different

QoSParams may exhibit strong correlation from their underlying QoS parameters (e.g. on

some networks, delay and throughput may be related - as delay goes up throughput goes

down), and so it may be possible to reduce the number of dimensions. This, again, is an

application-level issue. The application may choose the complexity o f the definition o f the

- 7 3 -

QoSRegions, as required. However, the QoSSpace must be defined by the set of

QoSParams given by the union of all the QoSParam tuples for all the QoSRegions for that

flow. The simplicity of the QoSRegion definition supports R7 and R8.

4.5 NetQoSRegion

We have a mechanism for describing the application flow-requirements - QoSRegions.

We now need a mapping of the network QoS into the QoSSpace. We achieve this by

using QoSParam values to also describe the network QoS, NetQoSRegion.

NetQoSRegion is a region in QoSSpace indicating the network QoS offered to a flow.

The NetQoSRegion supports R2, mapping network QoS to the QoSSpace.

The NetQoSRegion will have the same dimensions as the QoSSpace. Note that this

mapping is not necessarily the network QoS as seen at a particular host interface - it is

the QoS that reflects the network resources available to a particular flow. However, the

application may decide the granularity of the flow. For example, the application may

decide that it has only one flow with respect to the QoSSpace, and this is a measure of the

network resources available to the application as a whole via a particular host interface.

Within that application flow, it may choose to send many traffic streams. There may be

other constraints that decide the granularity of a flow, e.g. IPv6 and RSVP have slightly

different definitions for a flow. The flow definition is application specific.

A simple interpretation of the NetQoSSpace would be to measure values of the QoS

parameters for a flow, and use these directly as values of QoSParams. This would

translate to a point within the QoSSpace:

 ̂= Vn- 1 . . .A , ^„G

i.e. {qn] are the values of the set of QoSParams {P„} that define the QoSSpace. However,

we noted in Section 2.5 that delay and noise effects mean that we must transform our

measured values of QoS parameters to try and estimate the true state of the network.

Associated with this data transformation is an uncertainty in our estimation. As the

network QoS fluctuates we may have different amounts of uncertainty. If the network is

in a steady state, we may have a lesser degree of uncertainty than if the network is

currently showing fluctuations in the QoS offered. Measures such as standard deviation

are normally used to indicate such uncertainty. However the standard deviation may only

have meaning and use in a statistical sense when we have some knowledge of a consistent

74-

model of our traffic and/or the network. What we actually want is an estimate of the

current variability, v_j>, of the QoSParam, i.e. some instantaneous estimate that indicates

how much the value of the QoSParam is currently fluctuating. We discuss how we

estimate a value for in Section 4.6.1. In terms of our QoSSpace, we choose the

mapping of the NetQoSRegion to be expressed as a region:

r = [{P^,q^_lo,q^_hi),{P^,q^ _ lo,q^ _ h i } , . . . _ lo,q^ _ hi)] (4.2)

where the _lo and _hi thresholds in (4.2) indicate the limits of our estimate of variability

for the QoSParam. Note that this is the same format as our expression for the QoS Regions

in (4.1). However, the NetQoSRegion in (4.2), must have both a J o and J i i component

for each QoSParam tuple.

4.6 QoSReports and the region compatibility value (RCV)

We have mechanisms for representing the flow-requirements and the network QoS, the

QoSRegion and NetQoSRegion, respectively. We now need a mechanism that can issue

QoSReports that contain values that indicate the relative compatibility of the QoS Regions

and the NetQoSRegion. In fact, a description of our task is relatively straightforward: we

need to find when the region defined by the NetQoSRegion intersects with a region

defined by a QoSRegion. If we can measure this intersection, we can offer the application

a region compatibility value (RCV), a measure of the how well the current network QoS

might support a particular QoSRegion. This compatibility value is a unitless number that

is easy to use in other parts of the application. Such a simple mechanism is in support of

R l, R2, R3 and R7, as well as R4.

Note that the definition of the QoSRegion in (4.1) and that for the NetQoSRegion in (4.2)

suggest that we may be able to treat these state definitions as hyper-volumes. For

example, we may choose to use the ratio:

volume of overlap of NetQoSRegion and QoSRegion
volume of NetQoSRegion

to evaluate a RCV for each QoSRegion. However, we choose not to do this. In definitions

of QoSRegions, our model allows use of different numbers of QoSParam tuples in

defining QoSRegions for the same flow, resulting in different shaped volumes (see

Section 4.4). In the evaluation of a volume, relative scaling by multiplication of values of

N QoSParams may lead to a distortion when some values are particularly high or

- 7 5 -

particularly low. Indeed, we need to process each QoSParam individually, and then offer

some sensible summary to the application. So, we must first consider how we process

individual QoSParam values.

4.6.1 Parameter compatibility value function {PCVF)

For each QoSParam, we can derive a parameter compatibility value (PCV), that

expresses the amount by which the value of a certain QoSParam from the NetQoSRegion

falls within the operating region given by a corresponding tuple for a given QoSRegion.

So, for a given tuple, Tp, from a QoSRegion, and the corresponding tuple, T ,̂ from the

NetQoSRegion, for the same QoSParam, P\

Tp = (P , p _ l o , p _ h i)

F, ={P,q_ lo ,q_h i)

PCV =?CWF(f ,Tp)
(4.3)

where PCVF is the parameter compatibility value function. The operation of this

function is to assess the following statement:

PCVF(T,, T) = r , WITHINT (4.4)

where WITHIN is a function that evaluates to a single number that quantifies the ratio:

length of intersection of T. and Tp
length of Ts

The description of WITHIN is explained with the help of Figure 4.6. This shows the

possible scenarios for evaluating WITHIN when Ts and Tp overlap. I is the length of the

intersection of T, with Tp. It is clear that the omission of either p_lo or p_hi from Tp (from

the QoSRegion) poses no problem.

q j o q _hi q j o q _h i qJo. q_hi

p p p
p _ lo p _h i p _ lo p_hi P _lo p _h i

(a) (b) (c)

Figure 4.6: Scenarios for the evaluation of W IT H IN in the PCVF

76-

The PCVF has a simple algorithm:

= q _ h i - q _ l o

I = MIN(g _ hi, p _ hi) - MAX{q _ l o , p _ lo) (4.5)
PCV =MAX(0 , I /L^)

The MIN and MAX functions in line 2 of (4.5) perform their usual operations, except that

if either p_hi or p_lo are not defined, then q_hi or q_lo are used, respectively, as required.

I takes the range [-c«, L^]. When there is no intersection, I is negative. We choose that

PCV = 0, indicates “no compatibility” between QoSRegion and NetQoSRegion, while

PCV = 1 indicates “full compatibility”. So, the final line of (4.5) ensures that the range of

the PCV is [0, 1]. This normalised value is a uniform, consistent and scaleable way of

representing PC Vs, supporting R2 and R7. The algorithm for the PCVF is also

computationally simple. We see that as the variability of the QoSParam (i.e. the QoS

fluctuation) increases, so Lq increases. Unless the fluctuations are completely contained

within the region defined by p_lo and p_hi tuple thresholds (Figure 4.6(a)), as Lq

increases, we have decreasing compatibility between the QoSRegion and NetQoSRegion

with respect to that particular QoSParam (Figure 4.6(b) and (c)).

We choose to use a simple instantaneous estimate of variability in our QoSParam values.

We define as the absolute value of the difference between the current and previous

values of P, and use this to evaluate q_lo and qjhi:

V _ / 7 = ABS(/7,- p , _ ,)

q j o = p ^ - { v _ p / 2) (4.6)

q _h i = p, + { v _ p H)

In V_p, we try to embody the measurement of the current fluctuations that are present in

the measured parameter values. We are uncertain of the statistical properties of the

parameter. In general, different QoS parameters exhibit very different statistical properties

and the properties for even a single parameter may change rapidly over time. We also

need to ensure that vjo is simple to evalute and gives a timely reflection of the

fluctuations in the measured values. Hence we choose a simple heuristic measure that

requires little state and is computationally simple to evaluate.

4.6.2 Examples showing the dynamics o f the PCVF

It is important to assess when QoSRegion boundaries are crossed, i.e. when there is a

change in PCV which may result in a change of QoSRegion. We examine three scenarios

- 7 7 -

where the value of P is close to a QoSRegion boundary, and so there is a change in the

PCV. The three scenarios are:

1. rapid oscillations in P near a QoSRegion boundary

2. a slow change in P across a QoSRegion boundary

3. a large, sudden change in P across a QoSRegion boundary

We do not know the nature of the application and so cannot say if the detection of any of

these three is important for the operation of the application. We must offer the application

the ability to detect all of them.

In Figure 4.7(a) and (d), we define a simple QoSRegion, qr3, with a single tuple,

qr3 = {(P,10,-)} (the region above and including the horizontal line at P = 10 in Figure

4.7(a) and (b)). In Figure 4.7(a), let us assume we observe a set of measurements of P that

could, for example, represent some instability in P. In Figure 4.7(b), we use a simple

threshold test to generate a Boolean indicator if the instantaneous value of P is within the

region defined by qr3. We see the added value from the PCVF in Figure 4.7(c). The

application has a more informative assessment about the possible instability in the values

of P due to the PCV degrading from 1.0 over time (r = 40 to t = 60). Also, the PCV

recognises that although there are large fluctuations in P, this does not necessarily mean

that qr3 cannot be supported, but that there is less compatibility between the network QoS

and that QoSRegion, and so the PCV does not reach zero.

We see in Figure 4.7(d) that the values of P degrade such that the variability between

successive measurements is smaller than in the excited fluctuations in Figure 4.7(a).

(Figure 4.7(d) is actually the lower part of the “envelope” for the measurements of P in

Figure 4.7(a).) In this case, the behaviour of the Boolean threshold and the PCV in Figure

4.7(e) and Figure 4.7(f), respectively, are very similar. In particular, although we see a

general downward trend in the data from the graph in Figure 4.7(d), we do not receive the

same degree of information from the PCV as when there are more rapid fluctuations in P.

This is a consequence of the method we have chosen to represent variability for our

model, in (4.6).

We need to be able to offer the application indications when the QoSRegion is being

supported close to a boundary so that the application has forewarning of a possible

QoSRegion change. We demonstrate in Section 4.6.4 how the use of another set of

78

boundaries that define a QoSiRegion - a QoS intermediate region - allows us to evaluate

when the QoSParam is close to a QoSRegion boundary.

Notice the spike at r = 50 in the PCV graph Figure 4.7(f). This may seem to be “incorrect”

behaviour as we can see that value of P at that time is within the operating region for qr3.

However, we only know it is “correct” because we can see what happens at r = 51. At

t = 50, all that we can see is that there is a downwards change in the value of P very close

to the boundary for the region of operation for qrS. We do not know at r = 50 what will

happen at r = 51 so we assume the downwards trend in the values of P will continue.

There is no reason why we cannot assume that the value at r = 50 will be the same as at

f = 51, but we choose to side with inertia and offer the counter example in Figure 4.8

(discussed below). The application may wish to smooth such spikes if they are reported in

the RCV and we discuss this when we describe an example AAF in Chapter 6.

The added value of the PCVF is shown further if we consider Figure 4.8. In Figure 4.8(a)

we see a different scenario which shows a large and sudden change in P. As well as qr3,

we have two additional QoSRegions, ^r2 = {(P,6,-)} and qrl = {{P,A~)], marked as

horizontal lines at P = 6 and P = 4 respectively, in Figure 4.8(a). The area of interest is

between times r = 3 and t = 5. Here we see a sudden drop in P, from a point where it can

support all three QoSRegions to a point where it can support only qrl. In the Boolean

thresholds shown in Figure 4.8(b), we see that we have high compatibility for qr2 at f = 4

even though we know that the variability of P is high at that point. In contrast, at r = 4, the

PCV for qr2 is not high, as shown in Figure 4.8(c). At f = 5, both the Boolean threshold

and the PCV converge, but we see that the use of the PCV may help the application to

avoid state-flapping (unnecessarily going into a transient state).

So, the PCVF appears to offer useful information for assessing QoSRegion changes for

flows compared to a simple Boolean threshold.

79-

oscillations in P

CL

0 10 20 30 40 50 60 70 80 90 100

a slow change in P

Q.

0 10 20 30 40 50 60 70 80 90 100

(a)
Boolean threshold

time, t

(d)
Boolean threshold

Boolean

100 0 10 20 30 40 50 60 70 80 90 100
time, t

(b)
param eter compatibility value (PCV)

(e)
param eter compatibility value (PCV)

1

PCV

0
0 10 20 30 40 50 60 70 80 90 100

1

PCV

0
0 10 20 30 40 50 60 70 80 90 100

time, t

(c) (f)

Figure 4.7: Two scenarios for changing values of P

- 8 0 -

î, sudden change in p

time, t

(a)
Booiean thresholding parameter compatibility \alue (PCV)

1

10 Boolean

°,

1

6 Boolean

°i
1

4 Boolean

0

qrSPCV

qr2PCV

q rl PCV

3 4
time.t time,t

(b)

Figure 4.8: Response to large, sudden changes in P

4.6.3 Region compatibility value function (RCVF)

The region compatibility value function (RCVF) must take the PC Vs for all the

QoSParams in the QoSRegion and transform them into a RCV using by way of a

summarisation. Any of the usual arithmetic summarisation functions that combine the

values (such as a mean) could provide an incorrect summary of PC Vs due to relative

scaling. For example, consider five QoSParams, that give rise to the set of PC Vs, Sa =

{1.0, 1.0, 1.0, 1.0, 0.0). The application may decide that it is likely to take a RCV of 0.8

to consider that a QoSRegion is useable. This may seem reasonable, but we can see that

the mean of Sa is 0.8, yet clearly one of the parameter conditions cannot be supported

(hence the PCV of 0.0). The application would make an incorrect decision and this could

lead to application and/or network instability.

Looking at it another way, we have seen, in (4.4) that the PCVF evaluates the function

WITHIN. For N QoSParams and a QoSRegion with tuples Tpn and NetQoSRegion with

tuples T,m (V n= I...N), we base a RCVF algorithm on the following statement from

(4.4):

81

if T,, WITHIN and

T . WITHIN To and .
' (4.7)

WITHIN

then RCV is HIGH

This reasoning makes linguistic sense. We see that if the QoSParam values (the

NetQoSRegion) all fall WITHIN the thresholds defined in the tuples for the

corresponding QoSRegions, then the degree to which the T̂ „ tuples are WITHIN their

corresponding Tpn tuples is the degree to which the RCV is HIGH. The key to this

assessment is how to evaluate and in (4.7) and so generate a value for HIGH.

Fuzzy logic provides a suitable interpretation of and as the MIN function. So, we can

modify our statement to say:

R C V = P C V F (T ,,,T ,J andp

PCVF(T,2 ,T^z) andp... (4.8)

p c v F (r ,„ , r „ j

where andp is the fuzzy AND operator (MIN). We see from our example for the set of

RCVs, Sa, (above) that we would now have the correct behaviour. The use of andp means

that the RCV is in the range [0, 1], and is also computationally simple to evaluate.

Where a QoSRegion does not have a tuple defined for a particular QoSParam, then for the

purposes of the RCVF, this is ignored. (Equivalently, the PCVF can evaluate a PCV = 1.0

for that QoSParam. This is also correct because it means that the QoSRegion is not

dependent on that particular QoSParam, so it always has maximum compatibility with

respect to that QoSParam.)

Testing of an implementation of the QoSEngine and generation of RCVs (as part of a

simulation) is presented in Chapter 6.

4.6.4 QoSiRegions - QoS intermediate regions

In Section 4.6.2, we noted that the dynamics of the PCVF are such that the application

may not be able to detect in advance a more gradual change in QoSParam values. In fact,

we can be more precise about this: the application may like to have an indication when a

QoSParam value in the NetQoSRegion is nearing a corresponding QoSRegion tuple _lo

or _hi threshold. This is implemented through the use of QoS intermediate regions or

QoSiRegions. These are quasi-flow-requirements that do not represent a flow-

- 82-

requirement as a QoSRegion does, but are an indication of the proximity of the

QoSParam value to the _lo or _hi threshold of a QoSRegion. The QoSiRegion only exists

within a QoSRegion, and is an optional part of the QoSRegion definition. A QoSiRegion

is also specified by use of a boundaries, _qlo or _qhi. The relationship of the QoSiRegion

to the QoSRegion with respect to a single QoSParam, P, is depicted in Figure 4.9. It is

clear that a QoSiRegion can only exist if it has a corresponding _lo or _hi defined in the

QoSRegion.

There are parameter compatibility values, PCV_hi and PCV_lo, associated with the _hi

and _lo QoSiRegions, respectively, for each QoSParam tuple. These are evaluated in

exactly the same the way as a PCV for the QoSParam in (4.5) but using the QoSiRegion

tuple, = (p _ q h i , p _ h i) or T ^ - { p _ l o , p _ q l o) in place of the QoSRegion tuple,

= {p_lo, p _ h i) , as required. The _qhi and _qlo boundaries are specified by the

application, and can be left undefined.

_hi QoSiRegion

p_hi

p_qhi

QoSRegion

p_qlo

p jo

J o QoSiRegion

Figure 4.9: QoS interm ediate regions - Q oSiRegions

The QoSiRegions also have a region compatibility value, RCV_I, which is evaluated in a

different manner to that of the RCV for the QoSRegion. Consider a QoSRegion defined

using N QoSParams. If any of the N QoSParam tuples in the NetQoSRegion, suggest

that the corresponding QoSParam value might be WITHIN a QoSiRegion tuple,

(either a _lo or J i i QoSiRegion) then we know that the whole QoSRegion is operating

close to one of its boundaries. (The application may conclude from this that the

QoSRegion may soon not be supportable, but this is an application-level decision.) So,

our reasoning for the RCV_I is:

- 8 3 -

if WITHIN T

WITHIN T^s2 J.̂ 2
WITHIN

then RCV I is HIGH

or

or
(4.9)

As with (4.7), we see that (4.9) makes linguistic sense. We need an interpretation for or

that lets us assign a value to RCV_I. Again, fuzzy logic offers us a suitable interpretation

of or as the MAX function. So, using (4.4) and (4.9), we have:

RCV_I= PC VF(T,,,?;,) orp

pcvF(r,„r,,) oFp
p c v F (r , „ . r , j

(4.10)

where orp is the fuzzy OR operator (MAX). The orp operator makes sense: it only needs

one QoSParam to enter a QoSiRegion to indicate that the QoSRegion is operating near a

boundary. In Figure 4.10, we consider again the example presented in Figure 4.7(d) but

use a J o QoSiRegion for qr3 with p_qlo = 10.5 (marked as a horizontal line at P = 10.5

in Figure 4.10(a)). We record the PCV_lo values in Figure 4.10(b). We can see in the

lower graph of Figure 4.10(b) how the value of PCV_lo shows that qr3 is in the region of

the QoSiRegion, forewarning of a possible QoSRegion change.

a slow ch a n g e in P

10 B oo lean-

20 30 40 50 70 9080

PCV

20 30 40 50 70 80 90

P C V Jo

20 30 50 60
time, I

70 80 9050 60 70
time, t

10020 30 40

(a) (b)
Figure 4.10: Exam ple use o f a QoSiRegion

4.7 The interface between the application and the QoSEngine, l a q

The relationship between the RCVF and the PCVF components, and the interface hq are

shown in Figure 4.11. Note that the process of taking measurements of QoSParam values

is not the responsibility of the QoSEngine, in support of R6 and R7.

84-

N etQ oSRegion

OoSReport

QoSRegions

appllcatlon-QoSEnglne interface
measured value of QoSParam n
parameter compatibility value (including J o and _fii)
PCV function
region compatibility value (including J o and _hi)
RCV function
variability of QoSParam n

Figure 4.11: A schematic diagram of the internal functions of the QoSEngine

A suitable mechanism for estimating p„_i? and generating v„_p is described in Chapter 5.

We consider here the abstract interface between the application and the QoSEngine. The

inputs to the QoSEngine are the definitions o f the QoSRegions. The output of the

QoSEngine is a QoS Report containing RCVs for each QoSRegion. The definition of the

QoSRegion is given in (4.11).

QoSTuple = {qt _ id , p _ lo, p _ hi, p _ qlo, p _ qhi)

QoSRegion = {q r_ id, QoSTiqAe^, Q o S T u p le ^ Q o S T u p le)
(4.11)

where:

qt_id a value that can be used to unambiguously identify (in the context of

the QoSEngine and the application instance^^) the QoSParam to QoS

parameter mapping for the flow.

qr_id a value that can be used to unambiguously identify (in context o f the

111 the context o f the application instance, this w ill typ ica lly be a s in g le “How” , in w hatever m anner the application
d e lin es “ How” .

- 8 5 -

QoSEngine and the application instance^^) the QoSRegion to which the

tuples apply

p_lo a numeric value indicating the lower threshold value of the QoSParam.

If p_hi is defined then p_lo must be less than p ji i .

p_hi a numeric value indicating the lower threshold value of the QoSParam.

If p J o is defined then p_hi must be greater than p_lo.

p_qlo a numeric value greater than p j o indicating the upper threshold value

of the QoSParam for the J i i QoSiRegion. p_qlo can only be defined if

p j o is also defined. If either p_qhi or p j i i is defined then p_qlo must

be less than yW {p_qhi, pJii).

p_qhi a numeric value less than p j i i indicating the lower threshold value of

the QoSParam for the J o QoSiRegion. p_qhi can only be defined if

p_hi is also defined. If either p j o or p_qlo is defined then p_qhi must

be greater than MAX(/?_/o, p_qlo).

At least one of p j o or p j i i must be defined for the QoSRegion. p_qlo and p_qhi are

optional.

The QoSEngine returns a per-flow QoSReport as follows;

QoSRCV =(qr id, rev, rev i)
~ (4.12)

QoSReport = {QoSRCV,,QoSRCV^,...QoSRCV^ }

where:

q r jd as defined for the corresponding QoSRegion.

rev a numeric value in the range [0, 1] indicating the compatibility

between the NetQoSRegion and the QoSRegion identified by qrJd .

r e v j the RCV indicating that the QoSRegion is being supported within the

for the J o or J i i QoSiRegion, if either QoSiRegion is defined.

The implementation of the interface should be asynchronous, in general, to support R6.

The way the application and the QoSEngine interact can be entirely implementation-

specific. For example, the application instance could “register” the QoSRegion

information with a QoSEngine instance and be notified by an event carrying the

QoSReport when RCVs change value. Alternatively, the application could receive

QoSReports periodically, regardless of whether there are changes in the RCVs or not. The

abstract interface presented here does not require or constrain any particular model of use.

- 8 6 -

4.8 Discussion

The key to the use of the QoSEngine is the definition of the QoSRegions (including

QoSiRegions). The QoSRegions represent the flow-requirements of the application flow.

The dynamics, semantics and relationships of QoSRegions (inter-flow and intra-flow) are

known only to the application. The QoSEngine needs very little semantic knowledge of

the QoSRegions.

Although in the examples, we have used common QoS parameters (such as throughput,

delay and jitter) the QoSSpace can be applied in a more diverse manner. For example,

parameters such as battery life, host load and cost could also be used.

The QoSEngine is presented as an abstraction that requires only two pieces of information

per QoSParam per flow: an estimate of the current value, p_j?, and an estimate of the

current variability in that value, v_j). Our simple definition of means that the

QoSEngine needs to hold very little historic information for a flow. Additionally, the

QoSEngine is separated from the mechanism that is used to provide the values o f p_p and

V_jy. This means that the implementation of the QoSEngine is not constrained. It could,

for example, be tightly coupled with the application (embedded), implemented as a kernel

module or daemon on a host, or implemented as part of a distributed system using

middleware.

Note that in fact what the QoSEngine actually needs for its operation is the values of q_lo

and q_hi for each of the NetQoSRegion tuples. We have decided to generate these values

by taking an estimate of the current value of a QoS parameter, p_pt, from measured values

and generating q_lo and q_hi by using the absolute value of the difference between p_pt

and p_pt-i. (We describe a way of generating estimates for parameter values in the next

chapter.) Other methods of generating q_lo and q_hi could be used. However, we choose

to use the approach based on direct parameter estimation from measurements because:

• parameter value measurement and estimation is widely used within communication

applications and protocols and is well supported by a number of measurement

mechanisms

• there are computationally inexpensive methods of generating parameter estimates from

measured values

• generation of parameter estimates may be required in any case, in order to fine tune the

operation of the application

-87

The simple feedback to the application, using only RCVs which are unitless and have

values in the range [0, 1], means that applications should find it easy to use the RCV

information in making decisions. The PCV and RCV give reasonable scaling properties.

The computational cost for each QoSReport is approximately of the order:

M
M + N + Y ^ Q ^ (4.13)

m-\

where:

M number of QoSRegions for a flow (evaluation of RCVF)

N number of QoSParams (evaluation of NetQoSRegion)

Qm number of QoSTuples defined in QoSRegion m (evaluation of PCVF)

If all QoSRegions have the same number of QoSTuples, with a QoSTuple for each

QoSParam, (4.13) becomes:

M (V + 1) + V (4.14)

So, in an application with a fixed number of QoSParams, the computational cost of the

use of the QoSEngine scales linearly with the number of QoSRegions for the flow, i.e. the

evaluation of the RCV for QoSRegions and the RCV_I for QoSiRegions. Evaluation of

both the RCV and RCV_I involves only simple operations, so the added cost for extra

QoSRegions and QoSiRegions is relatively low. It can be seen from (4.14) that there is

also an identical linear relationship for N with fixed M. However, adding extra

QoSParams may require additional network resources to measure and distribute QoS

parameter values, and so is likely to have a greater overall cost than increasing M. This

additional cost will depend greatly on the (application-specific) measurement and

distribution mechanism used.

The QoSEngine treats all QoSParams as orthogonal. Each QoSParam is evaluated

individually, in the PCVF, and only then is the RCVF for each QoSRegion evaluated. So,

effectively, the treatment of any one of the N QoSParams is identical to the treatment of

just a single QoSParam. Although in some cases there may be correlation between

QoSParams, this is for the application designer to resolve and define QoSRegions

appropriately, if required.

- 8 8 -

Applications may use elastic buffering techniques that require accurate measurements of

QoS parameters like throughput, delay or jitter to fine-tune the flow play-out set-point.

These applications can still make use of the QoSEngine, but may also require access to

absolute QoS parameter values. In this case, the QoSReport definition of (4.12) can be

easily extended to include the values p_p and v_p, which are passed through from the

NetQoSRegion:

QoSRCV = {qr _ id, rev, rev _ i)
NetQoSTuple = {q t_ id , p _ p ,v _ p)

QoSReport = {{QoSRCV^,...QoSRCVj^^},{NetQoSTuple^,...NetQoSTuple^})

The specification of QoSRegions and NetQoSRegions makes no mention of traffic

characteristics or QoS service-levels. There are no assumptions made about the support

that will be provided by the network to the QoSEngine or the behaviour of the network.

The formulation of the RCVs is based on simple, logical reasoning, and is

computationally inexpensive.

The QoSEngine fulfils the requirements Rl to R8, as defined in Section 3.2. In particular,

we believe it fulfils the requirement R4.

4.9 Chapter summary

Adaptable applications lack a mechanism that allows them to make sensible assessments

of network QoS and so make decisions about dynamic adaptation in the face of QoS

fluctuations. We do not know the time scales of operation of the application or the other

information required by the application in order for it to make a flow-requirement change

decision. So, our proposed model should provide reports - snapshots in time - about the

current state of the network and its ability to support application flow-requirements. We

need a model of the network QoS and the application flow-requirements. (Section 4.1.)

We define a network QoS model as a multi-dimensional space, QoSSpace. Each of the

QoSSpace dimensions is defined by a QoSParam, derived from the QoS parameters that

they model, e.g. throughput, delay, jitter, etc. (Section 4.3.)

The application flow-requirements are modelled as a set of QoSRegion definitions. Each

QoSRegion represents a region of operation for the flow within the QoSSpace by use of

_hi and __lo boundaries that are effectively threshold values of QoSParams for that

QoSRegion. The flows are said to exist in QoSSpace as independent QoSRegions, and

- 8 9 -

only the application knows the inter-QoSRegion (intra-flow) and inter-flow relationships.

The application defines the QoSRegions and passes them to the QoSEngine.

(Section 4.4).

The network QoS, NetQoSRegion, is also modelled in a similar way to QoSRegions,

using values of QoSParams to indicate the current operating region of the network QoS

with respect to a flow. NetQoSRegion is not a point in QoSSpace, but a region,

expressing the uncertainty we have of the exact value of the QoS parameters.

(Section 4.5.)

The QoSEngine generates QoSReports containing RCVs (region compatibility values).

These are values in the range [0, 1] for each QoSRegion, and express the compatibility

between that QoSRegion and the network QoS, i.e. the RCV is a measure of the

network’s current ability to support that QoSRegion. A value of zero indicates no

compatibility and a value of one indicates full compatibility. The RCVs allow the

detection of rapid fluctuations directly, and QoSiRegions allow detection of when a

QoSiRegion is operating close to one of its boundaries. The evaluation of RCVs is

computationally simple and has reasonable scaling properties. (Section 4.6.)

We have defined an abstract interface, laq, between the application and the QoSEngine.

This is used by the application to pass QoSRegion definitions to the QoSSpace, and

allows the QoSEngine to pass QoSReports containing RCVs back to the application. The

interface can be realised as an asynchronous interface, and the implementation can be

loosely or tightly coupled. (Section 4.7.)

We find that the QoSEngine offers a potentially useful QoS summary in its QoSReports

with reasonable scaling properties. The application may require access to the QoS

parameter measurements (QoSParams) for other application specific mechanisms. If so,

then the QoSParam values can be passed in the QoSReport also. We believe that the

QoSEngine fulfils requirements R l to R8. (Section 4.8.)

- 9 0 -

5. Processing QoS parameter
measurements

In Chapter 4, we described the QoSSpace, an abstraction that allows the modelling of the

network QoS. An interface to the QoSEngine allows:

• the application flow-requirements, QoSRegions, to be incorporated into the QoSSpace

• the QoSEngine to issue QoSReports containing RCVs (region compatibility values) for

each QoSRegion as an indicator of the networks’ ability to support that QoSRegion

This is the “front-end” of the QoSEngine. The QoSEngine “back-end” needs information

about the network QoS in for the flows in the QoSSpace, i.e. it needs values of the QoS

parameters for the flows to allow the QoSEngine to produce PC Vs (parameter

compatibility values). In Figure 4.11, we see that the back-end of the QoSEngine requires

two values:

1. p the QoSParam value, an estimate of the current value of the QoS parameter

2. V_p: an estimate of the current variability of the QoSParam

We have already chosen a simple definition of from (4.6):

v _ p =A B S(p_p, -/?_/?,_,)
p_ lo = p _ p , - { v _ p 12) (5.1)
p_h i = p _ p , + { v _ p 12)

i.e. the absolute value of the difference between the current and previous QoSParam

values. It remains for us to find a suitable mechanism for generating p_p.

-91 -

In this chapter, we present our second contribution to addressing the dynamic adaptability

problem. We describe the QoSEngine back-end, a method of providing QoSParam values

and generating NetQoSRegion. This provides the network input to the PCVFs.

5.1 The problem

We must provide a mechanism to generate QoSParam values, p_p, from raw QoS

parameter measurements. In Section 2.5, we discussed mechanisms for getting

information from the network, and the need to provide an estimate of the current value of

the QoS parameter value in the face of delay in the measurement process and noise in the

measured values. We need a mechanism that is general, robust, accurate, and has good

immunity to noise. We need to show that this mechanism is a suitable back-end to the

QoSSpace.

In Figure 5.1, we show a simplified version of Figure 1.3, highlighting the area o f work

considered in this Chapter (dashed box). So, in this Chapter, we consider:

• the estimation mechanism (how the QoSEngine turns raw QoS parameter

measurements into QoSParam values)

• the dynamics and performance of the estimation mechanism

• the integration of this estimation technique as the back-end of the QoSEngine

We test our estimation mechanism with pre-defined waveform measurements and show

how it deals with real network measurements.

r
QoSReports

ua

Internet

application QoSRegion
information

O
O
0

application

QoSEngine

QoSSpace

user-application interface
application-QoSEngine interface
QoSEngine-network interface

Figure 5.1: The back-end for the QoSEngine

- 9 2 -

5.2 Fuzzy adaptive prediction (FAP)

We need an estimation technique that is adaptive so that it can cope with the variety of

QoS and connectivity conditions. We also require the estimation technique to be

computationally simple, as it may be required to generate many estimates for many

application flows, in software running on a general-purpose processor. A common

estimation (and noise filtering) technique with such properties is exponential weighted

moving averaging (EWMA):

P n \ = f > P , + i ^ - f >) P , (5.2)

where:

p estimated value of parameter P

p measured value of parameter P

/5 control parameter, 0< < \

This technique is known for its robustness, stability and ease of use, so finds applications

in many situations, e.g. [KP87, Jac88, Kes91, KMR93, SEFJ97]. The key to this

technique is the value of yô : setting the value too large leads to a lack of responsiveness

and setting the value too small leads to “noisy” estimations. Consider the graphs in Figure

5.2. In Figure 5.2(a) we see a square wave that has mean SNR = 19.9dB (10.1% noise)

including large spikes. We treat the noisy trace as our measured readings for P.

We see in Figure 5.2(b) the effects of using (5.2) with = 0.9, and in Figure 5.2(c)

=0.1. We see that the former offers poor response to changes in P, but can cope with

noise, whilst the latter provides virtually no smoothing of noise but good response. One

way to deal with such circumstances is to try and adapt the value of /) as required.

Mechanisms for this are proposed in [Kes91] and [KMR93]. [KMR93] uses a heuristic

based approach for the control of video stream traffic, while [Kes91] proposes a more

general mechanism which is described in detail in [KK92]. Both [Kes91] and [KMR93]

use an adaptive EWMA to produce estimates of flow parameters from network

measurements, and both use the technique for QoS sensitive flows. [KK92] treats the

stream of measured values as a time series of observations from a random variable, as

shown in (2.1) and (2.2) (Section 2.5.2). [KK92] uses a fuzzy logic feedback control

- 9 3 -

systenr^ to adapt the value of [Î , and we will call this the fuzzy adaptive predictor

(FAP). The results of using FAP with the noisy trace in Figure 5.2(a) is given in Figure

5.2(d).

a noisy square wave use of EWMA on a noisy square wave

actual
noisy

actual

20

100 200150 250 0 50 100 150 200 250

(a)
use of EWMA on a noisy square wave

(c)
use of FAP on a noisy square wave

actual (i = 0.9
20

0 50 100 150 200 250

20

actual
FAP

(b)

50 100 150 200
time

(d)

Figure 5.2: Using EWMA: the effects of changing y6

When comparing Figure 5.2(d) with Figure 5.2(b), we find that FAP has fairly good

immunity to most of the noise as well as being responsive. Although the FAP is designed

to have some immunity to spikes, comparing Figure 5.2(a) and Figure 5.2(d), we find that

the FAP is not immune to large spikes in the measured values. This is demonstrated

clearly in the example of Figure 5.3. Figure 5.3(a) is the input to the FAP, a steady value

of 10 with four spikes, and Figure 5.3(b) shows the output from the FAP. In the next

T he fo llo w in g inform ation, not docum en ted in [K K 92] is a result o f private com m u nication w ith S. K eshav: all the

fu zzy rules (assertion s) are evaluated using the min-max rule o f inference w ith a centroid (composite moment) de­
fuzzification, and the final consequent fu zzy region is then norm alised to prcxJuce the m apping functions. Full details

can be found in |K K 92], N ote that |K K 9 2] has :ui incorrect diagram for the F A P in Figure 2 and the correct version
appears in fK es9 1 | in Figure 4.

-9 4 -

section, we describe how these large spikes can be removed^^, if required, by using a pre­

filter to the FAP.

large sp ikes in P FAP re sp o n se to sp ikes in P20 20

Q. 10 Q- 1 0

0 2 4 8 10 12 14 16 18 20 0 2 46 6 8 10 12 14 16 18 20

(a) (b)
Figure 5.3: The response of FAP to large spikes in values of P

5.3 Fuzzy adaptive smoothing (FAS)

We present a smoothing mechanism based on the work in [KK92]. This mechanism,

which we call the fuzzy adaptive smoother (FAS), can be used as a pre-filter to the FAP

(or any other mechanism). The purpose of this pre-filter is to “de-spike” noisy

measurements. The FAS is based on (5.1):

Â = + (l->)P r (5.3)

The FAS uses a fuzzy logic mechanism to provide values for y . The fuzzy reasoning for

computing values of j is as follows:

if CIV is LARGE

if CIV is SMALL
then y is LARGE
then y is SMALL

(5.4)

where CIV is the change-in-value:

CIV = MIN
V

i A - 1
Pi

Px =M AX(p,,^,_^),P2 =M IN (p,,p,_^) (5.5)

As FAP is not immune to large spikes, we use our own smoothing mechanism, FAS, which can cope with large
spikes. So, in our use of FAP, we choose to set the FAP “spike-smoothing” in the estimation of “change-in-error” to 1
rather than 3 as suggested in [KK92] and [Kes91].

- 9 5 -

K is an integer that is a measure of the “spike-duration” that we wish to filter. Note that

for (5.5) we define:

CIV = 0 if = 0 ,/? 2 = 0

C IV = 1 if # 0 ,/7 2 = 0

CIV has the range [0, 1], and assumes that measured values of p, and p,.K are always

positive. To explain the use of CIV, we assume that we are in the steady state. The use of

(5.3) with the if-then assertions in (5.4) are saying:

1. if there is a LARGE change-in-value (CIV), this is probably due to a spike, rather than

a change in P, so give precedence to the previous estimate, i.e. ignore the spike

2. if there is a SMALL change in value (CIV), this is probably due to changes in the

value of P so give precedence to the current measured value

In the definition of CIV from (5.5), we see that we have chosen to define a spike as a

change of factor 2 or greater in the measured values. This is depicted in Figure 5.4.

definition of CIV

O 0.6

0.4

0.2

1 1.2 1.4 1.6 1.8 2 2.2
P/P2

Figure 5.4: Definition of CIV (change-in-value)

The effects of increasing the value of K are shown in Figure 5.5. The input to the FAS is

shown in Figure 5.5(a) and has four spikes of duration 1, 2, 3 and 4. The effect o f using

the FAS with K = 1, K = 2 and K = 2 is shown in parts (b), (c) and (d) of Figure 5.5,

respectively. Notice the delay in the output o f K time units compared to the input. So the

FAS imposes a trade-off between filtering of spikes and timeliness o f information.

LARGE and SMALL are fuzzy linguistic variables that are defined as shown in Figure

5.6(a). The overall mapping o f CIV to } is shown in Figure 5.6(b). The mapping in (5.4)

- 9 6 -

from CIV to } uses a min-max rule of inference with a centroid (composite moment) de­

fuzzification process, and then the final consequent fuzzy set is normalised.

spikes in input effect of K=2

input

25
time [s]

output

(a)
effect of K=1

time [s]

(c)

effect of K=3

output

0 5 10 20 25 3015 35

output

time [s] time [s]

(b) (d)

Figure 5.5: Using fuzzy adaptive sm oothing (FAS) to rem ove sp ikes o f duration K from the input

cflange in value (CIV) and gam m a m apping of CIV to gam m a

SMALL
LARGE 0.90.9

0.8

0.70.7

2 0.6 0.6

a) 0.5 E 0.5

0.4 0.4

0.3 0.3

0.2 0.2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
value of CIV or gam m a

1 0 0.1 0.2 0 .3 0.4 0.5 0.6 0.7 0 .8 0.9 1

(a) (b)

Figure 5.6: (a) defîntion of LARGE and SM ALL; (b) m apping for change-in-value (CIV) to }

97

The mapping in Figure 5.6(b) is an evaluation of the assertions in (5.4). The value of

} can be computed from CIV efficiently by use of tables for Figure 5.6(b)^^. This

removes the need to evaluate the consequent fiizzy sets in (5.4) dynamically. The process

of computing a value for p, involves the following steps:

1. evaluate CIV using (5.5)

2. map CIV to j using tables for Figure 5.6(b)

3. evaluate using (5.3)

Notice that Figure 5.6(b) shows that the mapping of CIV to j is very close to being

linear. Using the linear approximation CIV = } would eliminate step 2, simplifying the

evaluation of p, even further. The amount of state required is simply the table for Figure

5.6(b) (which is static) and the previous K measurements of P for evaluating the CIV in

(5.5). Similar methods are used for the FAP, which has two EWMA adaptive filters, but

the FAP only needs to store one previous value for each of them. So, both the FAS and

FAP mechanisms remain relatively inexpensive in terms of computational cost.

The FAS is used to pre-filter the input to the FAP (FAS-FAP), as shown in Figure 5.7.

P-P

[KK92]

delay of one measurement interval

FASFAP

FAP fuzzy adaptive predictor
FAS fuzzy adaptive smoother
K K > 0 (integer)
p measured value of parameter P
p_p QoSParam value

Figure 5.7: A schem atic diagram of the FAS-FAP estim ator for producing Q oSParam values

The effects of using FAS-FAP {K= 1) is shown in Figure 5.8. Figure 5.8(a) shows a

generated input of steady state value P = 10 with (uniform, random, zero mean) noise, and

spikes of duration 1. The input has a mean SNR = 19.7dB (10.4% noise). Figure 5.8(b)

shows the effects of using only the FAP and then using the FAS and FAP together.

^ In all our simulations, we have used tables of size 100.

-98

25 r
steady value with noise and spikes use of FAS to remove spikes

— actual FAP
noisy — FAS-FAP

too 150
time

to o 150
time

(a) (b)

Figure 5.8: Use of fuzzy adaptive smoothing (FAS) and fuzzy adaptive prediction (FAP)

For now we see that the FAS-FAP appears to provide suitable removal of noise and

spikes. Next, we examine the FAP in more detail and assess its suitability for use in the

QoSEngine back-end.

5.4 Performance of the FAP

Here we evaluate the performance of the FAP. Our metric is the signal-to-noise ratio

(SNR) that we find in the output of the FAP compared with a set of measurements of pre­

defined waveforms that have been modulated with random, uniformly distributed, zero-

mean noise.

In our evaluation, we compare the FAP system with another method of adaptive EMWA,

which we will call KMR (after its authors in [KMR93]). KMR uses the same form as

(5.1), but with a different algorithm for evaluating yd :

A.) =A *kA + (1 - A m JA

£ = A - p.
cr, î = 0.25E- + 0.15a,

Pkmr — 0.25E / c r+ ,

(5.6)

(5.7)

We have three groups of tests, comparing the system output of both the EAR and KMR

systems with an input of:

1. various pre-defined wave forms, each with (approximately) the same mean SNR

2. steady state P with decreasing mean SNR (increasing noise)

3. randomly generated waveforms with random noise and varying mean SNR

- 9 9 -

We use the following definitions in the results below:

SNRs signal to noise ratio of input

S N R ifap SNR improvement in FAR output

S N R ikmr SNR improvement in KMR output

5 .4 .1 FAP response to pre-defined waveforms

Here, we measure the response of the FAP estimator to certain pre-defined waveforms

that have been subjected to noise in order to assess its ability to detect system

perturbations in the presence o f noise. The waveforms and the response o f the FAP and

the KMR mechanisms are shown in Figure 5.9 to Figure 5.14. The mean SNR is

evaluated across the entire set o f values. A comparison of the SNR improvement in the

output of the FAP and KMR mechanisms is given in Table 5.1 and Figure 5.15.

25
flat: m ean SNR=19,0dB (11.2% noise, a= 1 .3)

— actual
...... . noisy

25
FAP and KMR response to flat wave

FAP SNR=27.4db (4.3% noise, a=0.8j
KMR SNR=24.2db (6.2% noise, a=1.2)

50 100 150
time

200 250 100 150
time

200

(a) (b)

Figure 5.9: FAP and KMR response to noise in steady state

linear: m ean SNR=10.OdB (11.2% noise, cr=3.3) FAP and KMR response to linear wave

(a) (b)

Figure 5.10: FAP and KMR response to linear change

250

25
— FAP SNR=25.5db (5.3% noise, a=3.2]

KMR SNR=22.1db (7.8% noise, o=2.9)
actual
noisy

0 50 100 150 200 2500 50 100 150 200 250

- 100-

sin: m ean SNR=19.0dB (11.2% noise, o=3.9) FAP and KMR response to sin wave

FAP SNR=23.8db (6.4% noise, 0=3.7)
KMR SNR=22.0db (8.0% noise, o=3.8)

actual
noisy

CLo_

0 50 100 150 200 25050 100 150 200 2500

(a) (b)

Figure 5.11: FAP and KMR response to sine wave

square: m ean SNR=19.1dB (11.1% noise, a=5.1) FAP and KMR response to sq u are wave

FAP SNR=23.8db (6.5% noise, a=4.9)
KMR SNR=17.7db (13.0% noise, a=4.5)

actual
noisy

20

150 200 250 0 50 100 150 200 2500 50 100

(a) (b)

Figure 5.12: FAP and KMR response to a square wave

triangle: m ean SNR=19.0dB (11.2% noise, a=3.1) FAP and KMR response to triangle wave
25

FAP SNR=21.7db (8.2% noise, a=2.9)
KMR SNR=19.4db (10.8% noise. 0=3.1)actual

noisy

20

CL

2500 50 100 150 20050 100 150 200 2500

(a) (b)

Figure 5.13: FAP and KMR response to triangle wave

- 101 -

sawtooth: m ean SNR=19.1dB (11.1% noise, a=3.0) FAP and KMR response to sawtooth wave
25

— FAP SNR=20.8db (9.1% noise, a=2.5)
 KMR SNR=18.2db (12.3% noise, a=2.6)

actual
noisy

20 20

0 50 100 150 200 250 0 50 100 150 200 250

(a) (b)

Figure 5.14: FAP and KM R response to sawtooth wave

flat 19.0 8.4 5.2

linear 19.0 6.5 6.1

sin 19.0 4.8 3.0

square 19.1 4.7 -1.4

triangle 19.0 2.7 0.3

sawtooth 19.1 1.7 -&9

Table 5.1: Comparison of FAP and KMR response: different waveforms (see Figure 5.15).

Comparison of FAP and KMR response: different waveforms

2. 6
g

E
tr
 ̂ 2

FAP
KMR

Ï Ï
u

flat linear sin square triangle sawtooth

Figure 5.15: Comparison of FAP and KMR response: different waveforms (see Table 5.1)

These pre-defined waveforms were chosen to represent a range of forms for the system

perturbations. We see that both the FAP and KMR produce an increased SNR in the

steady state (flat, Figure 5.9). Both the FAP and KMR systems also deal well with slow,

gradual changes in value (linear. Figure 5.10, and sin. Figure 5.11). Additionally, FAP

responds well to sharp changes from one steady state to another (square. Figure 5.12), as

- 1 0 2 -

might be experienced in modal behaviour. The FAP system also gives some improvement

in SNR when faced with faster, gradual changes in value (triangle, Figure 5.13, and

sawtooth. Figure 5.14) but in such environments, sharp changes are harder for the FAP to

handle. The FAP system performs well, and shows an ability to cope with the variety of

behaviour in the test inputs. FAP performs better than KMR in all the tested cases (Table

5.1 and Figure 5.15).

5.4.2 FAP response to noise in the steady state

We examine the ability of the FAP estimator to cope with different levels of noise. We

use the steady state as in Figure 5.9, but with different levels of noise. Again, we use the

KMR system for comparison. The results are presented in Table 5.2 and Figure 5.16.

31.9 (2.6) 11.8(1.9) 0.8 (0.2)

25.8 (5.1) 10.4 (3.6) 3.5 (1.7)

22.3 (7.7) 9.3 (5.0) 4.6 (3.2)

19.8(10.2) 8.6 (6.4) 5.2 (4.6)

17.9(12.8) 8.2 (7.8) 5.7 (6.1)

16.3(15.3) 7.8 (9.0) 5.9 (7.6)

15.0(17.9) 7.4(10.3) 6.1 (9.1)

13.8(20.4) 7.1 (11.4) 6.3(10.5)

12.8 (23.0) 6.8 (12.4) 6.4(12.0)

11.9 (25.5) 6.4(13.3) 6.5 (13.4)

11.0 (28.1) 6.1 (14.1) 6.5 (14.8)

10.3 (30.6) 5.8 (14.9) 6.5(16.2)

9.6 (33.2) 5.5 (15.6) 6.6(17.6)

8.9 (35.7) 5.2 (16.2) 6.6(19.0)

8.3 (38.3) 5.0(16.7) 6.6 (20.4)

7.8 (40.8) 4.8 (17.4) 6.6(21.7)

7.3 (43.4) 4.7(18.1) 6.6(23.1)

6.8 (45.9) 4.4(18.4) 6.6 (24.5)

6.3 (48.5) 4.2(18.6) 6.6 (25.9)

5.8 (51.0) 3.8 (18.2) 6.6 (27.3)

Table 5.2: Comparison of FAP and K M R response: d ifferent noise levels (see Figure 5.16)

- 103-

C om parison of FAP and KtvIR response: different n o ise levels Com parison of FAP and KMR response : different no ise levels

FAP
KMR

FAP
KMR

S

IE 2 15

DCZ g 10

15 20 25
input signal (flat wave) SNR [dB]

30 35 0 10 20 30 40
Input signal (flat wave) n o ise [%]

6050

(a) (b)

Figure 5.16: Comparison of FAP and KM R response: d ifferent noise levels (see Table 5.2)

Figure 5.16(a) shows the noise improvement in dB and Figure 5.16(b) shows the noise

improvement as % noise. We see that both the FAP and the KMR systems give improved

SNR under increasingly noisy conditions. At around 12dB (-25% noise in the input) in

the steady state measurements, the tested cases suggest that the FAP system performs

worse than the KMR system, although it continues to provide a noise improvement.

5.4.3 FAP response to random signals with random noise

We have so far examined the performance of the FAP system using a fairly limited

number of noise and system perturbation conditions. We have seen that, compared to the

KMR, the FAP seems to perform better across different types of system perturbation,

while the KMR seems to respond better to conditions of increasing noise (below 12dB

SNR) in the steady state input. However, in (2.1) and (2.2) (Section 2.5.2), we have said

that we must treat our measurements as values from a random variable modulated with

noise from another random variable, so we have tested the FAP with randomly generated

inputs.

We have performed a paired-difference test using values of the SNR improvement in the

output from both the FAP (SNRifap) and KMR (SNRjkmr) systems given the same input

(SNRs). We state the null hypothesis and alternative hypothesis:

H, :ju, < 0
(5.8)

where the subscript d denotes the sample paired-difference between SNRifap and

SNRikmr results. We choose a 99% confidence level. We need to perform n tests:

- 104-

and with z = 2.33 (from tables), Od = 0.03 (estimated from preliminary trials) and E = 0.01

(99% confidence), we have n = 49. However, we choose n = 1000 in order to examine

other properties. We assess the performance of the FAP system in response to some

randomly generated waveforms that have been subjected to noise. A summary of the

waveform details is as follows:

X I. 1000 waveforms each consisting of 512 values

T2. each waveform constructed from randomly selected flat segments of values in the

range [0, 10000], and linear segments of gradients in the range [0, 500], each

waveform consisting of at least 32 segments (i.e., each segment has a duration of no

more than 16 values)

T3. all values in the range [0, 22010]

T4. all waveforms modulated with uniform, random, zero-mean noise with values in the

range [0, 1000]

T5. standard deviation values for the waveforms are in the range [2820.2, 6549.7]

T6. mean SNR of the waveforms varies between 12.3dB and 21.1dB, with mean SNR of

16.7dB across all the waveforms

Note that the waveforms have relatively low SNR, near the lower range of the useful

operational limits of the FAP and KMR (according to our simple analysis so far).

Our paired-difference evaluation yields jdd = 5.09, Gd = 0.02, giving a z-score test statistic

of 254.44. So we accept Ho and believe the FAP to be more suitable for use with the

QoSEngine than the KMR. The distribution of SNRs values for our input waveforms is

shown in Figure 5.17(a) (bin size = 0.2dB). The SNR improvements given by KMR and

FAP are shown in Figure 5.17(b) and Figure 5.17(c) respectively (bin size = 0.2dB). We

notice that the KMR gives worse SNR for 99.8% of the waveforms in our test data. This

does not mean that the KMR system will always give worse SNR than its input, as we

have already noted that the KMR system performs better than the FAP in some cases.

However, it would appear that while KMR does gives good noise filtering in the steady

state, is not as reactive as FAP to large, sudden system perturbations (this can be seen

clearly in Figure 5.12(b), Figure 5.14(b) and Figure 5.15 for the noisy square wave and

sawtooth inputs). So, overall, the FAP has better performance.

- 105-

distribution of input SNR

15
SNF^: input [dB]

(a)
distribution of KfVIR noise improvement values distribution of FAP noise improvement values

16

14

12

■ J
r ' “
î =

6

iJL 4

J III. . . .

2

0 . . . A
-4 -2 0 2 4 6
SNF^K^Ff KMR SNR improvement [dB]

(b)

- 6 - 4 -2 0 2 4 6
SNf^Ap FAP SNR improvement [dB]

(c)

Figure 5.17: (a) input SNR figures; (b) SNR im provem ent for KM R; (c) SNR im provem ent for FAP

5.5 Producing NetQoSRegion values

The purpose of the QoSEngine back-end is to provide the NetQoSRegion (see Figure

4.11). NetQoSRegion is essentially two values per QoSParam: p_p, the current estimate

of the QoSParam and v_p an estimate of its variability. We have described a mechanism,

the FAP, for deriving p_p from raw QoS parameter measurements and we have our

definition for v_p 'm (5.2), so a schematic of the QoSEngine back-end is as given in

Figure 5.18, which we call the FAS-FAP system. The variability estimation function

(VEF) in Figure 5.18 implements (5.2).

The NetQoSRegion is defined in the same abstract way as QoSRegion:

NetQoSTuple = {q t_ id ,p_p,v_p]
NetQoSState = {NetQoSTuple ,̂ NetQoSTuple^,... NetQoSTuple }

(5.9)

qt_id a value that can be used to unambiguously identify (in the context of

the QoSSpace and the application instance) the QoSParam to QoS

parameter mapping for the flow. This identifier should map to the

- 106-

P-P

v_p

corresponding QoSTuple.^r_fW specified in (4.11), but the mapping

does not require QoSTuple.^r_/J and NetQoSTuple.^r_/J to be

identical

estimate of QoSParam value

estimate of variability of QoSParam value

The mapping of qt_id is application specific. Typically, qt_id will identify a parameter

from a flow. The mechanism for obtaining the raw QoS parameter measurements, p, in

Figure 5.18 is application-specific.

P-P

v_P

0 delay of one measurement interval

FAP fuzzy adaptive predictor
FAS fuzzy adaptive smootfier
K K > 0 (integer)
P measured value of parameter P
P-P QoSParam value
v_P estimate of variability of p_p
VEF variability estimation function

Figure 5.18: A schem atic diagram of the Q oSEngine back-end

We have examined the FAS-FAP system using some real network measurements of path

data rate estimates. These measurements were performed using RDJ probes to various

sites across the Internet (see Appendix A). In Figure 5.19 to Figure 5.24, we see the use of

the RDJ probes (the raw values in (a)) and the FAS-FAP (the processed values in (b)).

Although we have no reference as in our tests so far, from our analysis in Section 5.4, we

believe the output of the FAS-FAP to provide a reasonable estimate for the path data rate

in the tested cases. Indeed, Figure 5.19(a) is identical to Figure 2.3(a) (the scenario in

Figure 2.2) and we can see form the graph that we have a reasonable estimate of the

achievable data rate across the BR-ISDN line. However, we notice that there is some

residual error in the output of the FAS-FAP. Note that the mechanism used for the RDJ

probes produces particularly noisy and inaccurate measurements, but we have chosen

such a method deliberately in order to see the effectiveness of the FAS-FAP. Information

about the hosts and their location for these tests is given in Appendix A.

- 107-

RDJ probe m easurem ent of available capacity [b/s]

O
00

eras
3
w

>

*13

?
7S
2
"Q

I

RDJ probe m easurem ent of available capacity [b/s]
RDJ probe m easurem ent of available capacity [b/s]

FAS-FAP estimate of available capacity [b/s]

Ü1 oi N) or 03

orq
C
3
VIw

>

II
w

3-
75
2

I
FAS-FAP estimate of available capacity [b/s]

3Cf3‘

>y
>

N>
I
B-
75

T!
3

3
era'

I
w
w

&}

8

I
8

8

8

8

8

8

8
FAS-FAP estim ate of available capacity [b/s]

8

8

8

8

8

8

§

RDJ probe m easurem ent of available capacity [b/s)

OVO

3 -

g. 2
>

11

&
<13

1

5
PSs
"3
3

QJ 3

RDJ probe m easurem ent of available capacity [b/s] RDJ probe m easurem ent of available capacity [b/s]

FAS-FAP estim ate of available capacity [b/s]

8

8

8

8

8

8

8

eras

'M
b
g
y

"D

S"
73
E
"73Ift

FAS-FAP estimate of available capacity [b/s]

8

I
8

8

8

8

8

8

ww

>

5

w

i
73
O

o
g-

Ù) 3

Ol

8

I
8

I
8

8

8

FAS-FAP estim ate of available capacity [b/s]

5.6 Discussion

There is a cost associated with use of the FAS; the FAS-FAP estimator is delayed by K

measurement intervals (time units) when responding to large, sudden changes. We do not

see this as a significant problem for the following reasons:

• we expect K will typically be small, e.g. 1 < K < 5 , and we have found K = 2 appears to

give reasonable results with the noisy RDJ probe measurements (some examples are

shown in Figure 5.19 to Figure 5.24 - see Appendix A for further information). The

absolute time for the FAS-FAP to respond will be Kt], where tj is the interval between

measurements, and ti will be chosen to suit the nature of the application.

• we expect that the adaptation process will occur over a different (longer) time frame to

that of the measurements of the QoS parameters for the flow

• if there is a large, sudden change that is not a spike, it will still be true after K

measurement intervals, so the change will be detected within a useful time frame

In response to a change in QoS, as well as adjusting its flow-requirements, the application

may have to perform other tasks. These might include interacting with the user in order to

confirm an adaptation decision or (for a distributed application) application-level

synchronisation or signalling to perform a mode change. These actions will typically take

longer than the Ktj. Additionally, rapid, flow-requirement changes or mode changes may

be undesirable for the user of an application, even if the application itself is functionally

capable of them. So flow-requirement changes may be relatively infrequent, perhaps

occurring in the order of several 10s of seconds or several minutes, and not in the order of

a few seconds (or less) like the QoSParam value changes (we examine this further in

Chapter 6.).

The limitations of the FAP are discussed in [KK92]. The three main drawbacks of FAS-

FAP are:

1. distortion of estimation when is close to zero (FAP)

2. it is assumed that network noise is of a higher frequency than the network perturbation,

i.e. change of network QoS (FAP)

3. we restrict QoSParam values to be greater than or equal to 0 (FAS)

Although we have said that the FAS-FAP estimator has relatively good immunity to noise

and have shown that it seems to have good dynamics, typically we cannot quantify the

- 110 -

noise (amplitude and frequency) that will exist in any measurements of QoS parameter

values. We have shown that FAP has reasonable performance down to a signal SNR of

about 12dB (-25% noise) in the steady state, and so we must assume that the noise in the

measurements will not cross this threshold. We have presented an analysis in Section 5.4

that tests the FAP with different pre-defined and randomly generated waveforms, being

representations of “possible” system perturbation forms. The results give us reasonable

confidence that the FAS-FAP estimator will be robust and relatively accurate, but we

cannot state this with absolute certainty in all cases.

The large variation in Internet data rate values is visible in our RDJ probe measurements

that have been used as input to the FAS-FAP experiments. (More details can be found in

Appendix A.) The RDJ probes produce particularly noisy measurements, but use of such

data was intentional, allowing us to test the robustness of the FAS-FAP system. RDJ

probe measurements were used because they are easy to produce (as they use ICMP

ECHO packets) and they can be seen as representing a worst-case measurment process.

Typically, an application will not be expected to use RDJ probes and the measurement

process used by a particular application is likely to be more accurate.

The QoSSpace is designed to be modular in support of R5 and R6. The FAS-FAP

estimator can be replaced by another estimator, as long as the NetQoSRegion values can

still be generated. This will not alter the abstraction seen by the application via the

interface laq. We require our estimation mechanism to be lightweight and so we do not use

a more complex (and perhaps more accurate) estimation/modelling mechanism.

Indeed, the modelling of traffic is currently of great concern within the data

communications and telecommunications community, as there are currently some

difficulties in obtaining accurate estimation and modelling. Traffic estimation and

modelling techniques have traditionally relied on the Poisson model, but this has been

shown to be highly inaccurate [PF95]. It is now suggested that traffic has a self-similar

pattern [WTSW95], and can have long range dependencies (LRDs) that are hard to model

[GB96]. In [WP97] (a discussion paper for [Res97]), the authors note the following:

• there is a “prevalence o f the infinite variance phenomenon” in measurements of

network-related traffic i.e. measurements typically show heavy-tailed distributions

and exhibit a long range dependency

- I l l -

• "... the traditional theoretical framework based on Poisson assumptions ... lies in

shambles ”

• current understanding of LRD models are only a “good approximation i f nothing

more ”

Considering Internet end-to-end packet dynamics, in [Pax97a] the author lists among his

conclusions:

• “We fin d wide ranges o f behaviour, such that we must exercise great caution in

regarding any aspect o f packet dynamics as ‘typical. ’ ”

• “Some common assumptions such as in-order packet delivery, FIFO bottleneck

queuing, independent loss events, single congestion time scales and path symmetries

are violated, sometimes frequently. ”

A general overview of the difficulties in estimation and simulation of traffic behaviour in

the Internet is given in [PF97]. So, as well as continuing to develop better statistical

models, the research community has been actively seeking measurement-based methods

using alternative models to overcome such difficulties. Much of the relevant work has

been focused around connection admission control (CAC), and is based on empirical

techniques using adaptive estimation and/or measurements, e.g. [INTSERV] and [C-i-97].

Other approaches to measurement-based estimation in communication systems use fuzzy

logic, e.g. [CKL95, BG94, CC94]. Fuzzy logic allows semantic tags - fiizzy variables -

to be attached to well-defined regions of the parameter space and solution space. Fuzzy

assertions test the compatibility of measurements with those regions. The fuzzy variables

are chosen to reflect regions of interest in the parameter values or the solution space. The

interactions of the fuzzy regions with a set of assertions effectively defines the

characteristic function of the overall system using linguistic constructs without losing

precision (see Appendix B).

So, we have chosen to use a well-known and widely used, measurement-based estimation

mechanism, the EWMA, as more complex models may add significant additional

computational cost. However, we have used measurement-based adaptation techniques to

adjust the EWMA behaviour dynamically.

- 112

5.7 Chapter summary

The QoSEngine requires a back-end to generate NetQoSRegion values, p_p and v_p. The

QoSEngine back-end should be an adaptive, general, and robust mechanism in order to

deal with a wide range of QoS parameter value behaviour. (Section 5.1.)

A fuzzy adaptive estimator (FAP) is described in [KK92]. This is an adaptive and general

mechanism based on the use of exponentially weighted moving average (EWMA), so is

simple and robust. However, it is susceptible to large errors if large spikes are introduced

to its input. (Section 5.2.)

A fuzzy adaptive smoother (FAS) can be used as a pre-filter to the FAP. The FAS can de­

spike the input. The FAS mechanism is tuneable to spikes of any duration, K, at the cost

of lack of response of K measurement intervals (time units) to large, sudden, changes in

the measured values. The FAS system can be implemented efficiently (using tables) and

is relatively simple in terms of computational complexity. (Section 5.3.)

The FAP system has reasonable adaptation dynamics. It performs well in fairly noisy

conditions and can cope with random fluctuations in the system perturbation as well as

with random noise. It appears to show good adaptive behaviour when faced with a set of

measurements from pre-defined waveforms as well as with randomly generated

waveforms in the presence of noise. It is able to tolerate relatively high levels of noise in

the measurements and still provide reasonably accurate output. However, there may be

some residual noise, even with the FAS pre-filter. (Section 5.4.)

The FAS-FAP can easily be used as a QoSEngine back-end. (Section 5.5.)

The FAS-FAP with K = 2 , seems to provide a usable, general, robust and practicable

mechanism for estimation. From our qualitative assessment using RDJ probes (which

produce particularly noisy measurements), we see that the FAS-FAP system seems to

perform well. We expect that the delay in the FAS-FAP response due to K will not be a

problem in real applications as long as the time interval between measurements, tj,

remains greater than the frequency desired for adaptations in the application flow-

requirements and (anticipated) frequency of changes in network QoS. Although more

accurate estimation mechanisms may be available they are likely to be much more

computationally expensive. (Section 5.6.)

113-

6. Enabling dynamically adaptable
applications

In Chapter 4, we defined the QoSSpace, a general network abstraction, and the part of the

QoSEngine that can generate QoSReports. In Chapter 5, we described the back-end to the

QoSEngine, an adaptive, robust and general parameter value processing function that can

be used to provide the input necessary for the QoSEngine PCVF (parameter compatibility

value function). In this chapter, we describe how the QoSEngine is used in an example

application in order to allow dynamic adaptation.

We introduce a (fictitious) dynamically adaptable audio tool { d a a t) to show how the

QoSEngine can be used, daat is based heavily on the existing capabilities in audio tools

such as vat [vat] and rat [HSK98]. We construct an example application adaptation

function (AAF) based on simple mles from user preferences. We assume that the daat is

operating over a best-effort service as offered by a network running IP.

6.1 The problem

We have an abstraction of the network QoS, the QoSSpace, in which application flow-

requirements (QoSRegions) and network QoS (NetQoSRegion) can interact. The

QoSEngine abstraction provides QoSReports containing RCVs (region compatibility

values) as an indication of the network’s ability to support a particular QoSRegion for a

flow. In this chapter, we answer the following two questions:

1. How are RCVs used by the application in order to allow dynamic adaptation?

2. What interactions might exist with the user to enable dynamic adaptation?

-1 1 4 -

In Figure 6.1, we show a simplified version of Figure 1.3, highlighting the area of work

considered in this chapter (dashed box).

region decision
information

region confidence
values

r
ua

Internet

application QoSRegion
information

application

QoSEngine

b v

0 QoSSpace

ua user-application interface
gq application-QoSEngine interface
qn QoSEngine-network interfaceapplication adaptation function AAF

Figure 6.1: The application adaptation function (AAF)

We consider the application adaptation function (AAF) and the way it is used to

indicate possible QoSRegion (i.e. flow-requirement) changes to an application. Note that

in the simple diagram of Figure 6.1, the AAF is concerned only with RCV information

and no other information that might be related to flow-requirement changes or changes in

the application mode; we assume that a QoSRegion has a I : I mapping with an application

mode. However, this does not have to be the case and the QoSEngine and the AAF do not

impose such restrictions in general. We show in our examples how simple user

preferences can also be incorporated into the AAF.

6.2 An example application - daat (dynamically adaptable audio tool)

To demonstrate the use of the QoSSpace, we describe an audio tool that can adapt its

audio flow data rate in response to information about data rate availability for that flow. It

does this by changing the audio encoding it uses. (RTF extensions for enabling multiple

audio encodings within audio flows are given in [RFC2I98].) We will refer to our

example audio tool as daat (dynamically adaptable audio tool), daat is modelled on

information presented in [BV96] for an audio tool developed at the Department of

Computer Science, University College London [HSK98]. [HSHW95] shows that mixing

audio encodings in an audio flow provides usable quality audio streams for Internet-wide

use. daat is capable of the voice encoding schemes shown in Table 6.1, taken from

[BV96].

- 115-

PCM 64.0

ADM6 48.0

ADM4 32.0

ADM2 16.0

GSM 13.0

LPC 4.8

Table 6.1: daat audio encoding schem es

In Table 6.1, the second column is the minimum data rate requirement to allow the audio

flow for the encoding scheme in the first column^ \ We can immediately define

QoSRegions for daat using (4.11) and a single QoSParam for data rate, R (units Kb/s):

(pcm. {R,64.0,—,
{adm6. <R,48.0,-,- -))
(adm4. (R,32.0,-,- -))
{adm2. (R,16.0,—,
(gsm. (R,13.0,—,

{Ipc, (R ,4.8,-,-

(6.1)

6.3 User preferences: adaptation policy

In this work, we do not investigate the interaction with the user in detail, but we introduce

user preferences for daat in order to demonstrate the use of the QoSSpace. The user

preferences are based on three simple mles to control the adaptation of the application:

PI. always use the “best” quality voice encoding possible

P2. do not change to a “better quality” voice encoding unless there is at least an average

of 80% compatibility with the network QoS

P3. changes to a “better” quality encoding are to occur no more frequently than once a

minute

These simple rules represent the minimum requirement for a dynamic adaptation

capability based on the QoSEngine. However, they may not all need to be specified by the

user, as we shall discuss. The rules cover two aspects of the operation of the application:

For the purposes of the examples in this Chapter, we chose to ignore any protocol overhead due to link-layer framing,
IP, UDF or RTF, etc.

- 116-

1. QoS: PI is a qualitative expression of the QoS required and P2 denotes how “strict”

the application should be in interpreting “best” in PI

2. stability: P3 places a stabilising constraint on the frequency of QoSRegion changes

that may occur for the application instance

The rules PI, P2 and P3 can be seen as a user-to-application QoS mapping, and comprise

the user control mechanism for the adaptation decision-making process. We interpret

“best” in rule PI as meaning “with the highest flow data rate possible”, i.e. requiring more

network resources. The QoSEngine has no knowledge of the inter-QoSRegion

relationships or the semantics of the flow, so cannot judge “best” or “better” - this must

be done by the application. Another method of assessing “best” might be by the

application designer simply enumerating the application modes and the user assigning

simple priority values to each mode (e.g. a number between 1 and 10; 1 low priority, 10

high priority), so denoting user preferences.

The interpretation of rules P2 and P3 is how tolerant the user might be to QoSRegion or

application mode changes and so a stability period of one minute is specified. Note that

the intention of this constraint is actually to control the rate at which an application might

move to a “better” quality QoSRegion, as degradation in QoS should be supported by an

immediate move to a “lower” quality QoSRegion that can be supported. The

compatibility level expressed in P2 is important - it represents the assurance that the user

and/or application requires for QoSRegion changes, but can be mapped to the same

numeric range as RCVs, acting as a threshold for RCVs in decision-making.

Effectively, PI and P2 govern how adaptation is to occur and P2 and P3 govern when

adaptation is to occur.

6.4 An application adaptation function (AAF) for d a a t

We will assume that the daat application is capable of changing its QoSRegion once

every second (the same rate at which we have taken measurements of R). The user does

not want the application to change QoSRegion every second, so must control how

adaptation takes place through the user preferences. The user preferences must be

translated to a QoS-based adaptation policy by the application.

So, for the daat, we define an application adaptation function (AAF) which will

provide a value of the QoSRegion identifier {qrjd) to indicate the QoSRegion that the

audio flow should be in at any time interval. The algorithm for the AAF is based on the

- 117-

three rules PI, P2 and P3. For PI, we number the QoSRegions using the simple mapping

[qr_id O number} as follows:

{Ipc O l) (gsm 0 2) {adm2 0 3 }

(adm4 0 4 } (adm6 0 5} (pcm 0 6}

i.e. with a higher number used for identifying a “better” quality QoSRegion. This is

effectively a priority assignment for the application modes based on the user preferences,

i.e. a QoS mapping from user to application. We also use the following definitions:

q_compatibility from rule P2; value 0.8

q_time from rule P3; the QoSRegion stability time [seconds], value

60s

Q_SCORE(j, n, H) evaluation of (6.2) for QoSRegion s, where s = \ ... 6
1 H - \

— ̂ B POLE AN (R CV \-h > q _compatibility) (6.2)
h=0

BOOLEAN(X) returns 1 if X is true and 0 if X is false;

RCVn-h is the RCV for QoSRegion s at time (n-h)

n the time unit

scv(s, n) RCV for QoSRegion s at time n

sdi{n) the RDI (QoSRegion decision information) is a value of s

identifying the QoSRegion that the application is in at time n

q_n_time the value lNTEGER(q_time/ti), where ti is the interval at

which measurements are taken [seconds]

q_epoch the previous value of n at which there was a QoSRegion

change

The AAF algorithm is described in pseudo-code in Figure 6.2 and a schematic diagram of

the QoS information flows is shown in Figure 6.3.

For the daat, the algorithm performs the following function:

1. if the application has just started (n < q_n_time), then choose the highest quality

(highest numbered) QoSRegion with the highest Q_SCORE

2. if the application has been underway for sometime {n > q_n_time):

a. if we are within one minute (q_n_time) of the last QoSRegion change (q_epoch), do

not change QoSRegion unless the current QoSRegion is no longer usable

- 118-

b. if we are over one minute {q_n_time) since the last QoSRegion change (q_epoch),

check if it is possible to move to another QoSRegion

We use the daat QoSRegions with real network data gathered using RDJ probes. We will

use the measurements shown in Figure 5.19(b) and Figure 5.20(b) as values for the

capacity available to the audio flow, i.e. the values for the QoSParam R. When we use the

daat QoSRegions in (6.1) with these measurements, we get the RCVs shown in Figure

6.4(a) and Figure 6.5(a). The results of applying the AAF to these are shown in Figure

6.4(b) and Figure 6.5(b), respectively, which record the QoSRegion that the daat takes.

The graphs in Figure 6.4(c) and Figure 6.5(c) have been marked with the flow rate from

the application based on these QoSRegions, using the data rate values from Table 6.1.

The RCVs show the variability of QoS in the network. (We have chosen one set of

network measurements with low variability, darhu - theakston, and one set of

measurements with high variability, waffle - timserver).

Note that the Q_SCORE in (6.2) is a mean and so helps to smooth small disturbances in

the RCV (e.g. residual noise from the QoS parameter measurements that has passed

through the PCVF). For example, some of the spikes in the RCV for adm6 in Figure

6.4(a) and Figure 6.5(a) are ignored by the AAF as shown in Figure 6.4(b) and Figure

6.5(b). However, a much more cautious version of the AAF might use the following

definition of Q_SCORE in place of (6.2):

BOOLEAN(MlN(RCy . ,RCV'\-{h-\)) > ^ _ compatibility) (6.3)

This would greatly amplify the presence of a single low RCV. In both (6.2) and (6.3), as

the value of q_compatibility gets smaller, so there may be larger Q_SCOREs for more

QoSRegions, even if they have relatively low compatibility. In our simulations, we have

found through observation that q_compatibility = 0.8 provides reasonable results,

reflecting an acceptable threshold between stability with respect to the number of

QoSRegion changes and utilisation of the available network resources. We have said in

Section 6.3 that the q_compatibility value might be provided by the user. However, we

shall see that the value of q_compatibility could change operation of the application quite

significantly, so, for certain applications, there may be a strong case for moving the value

of q_compatibility (rule P2) out of the user’s control and into the application. This may

depend, for example, on the QoS sensitivity of the media flow, e.g. high quality video

would require better QoS compatibility than the relatively low quality audio offered by

- 119

clücit, because human perception of quality is more tolerant of low quality in audio than in

video.

if n < q_n_time // just started

// higher regions override lower ones
q_score_hi = 0, q_s = 0
for s = 1 to S

q_s = Q_SCORE(s,n,n)
if (q_s >= q_score_hi) &

(q_s >= q_compatibility) // so use region with highest score
rdi(n) = s
q_score_hi = q_s
q_epoch = n

endif
endfor

else // has been going for some time ..

if rdi(n-1) > 0 // and was previously in a region
q_rcv = Q_SCORE(rdi(n-1),n,q_n_time)

else
q_rcv = 0;

endif

q_n = n - q_epoch
if (q_n <= q_n_time) & // if within epoch and

(q _rcv >= q_compatibility) // region is still usable
rdi(n) = rdi(n-1) // stay in present region

else // else check for region change
for s = 1 to S // higher regions override lower ones

q_rcv = Q_SCORE(s,n,q_n_time)
if q_rcv >= q_compatibility // Q_SCORE OK for this region so

rdi(n) = s
endi f

endfor

if rdi(n) <> rdi(n-1
q_epoch = n

endif

// use this region

// region changed so mark new epoch

endif

endif

Figure 6.2; Simple AAF algorithm for daat in pseudo code

QoSRegions

^ — RCVs
application

application adaptation function AAF

RCV region confidence value
RDI region decision information

Figure 6.3: QoS information flows between the simple AAF and the daat application

- 120-

daat region compatibility value (RCV) daat region decision information (RDI) from AAF

gsm

Ipc

0 200 400 600 800 1000 1200 1400 1600
time [s]

pcm

adm6

adm4

adm2

gsm

Ipc

0 200 400 600 800 1000 1200 1400 1600

darfiu - tfieakston, 08:52:20 Sun 08Feb1998

flow rate

0 200 400 600 800 1000 1200 1400 1600
time (s)

(a) (b)

Figure 6.4: daat with AAF using d arhu - th e a k s t o n data, q_compatibility = 0.8, q jim e = 60s

time [s]

(C)

daat region compatibility value (RCV) daat region decision information (RDI) from AAF X 10" waffle - tmnserver, 07:49:57 Sun 08Feb1998

pcm

Ipc

0 200 400 600 800 1000 1200 1400 1600
time [s]

adm6

adm4

adm2

gsm

Ipc

0 200 400 600 800 1000 1200 1400 1600

(a)

0 200 400 600 800 1000 1200 1400 1600
time [s]

(b) (c)

flow rate

time [s]

Figure 6.5: daat with AAF using waffle - tmnserver data, qjcompatibility = 0,8, qJim e = 60s

- 121 -

6.4.1 Effects o f varying values fo r qjtime and q_compatibility

As we change the values of q jim e and qjom patibility, we observe the following effects:

• varying q jim e results in greater stability of the application for the user (with respect to

QoSRegion changes), but the application may:

• stay longer in “lower” quality QoSRegions, not using available resources

• the smoothing offered by larger q jim e values may mask real deviations from QoS

in the RCV, resulting in delayed response to QoS changes, which may be

particularly critical if the QoS is degraded

• increasing the value of qjom patibility results in a harsher discrimination of a

QoSRegion’s suitability for use, and may result in under utilisation of available

network resources

We see from Figure 6.5(c) (600 < t< 800), how changes to better quality QoSRegions are

controlled to the q jim e = 60s time period, but how changes to lower quality QoSRegions

occur as soon as an inadequate QoS provision is detected. The effects of using

q jim e = 90s, q jim e = 120s and q jim e = 180s for R in Figure 6.4(a) and Figure 6.5(a)

are shown in Figure 6.6 and Figure 6.8, respectively. We can see how the application

achieves greater stability (with respect to QoSRegion changes) in the face of network

QoS variability as q jim e is increased, notably in Figure 6.8. The respective flow rates for

Figure 6.6 and Figure 6.8 are shown in Figure 6.7 and Figure 6.9. The q jim e value could

be adjusted dynamically by the user (or automatically by the application), as required, and

acts as a form of application-level smoothing for QoSRegion changes.

As we increase the value of qjom patibility, we find that the application takes longer to

enter better quality QoSRegions in the face of variability in the value of R. This is shown

in Figure 6.10, Figure 6.11, Figure 6.12 and Figure 6.13 for our two data sets, with

qjom patibility = 0.85, qjom patibility = 0.9 and qjom patibility = 0.95. This is to be

expected: as we approach a value of 1.0 for qjom patibility, we are asking for the RCVs

to be totally stable with respect to the QoSRegion. We know from (4.5) that this is only

possible if is within the QoSRegion region and either the variability, vj? , of the

QoSParam values is zero, or the variability is completely confined within the QoSRegion

region. We can see from Figure 6.4 and Figure 6.5 that a value of qjom patib ility = 0.8

seems to offer an adaptation capability that tracks the value of R well.

- 1 2 2 -

daat region decision information (RDI) from AAF daat region decision information (RDI) from AAF daat region decision information (RDI) from AAF

pcm

adm6

adm4

adm2

gsm

Ipc

pcm

adm6

adm4

ad m2

gsm

Ipc

adm2

gsm

Ipc

0 200 400 600 800 1000 1200 1400 1800
time [s]

0 200 400 600 800 1000 1200 1400 1600
time [s]

(b)
0 200 400 600 800 1000 1200 1400 1600

time [s]

(a) (b) (c)

Figure 6.6: R D I for daat with AAF using darh u - t h e a k s t o n data with q_compatibility = 0.8; (a) q jim e = 90s; (b) q jim e = 120s; (c) q jim e = 180s

X to" darfiu • tfieakston, 08:52:20 Sun 08Feb1998 X 10* darfiu - tfieakston, 08:52:20 Sun 08Feb1998

R
flow rate

9

flow rate8

I

0
0 200 400 600 800 1000 1200 1400 1600

X 10* darhu - theakston, 08:52:20 Sun 08Feb1998

R
flow rate

time [s]

(a)
time [s]

(b)
0 200 400 600 800 1000 1200 1400 1600

time [s]

(c)

Figure 6.7: Flow rate for daat with AAF using darhu - theakston data with q jo m p a tib ility = 0.8; (a) q jim e = 90s; (b) q j im e = 120s; (c) q jim e = 180s

- 123 -

daat region decision information (RDI) from AAF daat region decision information (RDI) from AAF daat region decision information (RDI) from AAF

pcm pcm

adm6 adm6

adm4 adm4

adm2 adm2

gsm gsm

Ipc

0 200 400 800 1000 1200 1400 1600600 0 200 400 600 800

pcm

adm6

adm4

adm2

gsm

Ipc

time [s]

(a)
time (s)

(b)
0 200 400 600 800 1000 1200 1400 1600

time [s]

(c)
Figure 6.8: RDI for daat with AAF using w a f f l e - tm n s e r v e r data with q_compatibility = 0.8; (a) q jim e = 90s; (b) q jim e = 120s; (c) q jim e = 180s

X lo '' waffle - tmnserver, 07:49:57 Sun 08F eb1998

flow rate

0 200 400 600 800 1000 1200 1400 1600

X io" waffle - tmnserver, 07:49:57 Sun 08Feb1998

flow rate

0 200 400 600 800 1000 1200 1400 1600

X io'‘ waffle - tm nserver, 07:49:57 Sun 08Feb1998

•« 5

flow rate

0 200 400 600 800 1000 1200 1400 1600
time [s] time [s] time [s]

(a) (b) (c)

Figure 6.9: Flow rate for daat with AAF using waffle - tmnserver data with q jom pa tib ility = 0.8; (a) q jim e = 90s; (b) q jim e = 120s; (c) q j im e = 180s

- 124-

daa t region decision information (RDI) from AAF daat region decision information (RDI) from AAF daat region decision information (RDI) from AAF

admZ

gsm

Ipc

0 200 400 600 800 1000 1200 1400 1600
time [s]

pom

adm6

adm4

adm2

gsm

0 200 400 600 800 1000 1200 1400 1600

adm6

adm4

adm2

gsm

Ipc

0 200 400 600 800 1000 1200 1400 1600

(a)
time [s]

(b)
time [s)

(C)

Figure 6.10; RDI for daat with AAF using d arhu - t h e a k s t o n data with q jim e = 60; (a) q_compatibility = 0.85; (b) qjcompatibility = 0.9; (c) qjcompatibility = 0.95s

X io ‘‘ darfiu - tfieakston, 08:52:20 Sun 08Feb1998
9

flow rate8

7

6

3

2

1

0
0 200 400 600 800 1000 1200 1400 1600

darfiu - theakston, 08:52:20 Sun 08Feb1998
9

flow rate8

7

6

3

2

1

00 200 400 600 800 1000 1200 1400 1600
time [s]

(a)
time [s]

(b)

darhu - theakston, 08:52:20 Sun 08Feb1998

flow rate

200 400 600 800 1000 1200 1400 1600
time [s]

(c)

Figure 6.11: Flow rate for daat with AAF using darhu - theakston data with qJ im e = 60; (a) qjcompatibility = 0.85; (b) qjcom patibility = 0.9; (c) q jo m p a tib ility = 0.95s

- 125-

daat region decision information (RDI) from AAF daat region decision information (RDI) from AAF daat region decision information (RDI) from AAF

pern

adm6

admZ

gsm

Ipc

0 200 400 600 800 1000 1200 1400 1600

adm6

adm4

adm2

gsm

Ipc

0 200 400 600 800 1000 1200 1400 1600

pcm

adm4

adm2

Ipc

0 200 400 600 800 1000 1200 1400 1600
time [s]

(a)
time [s]

(b)
time [s]

(C)

Figure 6.12: R D I for daat with AAF using w a f f l e - tm n se r v e r data with q jim e = 60; (a) q_compatibility = 0.85; (b) qjom patibility = 0.9; (c) qjom patibility = 0.95

X lo" waffle - tmnserver, 07:49:57 Sun 08Feb1998 waffle ■ tmnserver, 07:49:57 Sun 08Feb1998
9

8
7

6

4

3

2
1

flow rate

00 200 400 600 800 1000 1200 1400 1600

9

8
7

6

S
4

3

2
1

flow rate
0

0 200 400 600 800 1000 1200 1400 1600

X io" waffle - tmnserver. 07:49:57 Sun 08Feb1998

I I ' *

7

6

5
-4

3

2

1

0

1̂ 1 i
I I 1

il

Li ' ’ M

F J
~ \ I W

R
flow rate

time [s]

(a)
time [s]

(b)

0 200 400 600 800 1000 1200 1400 1600
time [s|

(c)

Figure 6.13: Flow rate for daat with AAF using waffle - tmnserver data with q jim e = 60; (a) q jo m p a tib ility = 0.85; (b) q jo m p a tib ility = 0.9; (c) q jo m p a tib ility = 0.95

-126-

The judicious use of q_time and q_compatibility allow the user and the application to

have considerable control over the adaptation capability of the daat, within the

capabilities of the current network QoS.

6.5 A mobile scenario of the d a a t : power conservation demonstration

In Section 6.4, we demonstrated the use of the QoSSpace and showed the dynamics of an

example AAF in order to control adaptation. We now consider a scenario with two

QoSParams, in order to demonstrate the generality and flexibility that is possible with the

QoSSpace for dynamic adaptation. For this, we assume our daat is executing on a mobile

host. Here we consider that the mobile host is powered by a battery until reaching a place

where mains operation is possible. During battery operation, we wish to conserve power.

So, we introduce a new QoSParam, batter power, B, which we use to modify our

QoSRegion definitions for the daat. The QoSParam B has values in the range [0, 1], 0

indicating the battery is totally spent and 1 indicating the battery is fully charged (or that

the mobile host is running on mains power). We now modify Table 6.1 to generate some

(artificial) power consumption figures for each of the audio encoding schemes to give

Table 6.2.

PCM 64.0 1 0.00001

ADM6 48.0 13 0.00014

ADM4 324) 11 0.00011

ADM2 16.0 9 0.00009

GSM 13.0 1200 0.01250

LPC 4.8 110 0.00114

Table 6.2: daat audio encoding schem es and cost for CPU and battery

The third column for Table 6.2 is taken from [BV96]. The fourth column is generated

from the third column by dividing by 96000^^, and represents power consumption per

This scenario assumes that the mobile host is in fact a palmtop PC or personal digital assistant and has no disc and a
low power LCD screen. If the mobile host is a laptop computer, the most significant power consumption will be for
powering the hard disc and the screen.

This value is chosen simply to generate some artificial numbers suitable for our simulation.

- 127-

time unit, n. We also use the third column of the table to generate some p_lo thresholds

for B by dividing by 2400̂ "̂ and modify (6.1) to give the following QoSRegions for daat:

{pcm, (/?,64.0,—

{adm6, (/?,48.0,— (5,0.0054,—,—,—))
{adm4, (5,32.0,—,—,—), (5,0.0046,—,—,—))

{adm'l, (5,16.0,—,—,—), (5,0.0038,—,—,—))
(gsm, (5,13.0,— (5,0.5000,—,—,—))

(Ipc, (5 ,4 .8 ,- ,- ,—))

In (6.4), we deliberately choose to have the QoSRegions Ipc and pcm defined only in

terms of 5 , in order to demonstrate the ability of the QoSSpace and AAF to handle

heterogeneity in the number of parameters used to define QoSRegions for the same flow.

We use a naïve scheme in which the p_lo thresholds for each QoSRegion in (6.4) mark

the lowest battery power charge that is allowed before that audio encoding can be used^^.

The simulation of this scenario is shown in Figure 6.14. For clarity, in the values of 5 and

5, we have not simulated any noise, but we have already shown that the QoSEngine can

deal with noise in Chapter 5 and in our scenario in Section 6.4.

The mobile host user moves from home to work. At home our user connects via ISDN

(64Kb/s, time < 20), then by mobile phone (13Kb/s, 20 < time < 120) on the way to work,

and finally by Ethernet at work. The user starts with a fully charged battery (time = 0) and

is not connected to the mains power until time > 200. We see in Figure 6 .14(a) and Figure

6.14(c) how the daat switches from the GSM encoding to the LPC encoding (even though

the GSM rate is still achievable) when the battery power, shown in Figure 6.14(b), goes

down to 0.5 (time = 80). We have used q_time = 1 (to allow fast adaptability to better

quality QoSRegions), qjcompatibility = 0.8 and K = 2 .

This example shows that the battery power takes precedence in the adaptation policy only

when its role becomes significant, i.e. when a QoSRegion for a boundary defined by

QoSParam 5 is reached.

‘ This value is chosen simply to generate some artificial numbers suitable for our simulation.

A better scheme might be for the application to perform a calibration when it is first started by using each encoding
scheme to encode a buffer of data to measure the rate at which each encoding drains the battery power and then set
these readings as p_lo thresholds for a QoSParam that is the rate of change in B rather than the absolute value of B
itself. We chose our naive approach in order to demonstrate better the dynamics of the AAF.

- 128-

daat region decision information (RDI) from AAF R and flow rate

pcm

adm6

adm4

adm2

gsm

Ipc

0 20 40 60 80 100 120 140 160 180 200
time

0.6

0.4

0.2

60 80
time

9

flow rate8
7

6

3

2
1
00 20 40 60 80 100 120 140 160 180 200

(a) (b) (c)

Figure 6.14: daat power consumption in the mobile host

- 129-

6.6 Use of QoSiRegions

In (6.1) and the AAF in Figure 6.2, we have not considered the use of QoSiRegions. In

using QoSiRegions we must remember that they are of a different nature than the

QoSRegions which they inhabit. The QoSiRegions are effectively indicators that a

QoSRegion is operating very close to one of its boundaries, so they may be interpreted as

indicators of “negative compatibility”. (However their exact use and interpretation will be

application specific.)

In the same way as we can define a Q_SCORE for QoSRegions, we can also define a

Q_ISCORE for QoSiRegions. We may use (6.2) for evaluating a Q_ISCORE with

RCV_Is in place of RCVs. Indeed this would appear to be the most sensible definition for

Q_ISCORE for daat, as we are concerned with trying to measure the suitability of a

particular QoSRegion to be supportable over a given period of time, qjtime. Consider if

(6.3) were used for Q_ISCORE. This would mean that a long sequence of high RCV_I

values would be ignored in the presence of a single low value, and we would lose

information about the true extent of the presence of QoSParam values in the QoSiRegion.

However, if we were to substitute MAX in place of MIN in (6.3) this would give

precedence to a single high RCV_I (which might be due to residual noise from the QoS

parameter measurements), giving a pessimistic assessment.

We show highlighted in Figure 6.15 how our AAF algorithm is modified to incorporate

use of QoSiRegions. In the modified AAF of Figure 6.15, we chose to employ a policy

where if the NetQoSRegion is such that the QoSRegion would be operating very close to

its boundaries, we chose not to use that QoSRegion. For the daat, this would help to avoid

state-flapping when one of the QoSParams in the QoSRegion was wavering around a p jto

boundary of one of the QoSRegions. This makes sense for the daat as all its QoSRegions

have boundaries that (effectively) border on each other so it is possible to use a lower

quality QoSRegion to avoid state-flapping.

We show the use of the same qjcompatibility and q jim e values for the Q_ISCORE as

that for Q_SCORE, but different values could be used. Setting lower values for the

qjcompatibility and q jim e for Q_ISCORE would make the AAF more sensitive to

operation of a QoSRegion close to its boundary. This difference between thresholds and

timescales between Q_SCORE and Q_ISCORE could, for example, be used to allow fast

detection of operation close to QoSRegion boundaries, while still maintain flow stability

when operation is well within QoSRegion boundaries.

- 130-

if (n * t) < q_time

q_score_hi = 0, q_s = 0
for s = 1 to S

q_s = Q_SCORE(s,n,n)
if (q_s >= q_score_hi) &

(q_s >= q_compatibility)
rdi(n) = s
q_score_hi = q_s
q_epoch = n

endif
endfor

else

q_n = n - q_epoch

if rdi(n-l) > 0
q_rcv = Q_SCORE(rdi(n-1),n,q_n_time)
q_rcv_i = Q_ISCORE(rdi(n-1),n,q_n_t ime)

else
q_rcv = 0 ;
q_rcv_i = 0

end

if (q_n <= q_n_time) &
(q _rcv >= qjcompatibility) & (q_rcv_i <

rdi(n) = rdi(n-1)
q_compatibi1ity)

else
q_n = n - q_n_time
for s = 1 to S

q_rcv = Q_SCORE(s,n,q_n_time)
q_rcv_i = Q ISCORE(s,n,q n time)
if (q_rcv >= q_compatibility) & (<i_rcv_i

rdi(n) = s
endif

endfor

< q_compatibility)

if rdi(n) <> rdi(n-1)
q_epoch = n

endif

endif

endif

Figure 6.15: Simple m odifications to the AAF ïo t daat to use Q oSiRegions (see also Figure 6.2)

We can contrive a scenario for our daat application that shows the modified AAF of

Figure 6.15 at work. First, we generate a scenario where there is state-flapping, as shown

in Figure 6.16 {qjim e = 1 for rapid adaptability response, q_compatibility = 0.8, K = 2,).

We see in Figure 6.16(a) and Figure 6.16(c) how the value of R wavers around the adm6

boundary causing the daat to oscillate between adm4 and adm6. (Again, for clarity we

choose not to simulate noise for R.) We can introduce J o QoSiRegions for our

131

QoSRegions of (6.1) in order to overcome this. We use a p_qlo value that is the value of

p_lo +10%, giving us the following QoSRegion definitions:

{pcm. {R,64.0,—
{adm6. (R,48.0,-,52.8,-))
{adm4. (R,32.0,-,35.2,->>
{adm2. (R,16.0,-17.6,-))

(R,13.0,-,14.3,-))

{Ipc, (R ,4 .8 ,-,-,-))
(6.5)

Again, in (6.5), we deliberately choose to have the QoSRegions Ipc and pcm defined

without QoSiRegions, in order to demonstrate the ability of the QoSSpace and AAF to

handle heterogeneity in QoSRegions that are defined using the same QoSParams.

The results of using the definitions in (6.5) and the modified AAF of Figure 6.15 are

shown in Figure 6.17. We can see how the use of the QoSiRegion and the modified AAF

has removed the state-flapping seen in Figure 6.16. Figure 6.16(a) shows the values of the

RCVs, which are identical when used with (6.1) and (6.5), while Figure 6.17(a) shows the

additional _lo QoSiRegion RCV_Is which are used only with (6.5). Figure 6.16(b) and

Figure 6.17(b) shows the QoSRegions selected by the AAF, while Figure 6.16(c) and

Figure 6.17(c) show the flow rate achieved.

Similar application-level smoothing may be achievable by using a large enough value for

qjtime, but this would then result in lack of responsiveness in adaptability.

132-

daat region compatibility value (RCV) daa t region decision information (RDI) from AAF

pcm pcm

adm 4
adm 4

adm 2
adm 2

gsm

gsm

Ipc

120 1400 20 40 60 80 100 0 20 40 60 80 100 120 140

R and flow rate
9

flow rate
adm 6 p_lo

8

7

6

uj’ 5
4

3
2

1

0
0 20 40 60 80 100 120 140

(a) (b)
Figure 6.16: State-flapping for daat without QoSiRegions

d aat J o region compatibility value (RCV_I) d aa t region decision Information (RDI) from AAF

pcm

adm 6

(C)

pcm

adm 6

adm 4

adm 2

gsm

100 120 140
time

adm 4

adm 2

gsm

ipc

0 20 40 60 80 100 120 140
time

R and flowr rate
9

flow rate
adm 6 p_io

8

7

6

3

2

1

0
0 20 40 60 80 100 120 140

(a) (b)

Figure 6.17: State-flapping rem oved using QoSiRegions and the m odifled AAF

- 133-

time

(c)

6.7 Discussion

We have contrived a dynamically adaptable audio application (daat) that can adjust its

audio encoding to change its flow rate. The daat is based on media scaling functionality

that exists in real tools (e.g. rat [HSK98]), representing a realistic scenario. The QoS

assessment capability offered by the QoSSpace allows daat to adapt to fluctuating

network QoS. The decision is made by the AAF and the daat application automatically,

but includes (static) user preferences. Another application may be more interactive, letting

the user make the decision manually but present the user with a list of options based on

the Q_SCORE/Q_ISCORE values or RCVs, allowing the user to make an informed

decision.

The AAF is a simple algorithm. The main control issue is the interpretation of the user’s

wishes, via the user preferences. We have already seen that the QoSSpace has very little

semantic knowledge of the flows. Notice that the AAF also has very simple semantic

knowledge of the flows in daat. The QoS mapping from the user is simple; better quality

QoSRegions have higher numbers than lower quality QoSRegions. The suitability of use

of any particular QoSRegion is evaluated with Q_SCORES and Q_ISCORES for which

“high” and “low” also have meaning. These are the only semantics that the AAF is aware

of, making it a simple and easily implemented algorithm. Such simple QoS mapping

between user, application and network, coupled with the simple nature of RCVs makes

for easy decision-making and easy programmability in real applications. The main aim of

this chapter was to show that the RCVs provided in the QoSReport ease the decision­

making process. If simple relationships can be found between user preferences and

application-modes and QoSRegions (as in our daat examples), the AAF has quite a

simple task to perform.

The exact use of the adaptation capability will ultimately depend on the user and the

application. We have modelled the daat to automatically adjust its flow rate by changing

the flow encoding and this is reasonable because studies show that such behaviour in an

audio flow does not adversely affect users’ perception of quality [HS97]. This may not be

true for all media types and for all people, even if the media is scaleable (e.g. video). In

our examples, we have let the user choose how and when adaptation occurs, mapping

values from the user directly to q_time and q_compatibility (PI, P2 and P3, Section 6.3).

However, this does not preclude these values from being determined by the application

through a different interaction with the user.

- 134-

Stability and resource utilisation are also issues that must be left to the application. The

QoSEngine tries to ensure some stability in the RCVs through the use of FAS, and allows

the application to spot when the NetQoSRegion is near QoSRegion boundaries (by using

the QoSiRegions). If the user chooses a very small or very large value for either qjtime or

q_compatibility value, must the application honour this? We have already seen

(Section 6.4) that there may be a strong case to move at least the control of the

qjcompatibility value to the application where the nature of the flow demands, e.g. with

video.

The QoSSpace does not attempt to deal with distributed application issues. Decision­

making algorithms in a distributed environment could be centralised or distributed. We

have shown a simple AAF algorithm that bases decisions about adaptability on

information seen by a single daat instance, i.e. local information. If daat were used in a

conferencing scenario, there may be a need to build in application-level signalling into the

AAF. However, there is much heterogeneity (network QoS and user preferences) in

multicast scenarios (e.g. Scenario la. Section 1.1). So, even if the adaptation decisions are

not made on a local, per-instance basis, there will need to be feedback of local

information from the application sites to any centralised/distributed decision-making

mechanism. This may have effects on the value of q jim e (to account for time required

for application-level signalling), and so the application may also wish to have some

control over its value.

So, both q jim e and q_compatbility could be totally under application control. However,

it could also be argued that allowing user dissatisfaction to be expressed as an input to the

application (to adjust q jim e and q_compatbility values) could also result in a similar

effect but under user control [LSD98].

In a multicast scenario, the decision-making process may make use of localised

mechanisms, allowing closely-located receivers to make adaptation decisions by

exchanging QoSReports. Such self-organised, receiver-driven schemes are currently of

great importance for scaleable Internet multicast [KHC98, MJV96], and one key element

of their success is being able to share information about the QoS that the application

instances experience.

The RCVs from the QoSSpace offer a simple and scaleable mechanism for conveying

information about QoS experienced by an application in a user-friendly manner. For our

- 135-

daat example with six QoSRegions, if we were to map our RCVs from the range [0, 1] to

an integer value in the range [0, 31] we could represent the whole QoSReport for the daat

in six bytes (one byte per QoSRegion). This is regardless of the number of QoSParams

used to define each QoSRegion. If we consider a distributed conferencing application,

with separate voice, video and data flows, and use RCVs scaled to integer values in the

range [0, 100], we can still represent the information for over 100 QoSRegions per-flow

in 16 bits per QoSRegion. The QoS assessment process itself is scaleable - multiple

QoSParams per QoSRegion do not require changes in the AAF and QoSSpace - because

of the andp and orp operators. So the QoSSpace and RCVs offer a reasonably scaleable

way of representing per-instance application QoS summaries.

The AAF used in this chapter is only an example to show the use of the RCVs. We would

expect that application specific adaptation functions would be developed as required. The

daat simulations indicate it is possible for a single flow to adapt to changes in the QoS

available to the flow. Where multiple flows share resources with other flows in a best-

effort network, we must be conscious of how the flows affect the network and the

application behaviour. We must emphasise that the QoSSpace is a system for providing

QoS information summaries to aid the process of making adaptation decisions. The AAF

must select a QoSRegion and is responsible for implementing the adaptation. So, we

would expect the AAF to include mechanisms for ensuring:

• fairness; with respect to the resources available to other flows

• stability: how the adaptation policy affects the network

A multicast application might achieve fair-share and congestion control by use of

schemes such as [VRC98] that allow multicast traffic to share capacity fairly with TCP

traffic. Again, such mechanisms need information about flow and network compatibility,

which may be provided by the QoSSpace. Such mechanisms would also need to cater for

congestion due to synchronisation effects in QoSRegion changes (e.g. the “9.00am

effect”) by use of heuristic mechanisms such as slow-start. In our daat AAF, this might be

by insisting that all daat instances must use the Ipc QoSRegion while n < q_time. The

general properties of macroscopic behaviour for multiple flows is currently under study

[MSM097] but suggests that some random behaviour in the network’s treatment of

packets may help to reduce congestion effects, especially those due to synchronisation.

Examples of current mechanisms used for congestion control include the mechanisms in

TCP [Jac88, Jac90] and various schemes for multicast [BTW94, MJV96, VRC98]. The

- 136-

difference between these schemes and a scheme based on the use of RCVs is that the

QoSSpace can provide a summary of compatibility with many different QoS parameters

and not just delay and/or loss.

We noted in Section 3.6 that there is currently no mechanism that supports QoS

assessment for dynamic adaptation. We have demonstrated in this chapter that the

QoSSpace appears to provide sufficient information for the decision-making process,

based on the measured network QoS and can be easily incorporated with simple user

preferences.

6.8 Chapter summary

We need to show how the QoSSpace can be used in an application to make dynamic

adaptation decisions. (Section 6.1.)

We use an example application, the dynamically adaptable audio tool {daat), that can

scale its audio flow data rate by using different audio encoding schemes. (Section 6.2.)

The daat needs some control information on how and when it should adapt. So we

generate some user preferences that can be interpreted as simple rules for an adaptation

policy. (Section 6.3.)

We then define an application adaptation function (AAF) for daat that incorporates the

user’s rule-based preferences. We determine values for q jim e , the maximum adaptation

frequency to “better” quality QoSRegions, and qjom patibility, a measure of the

assurance the application must have of the network QoS before it can use a “better”

quality QoSRegion. We show how the values of q jim e and qjom patibility affect

adaptation. (Section 6.4.)

In our extended example of the daat, we demonstrate the potential flexibility and

generality of daat by showing how it could be used in a mobile application scenario for

power conservation. We show operation with more than one QoSParam and also that

QoSParams need not be restricted to the usual QoS parameters like delay, data rate etc.

Additionally, we show how heterogeneity in the definition of QoSRegions is easily

supported. (Section 6.5.)

137-

The QoSEngine offers stability mechanisms to the application when it is operating near

QoSRegion boundaries through the use of QoSiRegions. It is also possible to have

heterogeneity in the definition of QoSiRegions. (Section 6.6.)

The QoSEngine appears to provide a flexible, general and practicable QoS assessment

function for enabling decision-making for dynamic adaptability. The RCV generation

process and the RCVs themselves are reasonably scaleable ways of generating per-

instance, per-flow, application-level QoS summaries. The application is free to choose the

nature of the interaction with the user. The application is not unduly constrained in its

operation by the use of the QoSEngine. AAFs will be application-specific and will have

to contain mechanisms to ensure stability and fairness. (Section 6.7.)

- 138-

7. Summary and conclusions

Our main objective has been to provide functionality that informs the application o f the

suitability of the network’s current QoS to support the application’s operation. In a

network offering best-effort service, such as the Internet, the quality of service (QoS) is

hard to guarantee and typically fluctuates during the lifetime of an application instance.

Additionally, different instances of the same application may see different QoS. Our

primary motivation has been that applications currently lack functionality that allows

them to make dynamic QoS assessments allowing them to become dynamically

adaptable. As a result of this research we can conclude that:

It is possible to ojfer Internet applications a general and practicable

network QoS model that will enable them to make per-flow QoS

assessments dynamically, and allow dynamic adaptation, by monitoring

the QoS being offered by the network.

In this work we have proposed a particular QoS information processing model, the

QoSEngine, that can take application flow-requirements and per-flow QoS parameter

measurements, and generate per-flow QoS summaries of compatibility between the

network QoS and the applications requirements for operation of a flow. We have shown

not only that dynamic adaptation is possible at the application level, we have also

presented a particular engineering solution to enable the detection of QoS changes to

enable adaptation decisions to be made. We have demonstrated the use o f this solution

with the simulation of an example application, a dynamically adaptable audio tool, using

real measurements captured form various hosts on the Internet. Even where dynamic

- 139-

adaptation is not required, the QoSEngine could be used to detect per-flow QoS

violations.

There are three main issues concerning the QoSEngine in practical use:

• the QoSEngine must still rely on the stability, robustness and correct behaviour of the

underlying estimation mechanism (the QoSEngine back-end) and the measurement

process it uses

• the application is ultimately responsible for the adaptation decision and so may need

to further summarise the information from the QoSEngine, as system perturbations

may generally be of a higher frequency than a user’s adaptation requirements for an

application

• the application needs to include mechanisms to ensure network stability and fairness

7.1 Integrated services via the Internet

The Internet seems an attractive access point for providing Integrated services:

• Internet access is readily available, at relatively low cost

• general purpose hardware platforms (such as PCs) with a wide range of applications

can provide traditional (telephony) services as well as data communication services

using Internet applications

• Internet protocols and software are easily accessible for application developers

However, the Internet was never designed for the quality of service (QoS) demands of

real-time multimedia applications. The Internet offers only a best-effort service, which

may not be sufficient for interactive applications or applications with real-time flows such

as voice and video. Such applications can try to force the network to comply with their

needs using resource reservation (static adaptation) or to try to adapt themselves so that

they can operate in whatever network conditions they find (dynamic adaptation). It should

also be possible to use some combination of static and dynamic adaptation.

Resource reservation using RSVP could be used to maintain a predetermined quality of

service for Internet applications. However, for resource reservation to be truly useful end-

to-end, it must be fully deployed and there must sufficient resources in the network to

honour reservation for the majority of reservation requests.

- 140-

A likely scenario for Internet services in the near future is differentiated services, where

different users of the same application may subscribe to different QoS service-levels.

Hence the same application may be required to work under different QoS conditions. This

means that the application needs some form of adaptive capability.

In today’s Internet, resource reservation and differentiated services do not exist and so the

application must rely on the user to select the correct operating state for the application.

Today’s Internet applications lack mechanisms to enable them to make QoS assessments

dynamically in order to aid the application or user in this task [BK98b].

7.2 Adaptability: an essential part of the QoS framework

We have produced a definition and requirements for dynamic adaptability for Internet

applications. We have examined a general QoS framework and shown how our

requirements fit into this framework. The general QoS framework is based around the

provision of assured QoS and we find our dynamic adaptation requirements have strong

agreements in many cases. However, we have also shown that our requirements do not

agree with the all the general QoS framework requirements, notably on points concerning

QoS flow-specification, service-level specification and the final determination of a QoS

management policy for the application [BK98b].

We have discussed that RSVP has drawbacks and is not robust to failures along a

reserved path. We have also seen how user requirements in terms of service-levels, as

well as the user preferences for particular uses of applications, may introduce much

heterogeneity during the operation of an application instance. Furthermore, mobility

introduces much heterogeneity and requires applications to be adaptable to changes in

QoS as the user moves location from one site to another, but also to cater for varying QoS

during operation. So, even where resource reservation may be an option, there is a

requirement for dynamic adaptability in applications.

There has been much work in the research community in order to allow media flows to be

scaleable by use of novel encoding schemes, filtering, mixing and use of application-level

gateways. However, this may still require either:

• a knowledgeable user to set and maintain correct user preferences and configuration

• mechanisms in the network to ensure that adaptability mechanisms are located at the

proper locations within the network

- 141

We cannot always assume that the user has sufficient technical knowledge to configure an

application and the Internet architecture and philosophy dictates that the application must

not rely on any network techno logy-specific mechanisms, i.e. the application should take

responsibility for making adaptation decisions. We have argued that, given the

heterogeneity of user preferences and network service-levels, the application is the best

place to make the adaptation decisions. However, the application lacks a general way of

assessing QoS that will allow adaptation decision to be made.

7.3 Contributions of this work

The contributions we have made in this work are [BK98a, BK98b]:

• to show that dynamic application adaptability is an important part of an

application’s QoS framework: the application must be able to adapt in order to cater

for variations in the offered network QoS. For the Internet, resource reservation is not

ubiquitous, and RSVP cannot be wholly relied upon, so the application must have

other functionality in order to maintain an adequate level of operation. There are also

circumstances (such as mobility) where resource reservation may not be available, or

user preferences and network service-levels present great heterogeneity, so dynamic

adaptability is required

• the QoSSpace: a model of the network that allows application flows and network QoS

to interact. QoSRegions are descriptions of the application’s flow-requirement

requirements using QoSParam boundaries, providing a simple QoS mapping between

the application and the network. QoSRegions conceptually exist in QoSSpace and the

network QoS, NetQoSRegion, can also be mapped into QoSSpace

• the QoSEngine: a system comprising the QoSSpace and a back-end QoS parameter

processing function that is robust, adaptive and general. The QoSEngine can produce

QoSReports that give an assessment of the network’s current ability to support an

application’s flow-requirements. The QoSEngine is general and robust. The

QoSReports contain region compatibility values (RCVs) which are scaleable, simple

in nature and easy to understand and manipulate. The QoSEngine maps the network

QoS, NetQoSRegion, as a region given by QoSParam value ranges within the

QoSSpace. The QoSEngine is not constrained by any particular network model or

traffic model. It can be used in general circumstances to provide estimates of

QoSParam values given measured QoS parameter values. In most cases, the

QoSEngine has good noise immunity and produces sensible values for QoSParams.

The QoSEngine’s performance degrades where there is extremely poor SNR in the

- 142-

measurements (~13dB or below) or extreme variability in the measurements. The

QoSEngine can be used to presents a particular engineering solution that can be used

within the general QoS framework to detect QoS violations. The QoSEngine does not

unduly constrain the design, construction or operation of the application

• dynamic adaptation is possible and appears practicable: we have used simulations

to show how the RCVs from the QoSEngine can be used. Simple algorithms are used

to incorporate user preferences and application requirements into an automatically

controlled adaptation policy that controls the operation of a fictitious dynamically

adaptable audio tool {daat). The daat adaptation algorithm uses a RCV threshold,

qjcompatibility, and a stability time, q jim e , to produce an evaluation, the

Q_SCORE/Q_ISCORE, of the suitability of a QoSRegion for use

The QoSEngine can easily be integrated into applications. The QoSEngine incurs

relatively low additional computational cost, as it uses simple operations (MIN, MAX,

plus a few simple arithmetic operations), and the EWMA filters used in the QoSEngine

back-end require only a small amount of historic information per-flow. The QoSRegions

specify an application-level flow specification but the definition and granularity of a flow

is not constrained, remaining application-specific.

7.4 Limitations and future work

Our intention in this work was to define an abstraction that would enable applications to

make QoS assessments, and so make decisions about flow-requirement changes based on

measured QoS. We have achieved this goal, but there are a number of limitations. Those

that need to be addressed first include:

• refinement of the QoSEngine back-end: we have the FAS-FAR estimator for the

QoSEngine back-end to generate values for p_p. We have selected this mechanism as

it is computationally inexpensive and the EWMA is widely used and is known to be

robust and general. However, it can not deal with very large levels of noise or

variability in the input. We note that any improvements to the estimation system must

still produce a computationally inexpensive mechanism as the estimation system may

need to provide many estimations for each of many flows and will be implemented in

software on a general hardware platform

• choice of variability parameter definition: our intention with the variability

parameter, vj) , is to try and measure the current fluctuations in the values of p_p m

order generate values of q_lo and q j i i for the NetQoSRegion. This is a key part of the

- 143-

QoSEngine’s evaluation mechanism and directly influences the value of the RCV.

Further investigation is needed in order to prove that our current definition of is

indeed applicable in general. There may be better mechanisms for generating v_p in

certain circumstances, or for evaluating q_lo and q_hi directly from values of raw QoS

parameter measurements. In our work, we have chosen to use a heuristic definition for

V_p (based on our experience and observations) that it is computationally simple,

produces a timely estimate and requires little state information

• use of the QoSSpace within the r a t audio tool: in our examples in Chapter 6, we

have referred to our fictitious tool, daat. In fact, daat is modelled around the current

media-scaling functionality of rat [HSK98]. It should be possible to incorporate the

QoSEngine into rat and show it working with another of rat’s media adaptive abilities,

namely redundant encoding to cope for errors and packet loss, in a conference scenario

(e.g. Scenario lb. Section 1.1). We would also like to integrate the QoSSpace into a

video tool. We intend that such work will help to strengthen our claim for the

generality and flexibility of our approach

• adaptability in mobile applications: in one of our examples in Chapter 6, we looked

at daat operating on a mobile host. This is one area that we would be interesting and

useful to investigate, as mobile applications typically require dynamic adaptability to

cope with varying QoS as users move location (e.g. Scenario 2b, Section 1.1)

• integrated QoS architecture for Internet applications: we would like to investigate

how dynamic adaptability fits into an integrated QoS architecture with other Internet

QoS mechanisms, e.g. the INTSERV work using RSVP and the use of RTFM through

SNMP. We are particularly interested in examining how adaptable applications would

function within the DIFFSERV network architecture. This would involve an

investigation of the interface (Figure 1.3) that we have not considered in detail in

this work. Our aim here would be to show integration between adaptation mechanisms,

QoS assurance mechanisms and network management (both static and dynamic

adaptation)

In the longer term, we see that application-level interactions need to be addressed,

including:

• interaction with the user: as we have noted in this dissertation, consideration of the

user preferences and requirements is important. We need to investigate how the use of

dynamic adaptability changes the way the user and the application must interact. Is it

possible to have totally automatic dynamically adaptable applications or must there be

- 144-

some interaction with the user during the execution of an application, rather than just

the use of static user preferences? This would involve an investigation of the interface

laq (Figure 1.3) that we have not considered in detail in this work

distributed applications: the following issues need to be addressed:

• when an application does have the ability to make adaptation decisions, what are

the interactions between instances that affect application mode changes and

flow-requirement changes?

• how does the local interaction with the user affect the decision-making process

in distributed instances?

• what is the interaction of the architectural components to support receiver

heterogeneity in the decision making-process? (For example, how might the

decision making process interact with the filtering mechanisms in the application

level gateways or in the network?)

145-

Glossary

A collection of selected acronyms and definitions used in this dissertation.

ADM

ADU

delay

DIFFSERV

dynamic adaptation

end-system

EWMA

FAP

FAS

flow

flow-requirement

GSM

host

adaptive delta modulation

application data unit

some measure of elapsed time since an epoch such as the

transmission of a packet to its reception, e.g. end-to-end delay

is the time taken for a packet to go travel between two-hosts;

units seconds

Differential Services Working Group of the IETF

an application is dynamically adaptable if it can monitor the

network QoS it is receiving and automatically adapt its flow-

requirement to operate within the offered network QoS

see: host

exponential weighted moving averaging

fuzzy adaptive predictor

fuzzy adaptive smoother

a sequence of packets that form a single unidirectional stream

carrying information between a given source and given

(unicast or multicast) destination

a description of a particular flow-construction in terms of QoS

service requirements, e.g. data rate, minimum delay, etc.

global system for mobile communications

a workstation or computing device that forms the hardware

platform for the execution of an application or process that

- 146-

ICMP

IETF

INTSERV

IP

IPv4

IPv6

ISPN

jitter

LPC

media flow

MIB

mode

NetQoSRegion

operating point

PCM

PCV

PCVF

POTS

generates and/or receives flows

Internet control message protocol

Internet Engineering Task Force

Integrated Services Working Group of the IETF

Internet protocol

IP version 4

IP version 6 (note we use the specification in [IPV6] and not

RFC 1883)

integrated services packet network

the variation in successive delay measurements; units seconds

linear predictive coding

see: flow

management information base

a well-defined state of operation for an application

network QoS defined in terms of QoSParam range values that

show the variability of the QoSParams. The network has only

one NetQoSRegion with respect to a particular flow at any

point in time. NetQoSRegion must be defined by the same

number of QoSParams that define the QoSRegions for a flow

see: set-point

pulse code modulation

parameter compatibility value: a number in the range [0, 1]

that expresses the degree to which the QoSSpace assesses that

a certain QoSParam lies within a region defined for that

QoSParam within a QoSRegion for a flow

PCV function: a part of the QoSSpace that evaluates PC Vs

plain old telephone service

- 147

QoS

QoSEngine

QoSiRegion

QoSParam

QoSReport

QoSSpace

QoSRegion

RSVP

RTCP

RTFM

RTP

RCV

RCVF

quality of service

a QoS information processing function that takes raw

measurements of QoS parameter values from the network and

derives values of RCVs for QoSReports

an intermediate (quasi) region that is (an optional) part of the

QoSRegion definition; it is not a true flow-requirement but

represents a region within the QoSRegion that is in the

proximity of the boundary of the QoSRegion region

values derived from the corresponding measured values of

QoS parameters, generated by the QoSEngine back-end

a per-flow QoS summary containing RCVs for each flow-

requirement

a multi-dimensional space model, with its dimensions defined

by QoSParams, in which the application flows conceptually

exist and into which the network QoS can be mapped

the flow-requirement specifed in terms of QoSParam boundary

values that define the operating region of that flow-

requirement within QoSSpace. A flow can have many

QoSRegions. A QoSRegion can have many different

QoSParams that define it

Resource reSerVation Protocol

Real-time Transport Control Protocol

Real-time Traffic Flow Monitoring Working Group of the

IETF

Real-time Transport Protocol

region compatibility value: a number in the range [0, 1] that

expresses the degree to which the QoSSpace assesses that a

certain QoSRegion can be supported by the network

RCV function: a part of the QoSSpace that evaluates RCVs

- 148-

set-point

SNMP

SNR

state-flapping

static adaptation

traffic flow

VEF

a steady operating point for a flow

simple network management protocol

signal to noise ratio

when an application oscillates between QoSRegions (more

often than the user would typically prefer); for example due to

a QoSParam value wavering around a QoSRegion boundary

an application is statically adaptive if it interacts with the

network in order to assure some sort of reservation of

resources so that it may operate in a fixed mode and/or with a

fixed flow-requirement

see: flow

variability estimation function

- 149-

References

[AMV96]

[AMZ95]

[ANSA]

[Bas96]

[BCDRF97]

[BFMM94]

E. Amir, S. McCanne, M. Vetterli, “A Layered DCT Coder for

Internet Video”, Proc. ICIP’96, Lausanne, Switzerland, Sep 1996.

http://http.cs.berkeley.edu/~elan/pubs/papers/ldct.ps

B. Amir, S. McCanne, H. Zhang, “An Application Level Video

Gateway”, Proc. ACM Multimedia’95, San Francisco, CA, USA,

Nov 1995

http://http.cs.berkeley.edu/~elan/pubs/papers/vgw.ps

APM Ltd, “ANSA: An Engineers Introduction to the

Architecture”, Technical Document Release TR.03.02, APM

Cambridge Ltd, Poseidon House, Castle Park, Cambridge, CB3

ORD, UK, 1989

T. Bass, “A Functional Comparison of STII and RSVP in a Real-

Time Heterogenous Client-Server Environment”, 3 Apr 1996.

http://www.siikroad.com/worklng/stil-rsvp.ps

G. Blair, G. Coulson, N. Davies, P. Robin, T. Fitzpatrick,

“Adaptive Middleware for Mobile Multimedia Applications”, Proc.

Network and Operating System Support for Digital Audio and

Video (NOSSDAV’97), St Louis, USA 1997.

http://www.comp.lancs.ac.uk/computing/research/mpg/most/reports/nossdav97.ps.gz

A. Banerjea, D. Ferrari, B. A. Mah, M. Moran, “The tenet real-time

protocol suite: Design, implementation, and experiences”.

Technical Report TR-94-059, University of California at Berkeley,

Berkeley, California, Nov. 1994.

ftp://tenet.berkeiey.edu/pub/tenet/Papers/BaFeMaMoVeZh94.ps

- 150-

http://http.cs.berkeley.edu/~elan/pubs/papers/ldct.ps
http://http.cs.berkeley.edu/~elan/pubs/papers/vgw.ps
http://www.siikroad.com/worklng/stil-rsvp.ps
http://www.comp.lancs.ac.uk/computing/research/mpg/most/reports/nossdav97.ps.gz
ftp://tenet.berkeiey.edu/pub/tenet/Papers/BaFeMaMoVeZh94.ps

[BG94]

[BK98a]

[BK98b]

[BPK97]

[BTW94]

[BV96]

[C+97]

[CAH96]

A. R. Bonde, Jr., S. Ghosh, “A Comparitive Study of Fuzzy Versus

“Fixed” Thresholds for Robust Queue Management in Cell-Switch

Networks”, lEEE/ACM Transactions on Networking, vol. 2, no. 4,

pp337-343, Aug 1994.

S. N. Bhatti, G. Knight, “Notes on a QoS information model for

making adaptation decisions”, Proc. 4̂*̂ International Workshop on

High Performance Protocol Architectures (HIPPARCH’98),

University College London, London, UK, 15-16 Jun 1998.

S. N. Bhatti, G. Knight, “QoS Assurance vs. Dynamic Adaptability

for Applications”, Proc. 8* International Workshop on Network

and Operating Systems Support for Digital Audio and Video

(NOSSDAV’98), New Hall, Cambridge University, Cambridge,

UK, 8-10 Jul 1998.

H. Balakrishnan, V. N. Padmanabhan, R. H. Katz, “The Effects of

Asymmetry on TCP Performance”, Proc. ACM/IEEE

MOBICOM’97, Budapest, Hungary, Sep 1997.

ftp://daedalus.cs.berkeley.edu/pub/papers/tcpasym-mobicom97.ps.gz

J.-C. Bolot, T. Turletti, I. Wakeman, “Scalable Feedback Control

for Multicast Video Distribution in the Internet”, Proc. ACM

SIGCOMM’94, London, UK, pp58-67, Oct 1994.

J.-C. Bolot, A. Vega-Garcia, “Control Mechanisms for Packet

Video in the Internet”, Proc. IEEE INFOCOM’96, pp232-239, San

Francisco, California, USA, Mar 1996.

http://www.cs.columbia.edu/~hgs/papers/Bolo9603_Control.ps.gz

S. Crosby, I. Leslie, J. T. Lewis, R. Russel, F. Toomey, B.

McGurk, “Practical Connection Admission Control for ATM

Networks Based on On-line Measurements”, Proc. IEEE ATM’97,

Lisbon , Jun 1997.

A. Campbell, C. Aurrecoechea, L. Hauw, “A Review of QoS

Architectures”, Proc. of 4^ IFIP International Workshop on Quality

of Service (IWQoS’96), Paris, France, March, 1996.

ftp://ftp.ctr.coiumbla.edu/CTR-Research/comet/pubiic/papers/96/CAM96a.ps.gz

- 151 -

ftp://daedalus.cs.berkeley.edu/pub/papers/tcpasym-mobicom97.ps.gz
http://www.cs.columbia.edu/~hgs/papers/Bolo9603_Control.ps.gz
ftp://ftp.ctr.coiumbla.edu/CTR-Research/comet/pubiic/papers/96/CAM96a.ps.gz

[Cam97]

[CC94]

[CCH94]

[CCH96]

[CI93]

[CKL94]

[Cla88]

[CORBA96]

[Cox94]

A. T. Campbell, “Mobiware: QoS-Aware Middleware for Mobile

Multimedia Networking”, Proc. IFIP International Conference

on High Performance Networking, White Plains, New York, Apr

1997.

http://comet.ctr.columbia.edu/-mobiware/wirel ess/PUB/hpn97.ps.Z

C.-J. Chang, R-G. Cheng, “Traffic Control in an ATM Network

Using Fuzzy Set Theory”, Proc. IEEE INFOCOM’94 ppl200-

1207, 1994.

A. Campbell, G. Coulson, D. Hutchison, “A Quality of Service

Architecture”, ACM Computer Communications Review, vol. 24,

no. 2, 1994, pp6-27.

ftp://ftp.comp.iancs.ac.uk/pub/mpg/MPG-94-08.ps.Z

A. Campbell, G. Coulson, D. Hutchison, “Supporting Adaptive

Flows in Quality of Service Architecture”, ACM Multimedia

Systems Journal, May 1996.

ftp://ftp.ctr.columbia.edu/CTR-Research/comet/public/papers/96/CAM96c.ps.gz

R. Cacares, L. Iftode, “The effects of mobility on reliable transport

protocols”, Technical Report MITL-TR-73-93, Matsushita

Information Technology Laboratory, Princeton, New Jersey, Nov.

1993.

ftp://m lti.research.panasonic.eom/pub/tr73-93.Z

P. Chemouil, J. Khalfet, M. Lebourges, “A Fuzzy Control

Approach for Adaptive Traffic Routing”, IEEE Communications

Magazine, pp70-76, Jul 1995.

D. D. Clark, “The Design Philosophy of the DARPA Internet

Protocols”, Proc. ACM SIGCOMM’88, ppl06-l 14, Aug 1988.

CORE A v2.0 Specification, Object Management Group (OMG)

http://www.omg.org/

E. Cox, “The Fuzzy Systems Handbook”, [AP Professional] 1994

- 152-

http://comet.ctr.columbia.edu/-mobiware/wirel
ftp://ftp.comp.iancs.ac.uk/pub/mpg/MPG-94-08.ps.Z
ftp://ftp.ctr.columbia.edu/CTR-Research/comet/public/papers/96/CAM96c.ps.gz
ftp://mlti.research.panasonic.eom/pub/tr73-93.Z
http://www.omg.org/

[CSZ92]

[CT90]

[D+93]

[DHT95]

[DIFFSERVl]

[DIFFSERV2]

[DIFFSERV3]

[DIFFSERV4]

[DIFFSERV5]

[DIFFSERV6]

D. D. Clark, S. Shenker, L. Zhang, “Supporting Real-Time

Applications in an Integrated Services Packet Network:

Architecture and Mechanism”, Proc. ACM SIGCOMM’92, ppl4-

26, Aug 1992

D. D. Clark, D. L. Tennenhouse, “Architectural Considerations for

a New Generation of Protocols”, Proc. ACM SIGCOMM’90, pp

200-208. Sep 1990.

L. Delgrossi, C. Halstrick, D. Hehmann, R. G. Herrtwich, O.

Krone, J. Sandvoss, C. Vogt, “Media scaling for Audiovisual

Communication with the Heidelberg Transport System”, Proc.

ACM Multimedia, pp99-104, Jun 1993.

C. Diot, C. Huitema, T. Turletti, “Multimedia Application should

be Adaptive,” Proc. High Performance Computing Symposium,

(Mystic, Connecticut), Aug. 1995.

ftp://www.inria.fr/rodeo/ivs/papers/hpcs95.ps.gz

K. Nichols, S. Blake (Eds), “Differentiated Services Operational

Model and Definitions”, IETF DIETSERV WG, work-in-progress,

Feb 1998.

D. Clark, J. Wroclawski, “An Approach To Service Allocation in

the Internet”, IETF DIFFSERV WG work-in-progress, Jul 1997.

Z. Wang, “User-Share Differentiation (USD) Scaleable bandwidth

allocation for differentiated services”, IETF DIFFSERV WG work-

in-progress, Nov 1997.

J. Heinanen, “Use of the IPv4 ToS Octet to Support Differential

Services”, IETF DIFFSERV WG work-in-progress, Nov 1997.

S. Blake, “Some Issues and Applications of Packet Marking for

Differentied Services”, IETF DIFFSERV WG work-in-progress,

Dec 1998.

K. Nichols, V. Jacobson, L. Zhang, “A Two-bit Differentiated

Services Architecture for the Internet”, IETF DIFFSERV WG

work-in-progress, Dec 1997.

- 153

ftp://www.inria.fr/rodeo/ivs/papers/hpcs95.ps.gz

[DIFFSERV7]

[DKS90]

[DT97]

[DWFB97]

[FJ95]

[FPM95]

[GB96]

[GHMY96]

D. Clark, W. Fang, “Explicit Allocation of Best Effort Packet

Delivery Service”, IETF DIFFSERV WG work-in-progress, Nov

1997.

A. Demers, S. Keshav, S. Shenker, “Analysis and simulation of a

fair queuing algorithm”. Internetworking Research and Experience,

vol. 1, pp3-26, Jan 1990.

M. Decina, V. Trecordi, “Convergence of Telecommunications and

Computing to Networking Models for Integrated Services and

Applications”, Proceedings of the IEEE, vol. 85 no. 12, Dec 1997.

N. Davies, S. P. Wade, A. Friday and G. S. Blair, “Limbo: A Tuple

Space Based Platform for Adaptive Mobile Applications”, Proc.

International Conference on Open Distributed Processing/-

Distributed Platforms (ICODP/ICDP '97), Toronto, Canada, 27-30

May 1997.

http://www.comp.lancs.ac.uk/computing/research/mpg/most/reports/icodp97.ps.gz

S. Floyd, V. Jacobson, “Link-sharing and Resource Management

Models for Packet Networks”, IEEE/ACM Transactions on

Networking, Vol. 3 No. 4, pp365-386, Aug 1995.

ftp://ftp.ee.IbI.gov/papers/link.ps.Z

K. Fall, J. Pasquale, S. McCanne, “Workstation Video Playback

Performance with Competitive Process Load”, Proc. 5̂ ̂

International Workshop on Network and Operating System

Support for Digital Audio and Video (NOSSDAV’95), Durham,

New Hampshire, ppl79-182, Apr 18-21, 1995.

http://hulk.bu.eclu/nossciav95/papers/KevinFall.ps

M. Grossglauser, J.-C. Bolot, “On the Relevance of Long Range

Dependency in Network Traffic”, Proc. ACM SIGCOMM’96,

pp 15-24, Aug 1996.

F. Garcia, D. Hutchison, A. Mauthe, N. Yeadon, “QoS Support for

Distributed Multimedia Communications” Proc. International

Conference on Distributed Platforms, Dresden, Germany, 27 Feb-1

Mar 1996.

ftp://ftp.comp.lanes.ac.uk/pub/mpg/MPG-96-08.ps.Z

- 154-

http://www.comp.lancs.ac.uk/computing/research/mpg/most/reports/icodp97.ps.gz
ftp://ftp.ee.IbI.gov/papers/link.ps.Z
http://hulk.bu.eclu/nossciav95/papers/KevinFall.ps
ftp://ftp.comp.lanes.ac.uk/pub/mpg/MPG-96-08.ps.Z

[HCB098]

[HILY96]

[HS97]

[HSHW95]

[HSK98]

[HWC95]

[ICMPv4]

M. Handley, J. Crowcroft, C. Borman, J. Ott, “Very Large

Conferences on the Internet: the Internet Multimedia Conferencing

Architecture”, to appear in Computer Networks and ISDN

Systems, Special Issue on Internet Telephony, 1998

http://north.east.isi.edu/~mjh/cnis.ps

J.-F. Huard, I. Inoue, A. A. Lazar, H, Yamanaka, “Meeting QOS

Guarantees by end-to-End QOS Monitoring and Adaptation”,

Workshop on Multimedia and Collaborative Environments of the

IEEE International Symposium On High Performance

Distributed Computing (HPDC-5), Syracuse NY, Aug. 1996.

ftp://ftp.ctr.columbia.edu/CTR-Research/ccmet/public/papers/96/HUA96a.ps.gz

J. Hughes, M.-A. Sasse, “Internet Multimedia Conferencing -

Results from the ReLaTe Project”, Proceedings of the ICDE World

Conference, Pennsylvania State University, 2-6 Jun, 1997

http://www.es.uci.ac.uk/staff/A.Sasse/lcde.ps

V. Hardman, M. A. Sasse, M. Handley & A. Watson, “Reliable

Audio for Use over the Internet”, Proc. INET'95, pp 171-178,

Hawaii, USA, 27-30 Jun 1995.

http://www.es.ucl.ac.uk/staff/A.Sasse/inet95audio.ps

V. Hardman, A. Sasse, I. Kouvelas, “Successful Multi-party Audio

Communication over the Internet”, University College London, to

appear in Communications of the ACM, May 1998.

M. Handley, I. Wakeman, J. Crowcroft, “The Conference Control

Channel Protocol: A scaleable base for building conference control

applications”, Proc. ACM SIGCOMM’95, pp275-287, Sep 1995.

J. Postel, “Internet Control Message Protocol”, RFC792, 1 Sep.

1981.

[ICMPv4] J. Postel, “Internet Control Message Protocol”, RFC792, 1 Sep

1981.

[INTSERV] S. Jamin, C. Jin, L. Breslau, “A Measurement Based Algorithm for

Controlled Load Service with a Reference Implementation

Framework”, INTSERV WG, work-in-progress, Oct. 1997.

- 155-

http://north.east.isi.edu/~mjh/cnis.ps
ftp://ftp.ctr.columbia.edu/CTR-Research/ccmet/public/papers/96/HUA96a.ps.gz
http://www.es.uci.ac.uk/staff/A.Sasse/lcde.ps
http://www.es.ucl.ac.uk/staff/A.Sasse/inet95audio.ps

[INTSERVQM] D. Clark, “The Quality Management Interface”, slides presented at

the 3C‘ IETF meeting, Jan 1995.

ftp://mercury.lcs.mit.edu/pub/intserv/clark-qos-manager.ps

[IPv4] J. Postel (Ed), “Internet Protocol DARPA Internet Program

Protocol Specification”, RFC791, Sep 1981.

[IPv6] S. Deering, R. Hinden, “Internet Protocol, Version 6 (IPv6)

Specification”, lETFIPNG WG, work-in-progress, Nov 1997.

[JacSS] V. Jacobson, “Congestion Avoidance and Control”, ACM

Computer Communication Review, vol. 18, no. 4, pp314-329, Aug

1988.

ftp://ftp.ee.lbl.gov/papers/congavoid.ps.Z

[Jac90] V. Jacobson, “Modified TCP Congestion Avoidance Algorithm”,

end2end-interest mailing list, 30 Apr 1990.

ftp://ftp.isi.edu/end2end/end2end-interest-1990.mail

[JDSZ95] S. Jamin, P. Danzig, S. Shenker, L. Zhang, “A Measurement-based

Admission Control Algorithm for Integrated Services Packet

Networks”, Proc. ACM SIGCOMM’95, pp2-13, Sep 1995.

[Kat94] R. H. Katz, “Adaptation and Mobility in Wireless Information

Systems”, IEEE Personal Communications, vol. 1 no. 1, 1994.

[Kel97] F. P. Kelly, “Charging and rate control for elastic traffic”,

European Transactions on Telecommunications, vol 8, pp33-37,

1997.

http://www.statslab.cam.ac.uk/-frank/elastic.ps

[Kes91] S. Keshav, “A Control-Theoretic Approach to Flow Control”, Proc.

ACM SIGC0M M ’91, Aug 1991.

http://simon.cs.corneii.edu/info/People/skeshav/tenet/Keshav91a.ps

[KH97] I. Kouvelas, V. Hardman, “Overcoming Workstation Scheduling

Problems in a Real-Time Audio Tool”, Proc. Usenix Annual

Technical Conference, Anaheim, California, USA, Jan 1997.

http://www-mice.cs.uci.ac.uk/staff/i.Kouveias/pubiications/rat_usenix.ps.gz

- 156-

ftp://mercury.lcs.mit.edu/pub/intserv/clark-qos-manager.ps
ftp://ftp.ee.lbl.gov/papers/congavoid.ps.Z
ftp://ftp.isi.edu/end2end/end2end-interest-1990.mail
http://www.statslab.cam.ac.uk/-frank/elastic.ps
http://simon.cs.corneii.edu/info/People/skeshav/tenet/Keshav91a.ps
http://www-mice.cs.uci.ac.uk/staff/i.Kouveias/pubiications/rat_usenix.ps.gz

[KHC98]

[KK92]

[KMR93]

[Kos97]

[KP87]

[L+96]

[Laz92]

[LLB97]

I. Kouvelas, V. Hardman, J. Crowcroft, “Network Adaptive

Continuous-Media Applications Through Self Organised

Transcoding”, to appear Proc. 8̂ ̂ International Workshop on

Network and Operating Systems Support for Digital Audio and

Video (NOSSDAV’98), New Hall, Cambridge University,

Cambridge, UK, 8-10 Jul 1998.

P. S. Khedkar, S. Keshav, “Fuzzy Prediction of Timeseries”, Proc.

IEEE Conference on Fuzzy Systems, Mar 1992.

http://simon.cs.cornell.edu/lnfo/PeopIe/skeshav/tenet/KhKe92.ps

H. Kanakia, P. P. Mishra, A. Reibman, “An Adaptive Congestion

Control Scheme for Real-Time Packet Video Transport”, Proc.

ACM SIGCOMM’93, pp20-31, Oct 1993.

B. Kosko, “Fuzzy Engineering”, [Prentice Hall], 1997

P. Karn, C. Partridge, “Improving Round-Trip Estimates in

Reliable Transport Protocols”, Proc. SIGCOMM’87, pp2-7, Aug

1987

I. M. Leslie, D. McAuley, R. Black, T. Roscoe, P. Barham, D.

Evers, R. Fairbairns, E. Hyden, “The Design and Implementation

of an Operating System to Support Distributed Multimedia

Applications”, IEEE Journal of Selected Areas in Communication,

vol. 14, no. 7, Sep 1996.

http://www.cl.cam.ac.uk/Research/SRG/pegasus/papers/jsac-jun97.ps.gz

A. Lazar, “A real-time management, control and information

transport architecture for broadband networks”, Proc. 1992

International Zurich Seminar on Digital Communications, (Zurich,

Switzerland), Mar 1992.

ftp://ftp.ctr.columbia.edu/CTR-Research/comet/public/papers/92/LAZ92b.ps.gz

S. Lu, K.-W. Lee, V. Bharghavan, “Adaptive Service in Mobile

Computing Environments”, in Building QoS into Distributed

Systems, (A. Campbell, K. Nahrstedt, Eds), pp25-36, [Chapman &

Hall] 1997

- 157-

http://simon.cs.cornell.edu/lnfo/PeopIe/skeshav/tenet/KhKe92.ps
http://www.cl.cam.ac.uk/Research/SRG/pegasus/papers/jsac-jun97.ps.gz
ftp://ftp.ctr.columbia.edu/CTR-Research/comet/public/papers/92/LAZ92b.ps.gz

[LLSZ96]

[LMM93]

[LSD98]

[MESL94]

[MJ95]

[MJV96]

[MK97]

[MSM097]

C. Lefelhocz, B. Lyles, S. Shenker, L. Zhang, “Congestion Control

for Best Effort Service: Why We Need a New Paradigm”, IEEE

Network, vol. 10 no. 1, Jan/Feb 1996.

http://www.ieee.org/comsoc/lefelhocz.html

I. M. Leslie, D. R. McAuley, S. J. Mullender, “Pegasus - Operating

System Support for Distributed Multimedia Systems”, ACM

Operating Systems Review, vol. 27, pp69-78, Jan. 1993.

B. Landfeldt, A. Seneviratne, C. Diot, “User Services Assistant:

An End-to-End Reactive QoS Architecture”, to appear Proc. 4̂*’

International Workshop on High Performance Protocol

Architectures (HIPPARCH’98), University College London,

London, UK, 15-16 Jun 1998.

D. Mitzel, D. Estrin, S. Shenker, L. Zhang, “An architectural

comparison of ST-II and RSVP”, Proc. IEEE INFOCOM’94,

Toronto, Canada, Jun 1994.

ftp://caidera.usc.edu/pub/mitzel/infocom94/lnfocom94.ps

S. McCanne, V. Jacobson, “vie: A flexible framework for packet

video” Proc. of ACM Multimedia’95, Nov. 1995.

ftp://ftp.ee.lbi.gov/papers/vic-mm95.ps.Z

S. McCanne, V. Jacobson, M. Vetterli, “Receiver Driven Layered

Multicast”, ACM SIGCOMM’96, California, USA, ppl 17-130,

Aug 1996.

P. Moghe, A. Kalavade, “Terminal QoS of Adaptive Applications

and its Analytical Computation”, in Building QoS into Distributed

Systems, (A. Campbell, K. Nahrstedt, Eds), pp367-378, [Chapman

& Hall] 1997

M. Mathis, J. Semke, J. Mahdavi, T. Ott, “The Macroscopic

Behaviour of the TCP Congestion Control Algorithm”, Acm

Computer Communications Review, vol. 27 no. 3, Jul 1997.

158-

http://www.ieee.org/comsoc/lefelhocz.html
ftp://caidera.usc.edu/pub/mitzel/infocom94/lnfocom94.ps
ftp://ftp.ee.lbi.gov/papers/vic-mm95.ps.Z

[Oec97]

[Pax97a]

[Pax97b]

[PF95]

[PF97]

[PHKS97]

[Res97]

[RFC 1349]

[RFC1363]

[RFC1633]

[RFC 1809]

P. Oechslin, “Worst case arrivals of leaky bucket constrained

sources: the myth of the on-off source”, in Building QoS into

Distributed Systems, (A. Campbell, K. Nahrstedt, Eds), pp67-76,

[Chapman & Hall] 1997.

V. Paxson , “End-to-End Internet Packet Dynamics”, Proc. ACM

SIGCOMM’97, p p l39-152, Sep 1997.

ftp://ftp.ee.lbl.gov/papers/vp-pkt-dyn-sigcomm97.ps.Z

V. Paxson, “End-to-End Routing Behavior in the Internet”,

IEEE/ACM Transactions on Networking, vol. 5 no. 5, pp601-615,

Oct. 1997

ftp://ftp.ee.lbl.gov/papers/vp-routing-TON.ps.Z

V. Paxson, S. Floyd, “Wide-Area Traffic: The Failure of Poisson

Modeling”, lEEE/ACM Transactions on Networking, vol. 3 no. 3,

pp226-244, June 1995.

ftp://ftp.ee.lbl.gov/papers/WAN-poisson.ps.Z

V. Paxson, S. Floyd, “Why we don't know how to simulate the

Internet”, Proc. 1997 Winter Simulation Conference

ftp://ftp.ee.lbl.gov/papers/wsc97.ps

C. Perkins, V. Hardman, I. Kouvelas, & M. A. Sasse, “Multicast

Audio: The Next Generation”, Proc. INET’97, Putra World Trade

Centre, Kuala Lumpur, Malaysia, Jun 1997.

fittp://www.GS.UGi.ac.uk/staff/c.perklns/papers/!NET97.fitmi

S. L. Resnick, “Heavy Tail Modelling and Teletraffic Data”, The

Annals of Statistics, vol. 25, no. 5, 1997

P. Almquist, “Type of Service in the Internet Protocol Suite”,

RFC 1349, Jul 1992

C. Partridge, “A Proposed Flow Specification”, RFC 1363, Sep

1992.

B. Braden, D. Clark, S. Shenker, “Integrated Services in the

Internet Architecture: An Overview”, RFC 1633, Jun 1994.

C. Partridge, “Using the Flow Label Field in IPv6”, RFC 1809, Jun

1995.

- 159-

ftp://ftp.ee.lbl.gov/papers/vp-pkt-dyn-sigcomm97.ps.Z
ftp://ftp.ee.lbl.gov/papers/vp-routing-TON.ps.Z
ftp://ftp.ee.lbl.gov/papers/WAN-poisson.ps.Z
ftp://ftp.ee.lbl.gov/papers/wsc97.ps
http://www.GS.UGi.ac.uk/staff/c.perklns/papers/!NET97.fitmi

[RFC 1890] H. Schulzrinne, “RTF Profile for Audio and Video Conferences

with Minimal Control”, RFC 1890, Jan 1996.

[RFC2001] W. Stevens, “TCP Slow Start, Congestion Avoidance, Fast

Retransmit, and Fast Recovery Algorithms”, RFC2001, Jan 1997.

[RFC2002] C. Perkins, “IP Mobility Support”, RFC2002, Oct 1996

[RFC2003] C. Perkins, “IP Encapsulation within IP”, RFC2003, Oct 1996.

[RFC2004] C. Perkins, “Minimal Encapsulation within IP”, RFC2004, Oct

1996.

[RFC2005] J. Solomon, “Applicability Statement for IP Mobility Support”

RFC2005, Oct 1996

[RFC2006] D. Cong, M. Hamlen, C. Perkins, “The Definitions of Managed

Objects for IP Mobility Support using SMIv2”, RFC2006, Oct

1996

[RFC2029] M. Speer, D. Hoffman, “RTF Payload Format of Sun's CellB

Video Encoding”, RFC2029, Oct 1996.

[RFC2032] T. Turletti, C. Huitema, “RTF Payload Format for H.261 Video

Streams”, RFC2032, Oct 1996.

[RFC2035] L. Berc, W. Fenner, R. Frederick, S. McCanne, “RTF Payload

Format for JPEG-compressed Video”, RFC2035, Oct 1996.

[RFC2063] N. Brownlee, C. Mills, G. Ruth, “Traffic Flow Measurement:

Architecture”, RFC2063, Jan 1997.

[RFC2064] N. Brownlee, “Traffic Flow Measurement: Meter MIB”, RFC2064,

Jan 1997.

[RFC2190] C. Zhu, “RTF Payload Format for H.263 Video Streams”,

RFC2190, Sep 1997.

[RFC2198] C. Perkins, I. Kouvelas, O. Hodson, V. Hardman, M. Handley, J.

C. Bolot, A. Vega-Garcia, S. Fosse-Parisis, “RTF Payload for

Redundant Audio Data”, RFC2198, Sep 1997.

[RFC2205] N. Freed, S. Kille, “RTF Payload Format for MPEG1/MPEG2

Video”, RFC2205 Jan 1998.

- 160-

[RFC2208]

[RFC2210]

[RFC2211]

[RFC2212]

[RFC2213J

[RFC2214]

[RFC2215]

[RFC2216]

[RSVP]

[RTFMl]

[RTFM2]

[RTFM3]

A. Mankin, F. Baker, B. Braden, S. Bradner, M. O’Dell, A.

Romanow, A. Weinrib, L. Zhang, “Resource ReSerVation Protocol

(RSVP) - Version 1 Applicability Statement Some Guidelines on

Deployment”, RFC2208, Sep 1997.

J. Wroclawski, “The Use of RSVP with IETF Integrated Services”,

RFC2210, Sep 1997.

J. Wroclawski, “Specification of the Controlled-Load Network

Element Service”, RFC2211, Sep 1997.

S. Shenker, C. Partridge, R. Guerin, “Specification of Guaranteed

Quality of Service”, RFC2212, Sep 1997.

F. Baker, J. Krawczyk, A. Sastry, “Integrated Services

Management Information Base using SMIv2”, RFC2213 Sep 1997.

F. Baker, J. Krawczyk, A. Sastry, “Integrated Services

Management Information Base Guaranteed Service Extensions

using SMIv2”, RFC2214, Sep 1997.

S. Shenker, J. Wroclawski, “General Characterization Parameters

for Integrated Service Network Elements”, RFC2215, Sep 1997.

S. Shenker, J. Wroclawski, “Network Element Service

Specification Template”, RFC2216, Sep 1997.

R. Braden, Ed., L. Zhang, S. Berson, S. Herzog, S. Jamin,

“Resource ReSerVation Protocol (RSVP) - Version 1 Functional

Specification”, RFC2205, Sep 1997.

N. Brownlee, C. Mills, G. Ruth, “Traffic Flow Measurement:

Architecture”, IETF RTFM WG work-in-progress, Dec 1997.

N. Brownlee, “Traffic Flow Measurement: Meter MIB”, IETF

RTFM WG work-in-progress, Dec 1997.

S. W. Handleman, N. Brownlee, G. Ruth, “IETF RTFM Working

Group - New Attributes for Traffic Flow Measurements”, IETF

RTFM WG work-in-progress, Jan 1998

- 161 -

[RTP]

[RTSP]

[SB95]

[SCEH96]

[Sch96]

[Sch97]

[SDP]

[SEFJ97]

[Sha92]

[She95]

H. Schulzrinne, S. Casner, R, Frederick, V. Jacobson, “RTP A

Transport Protocol for Real-Time Applications”. RFC 1889, Jan

1996.

H. Schulzrinne, A. Rao, R. Lanphier, “Real Time Streaming

Protocol (RTSP)”, IETF MMUSIC WG, work-in-progress, Dec

1997.

S. Shenker, L. Breslau, “Two Issues in reservation Establishment”,

Proc ACM SIGCOMM’95, pp 14-26, Sep 1995.

S. Shenkar, D. Clark, D. Estrin, S. Herzog, “Pricing in Computer

Network: Reshaping the Research Agenda”, ACM Computer

Communications Review, vol. 26. No. 2, p p l9-43, Apr 1996

ftp://ftp.parc.xerox.com/pub/net-research/picn.ps

H. Schulzrinne, “Internet telephony - towards the integrated

services internet”, Proc. IEEE Workshop on Internet Telephony,

Utrecht, The Netherlands, Feb. 1996.

http://www.cs.columbia.edu/-hgs/papers/Schu9602Jnternet.ps.gz

H. Schulzrinne, “A comprehensive multimedia control architecture

for the Internet”, Proc. 7̂ '’ International Workshop on Operating

System Support for Digital Audio and Video (NOSSDAV’97),

May 1997.

M. Handley, V. Jacobson, “SDP: session description protocol”,

IETF MMUSIC WG, work-in-progress, Dec 1997

P. Sharma, D. Estrin, S. Floyd, V. Jacobson, “Scalable Timers for

Soft State Protocols”, Proc. IEEE INFOCOM’97, Apr 1997.

ftp://catarina.usc.edu/pub/puneetsh/papers/infocom97.ps

N. Shacham, “Multipoint communication by hierarchically

encoded data”, Proc. IEEE INFOCOM’92, vol. 3, pp2107-2114

(9A.4), Florence, Italy, May 1992.

S. Shenker, “Fundamental Design Issues for the Future Internet”,

IEEE Journal of Selected areas in Communication, no. 13, ppl 141-

1149, 1995

http://ana-www.lcs.mit.edu/anaweb/pdf-papers/shenker.pdf

162-

ftp://ftp.parc.xerox.com/pub/net-research/picn.ps
http://www.cs.columbia.edu/-hgs/papers/Schu9602Jnternet.ps.gz
ftp://catarina.usc.edu/pub/puneetsh/papers/infocom97.ps
http://ana-www.lcs.mit.edu/anaweb/pdf-papers/shenker.pdf

[SNMPv2]

[SRC84]

[ST2+]

[SW97]

[TCP]

[traceroute]

[UDP]

[vat]

[VRC98]

[WC91]

[WC97]

J. Case, K. McCloghrie, M. Rose, S. Waldbusser, “Introduction to

Community-based SNMPv2”, RFC 1901, Jan 1996.

J. H. Saltzer, D. P. Reed, D. Clark, “End-To-End Arguments In

System Design”, ACM Transactions on Computer Systems, vol. 2,

no. 4, pp277-288, Nov 1984

L. Delgrossi & L. Berger, Editors, “Internet Stream Protocol

Version 2 (ST2) Protocol Specification - Version ST2+”,

RFC1819, Aug 1995.

R. Steinmetz, L. C. Wolf, “Quality of Service: Where are We?”, in

Building QoS into Distributed Systems, (A. Campbell, K.

Nahrstedt, Eds), pp210-221, [Chapman & Hall] 1997

J. Postel (Ed), “Transmission Control Protocol DARPA Internet

Program Protocol Specicifcation”, RFC793, Sep 1981.

“Traceroute”, Lawrence Berkeley Laboratory Network Research

Group, USA

ftp://ftp.ee.Ibl.gov/traceroute.tar.Z

J. Postel, “User Datagram Protocol”, RFC768, 28 Aug 1980.

“Visual Audio Tool”, Lawrence Berkeley Laboratory Network

Research Group, USA

http://www-nrg.ee.lbl.gov/vat/

L. Vicisano, L. Rizzo, J. Crowcroft, “TCP-like congestion control

for layered multicast data transfer”, to appear Proc. IEEE

INFOCOM’98, San Francisco, USA, 29 Mar - 2 Apr 1998.

Z. Wang, J. Crowcroft, “A New Congestion Control Scheme:

Slow-Start and Search: Tri-S”, ACM Computer Communications

Review, pp32-43, Jan 1991.

P. P. White, J. Crowcroft, “The Integrated Services in the Internet:

State of the Art”, Proceedings of the IEEE, vol. 82 no. 12, ppl934-

1946, Dec 1997.

- 163-

ftp://ftp.ee.Ibl.gov/traceroute.tar.Z
http://www-nrg.ee.lbl.gov/vat/

[WGCJF95]

[WGS97]

[WTSW95]

[WW97]

[YGHS96]

[YL95]

[YR95]

[Zad73]

I. Wakeman, A. Ghosh, J. Crowcroft, V. Jacobson, S. Floyd,

“Implementing Real Time Packet Forwarding Policies using

Streams”, Proc. USENIX’95, New Orleans, Louisiana, USA pp71-

82, Jan 1995.

L. Wolf, C. Gridwodz, R. Steinmetz, “Multimedia

Communication”, Proceedings of the IEEE, vol. 85 no. 12, pp-

1915-1933, Dec 1997.

W. Willinger, M. S. Taqqu, R. Sherman, D. V. Wilson, “Self-

Similarity Through High Variability: Statistical analysis of

Ethernet LAN Traffic at the Source Level”, Proc. ACM

SIGCOMM’95, pplOO-113, Sep 1995.

W. Willinger, V. Paxson, “Discussion of ‘Heavy Tail Modelling

and Teletraffic Data’ by S. R. Resnick”, The Annals of Statistics,

vol. 25, no. 5, 1997

N. Yeadon, F. Garcia, D. Hutchison, D. Shepherd, “Filters: QoS

Support Mechanisms for Multipeer Communications”, IEEE

Journal of Selected Areas in Communication, vol. 14, no. 7,

p p l245-1262, Sep 1996.

R. Yavatkar, K. Lakshman, “A CPU Scheduling Algorithm for

Continuous Media Applications”, Proc. 5‘̂ International Workshop

on Network and Operating System Support for Digital Audio and

Video (NOSSDAV’95), Durham, New Hampshire, pp223-226,

Apr 18-21, 1995.

http://hulk.bu.edu/nossdav95/papers/yavatkar.ps

C-Q Yang, A. V. S. Reddy, “A Taxonomy for Congestion

Algorithms in Packet Switched Networks”, IEEE Network, vol. 9

no. 5 Jul/Aug 1995

http://www.ieee.org/comsoc/yang.html

L. A. Zadeh, “Outline of a New Approach to the Analysis of

Complex systems and Decision Processes”, IEEE Transactions on

Systems, Man and Cybernetics, vol. SMC-3, no. 1, 1973.

- 164-

http://hulk.bu.edu/nossdav95/papers/yavatkar.ps
http://www.ieee.org/comsoc/yang.html

[ZSC91] L. Zhang, S. Shenker, D. D. Clark, “Observations on the Dynamics

of a Congestion Control Algorithm: The Effects of Two-Way

Traffic”, Proc. ACM SIGC0M M ’91, ppl33-147, Sep 1991.

165-

Appendix A: RDJ probes

Estimates of throughput (rate), delay and jitter using ICMP ECHO packets

We describe here the mechanism used to measure the available data rate along a network

path in the Internet for this work. Note that it was not the intention of this mechanism to

provide accurate or noise-free measurements. Indeed, we need noisy measurements in

order to test estimation mechanism that forms the QoSEngine back-end. Our aim was to

produce a simple and quick mechanism to generate some data rather than for accuracy.

We use IPV4 ICMP ECHO requests [ICMPv4] to estimate the rate, delay and jitter (RDJ)

on an Internet path. ICMP ECHO is the same mechanism used by the ping program

available on a variety of platforms, and so our mechanism suffers from the same

drawbacks. ICMP ECHO packets:

• can be lost in the network, especially in the wide area

• are often treated with very low priority by routers under congestion, i.e. they are not

treated FIFO (first-in first-out) so the delays for ICMP packets can be highly variable

• are not handled consistently by all routers in the network, so may not reflect the true

characteristics of the network path

We refer to each ICMP ECHO request/response pair as a RDJ probe or just probe. Our

measurement mechanism is simple. We first send 16 probes of size 24 bytes to a host IP

address and use the minimum delay obtained from this set of 16 probes as the calibration

time, Tc. Our measurements then consist of V probes, once per second, of size 128 bytes.

We use the values:

D =tn

R = (r .-T c) /(128-24)

J — ABS(r» — tn-j)

where D is the delay of the probe, R is the achievable data rate and J the jitter

(n = 1 ... V). If a probe is lost, we use the measurements of the previous probe. With our

knowledge of the geographical location of the remote host sites and the network path to

- 166 -

the remote host (using traceoute), we have been careful to take calibrations and

measurements at times when we expect the network load on the path to be light.

We have taken measurements from hosts at UCL, on network cs.uci.ac.uk

(128.16.0.0/16) to the hosts shown in Table A.I.

Each set of measurements involved the probes running for 1800 seconds, sending one

probe a second. The names of the hosts involved at UCL were theakston, poteen,

grappa, darhu, mountaindew, and waffle, theakston is connected to UCL via BR-

ISDN (see Figure 2.2) while the other UCL hosts are all interconnected using lOBaseT.

The RDJ probes were used to measure estimates of available capacity, i.e. the achievable

data rate between the UCL hosts and the external hosts.

north.les.mit.edu north Laboratory for Computer Science, MIT,

USA.

knabe.syswiz.it knabe System Wizards s.p.a, Italy

myponga.connect.com.au myponga connect.com.au Pty. Ltd., Australia

tmnserver.ibm.ch tmnserver IBM Laboratories Zurich, Switzerland.

Table A .l: Hosts involved in RDJ probe experim ents

In the main text of the dissertation, we refer to data set from a set of probes as:

probe_sender_host — probe_reply_host

for example:

darhu — theakston

In our examples in the main text, we have used only the R values from the probes.

Note that the resolution of the system clock effects the measurements drastically when the

RTT (round trip time) is close to the resolution of the clock. All our measurements were

taken on Sun4 hosts running SunOS 4.1.3, with a clock resolution of 1.6ms.

- 167-

Appendix B: A short fuzzy logic primer

In this section, we cover just enough of the principles of fuzzy logic to allow

understanding of its use in our work. For a fuller discussion, an extremely readable and

practical approach is presented in [Cox94]. A more thorough, mathematical presentation

is given in [Kos97]. Other examples of the use of fuzzy systems are given in [BG94,

CC94, CKL95].

Why fuzzy?

In our work, we have attempted to seek a model that allows us to construct a QoS

assessment process for decision-making. In mathematics, decisions are generally based on

Boolean logic (true or false) or on a statistical analysis. Boolean logic can be too

restrictive in its single-bit granularity, and statistical analysis relies on having some well-

defined model of the probability distribution of the system being measured. In [Zad73],

the author notes:

. . .a s the complexity o f a system increases, our ability to make precise yet
significant statements about its behaviour diminishes until a threshold is
reached beyond which precision and significance (or relevance) become
mutually exclusive characteristics.

From [Cox94] :

Fuzzy logic is a calculus o f compatibility. Unlike probability, which is
based on frequency distribution in a random population, fuzzy logic deals
with the characteristics o f properties. Fuzzy logic describes properties that
have continuously varying values by associating portions o f these values
with a semantic label. Much o f the descriptive power o f fuzzy logic comes
from the fact that these semantic partitions can overlap. This overlap
corresponds to transition from one state to the next. These transitions
arise from the naturally occurring ambiguity associated with the
intermediate states o f the semantic labels.

We would like to assess the ability of the network to support a particular application flow-

requirement. Both of these can be complex to model accurately using mathematical

techniques, as the research community has shown. We choose to use fuzzy logic in order

to let us deal with the flow-requirement and network QoS to assess their relative

compatibility, rather than try to assess the equality (or otherwise) of their absolute values.

- 168-

Fuzzy sets

A linguistic variable is used to name a fuzzy set that is defined across a region of a

domain set. Consider Figure B.l(a). We assess the length of a piece of string. Here:

• the length of the string, P, forms the domain set

• LONG is a linguistic variable, the name of a fuzzy set

• the fuzzy set is the mapping of the values in the range into the fuzzy set identified by

the linguistic variable LONG, i.e.

The values of LONG, p.(p), (p is a member of set P) are in the range [0, 1]. The value |i(p)

is:

the degree o f membership that p has in set LONG

A more intuitive interpretation is:

the amount o f truth there is in the assertion that “p is LONG”

LONG

320 1

► P T

LONG

P

(a) (b)
Figure B .l: H ow long is a piece of string? (a) fuzzy (b) Boolean

We can see the value of the fuzzy definition of LONG if we compare it with a Boolean

definition in Figure B.l(b). Here, the string is defined to be LONG if the value of

P > 2.5m. That is to say, a piece of string that is of length 1.499m is NOT LONG (would

have a truth value of zero), but a piece of string that is of length 1.501m is LONG (having

a truth value of 1). The difference between the former and latter is about the width of this

full stop.

We observe the following:

• the linguistic variable acts as a semantic tag

- 169-

• the fuzzy set definition is application or user specific, e.g. LONG may mean different

things to a 5 year old child (P in metres) than to a manufacturer and supplier of string

(P in thousands of metres)

• the fiizzy set (although expressing an infinite range of values for the notion of LONG)

is well-defined in the domain

Fuzzy sets offer the ability to apply semantic encapsulation of a part of the domain set

using application specific tags, offering flexibility in definitions without loss of precision

in the domain set. The added value that they offer is the ability to include and account for

stages of transition in the domain value. Such a transition might be in the change of

network QoS with respect to a flow-requirement.

Fuzzy operators

We refrain from a full treatment but note the following mappings for operators in fuzzy

logic:

• AND is the MIN function

• OR is the MAX function

• NOT is the complement of a value (1 - |i)

We offer here only a hand-waving proof in that if truly Boolean values are used with our

fuzzy definitions of AND = MIN, OR = MAX and NOT = complement, they still behave

correctly.

In our work, we have defined a new binary operator, WITHIN (as explained in Chapter 4)

whose output is the amount of truth that:

the current value o f the network parameter fo r a flow is within given boundaries

Fuzzy assertions

An assertion is a proposition that is assessed for the amount truth it contains. In a

Boolean assertion, the result is either zero or one (true or false). In a fuzzy assertion, the

truth can be in the range [0, 1]. In a conditional assertion, the predicate determines the

solution space of the result, e.g. for a seller of string trying to determine a suitable pricing

policy that includes a bulk discount:

- 170-

if piece_of_string is LONG then COST is LESS

The truth of “piece_of_string is LONG” determines how much truth there is in “LESS”

and so determines “COST” per metre. If many assertions apply to the same domain, they

must be evaluated together, e.g.:

if piece_of_string is LONG then COST is LESS

if piece_of_string is THICK then COST is MORE

The amount by which the piece_of_string string is THICK indicates how much MORE it

will cost per metre. We note that the reasoning process now takes on a linguistic form that

retains ease of interpretation without losing precision. We look at how to assess multiple

rules below.

A simple fuzzy system

defuzzifyfuzzily
apply
fuzzy

assertions

Figure B.2: A schem atic diagram of a sim ple fuzzy system

A simple fuzzy system is depicted in Figure B.2. We have looked at how to fuzzify

information and seen how assertions are used. We now look at how assertions are

evaluated to a consequent fiizzy set (a solution fuzzy set resulting from an evaluation of

the assertions) and then converted back to a real value in a solution domain. Note that the

input and output of the fuzzy system can be from different domains.

We use P for the LENGTH, Q for how THICK the string is and C for its COST per metre.

In Figure B.3, we see how the truth of P (LENGTH) and Q (THICK) are mapped onto

linguistics variable MORE and LESS for C (COST). The MINimum values of predicate

truth for each assertion on C produces a partial solution space (effectively a set

intersection). Each of the partial solution spaces is then combined by taking the

MAXimum values across the partial solutions spaces occupying the same domain region

(effectively a set union). This method of composing the consequent fuzzy set by

evaluating the partial solution spaces from each assertion is called min-max composition.

- 171 -

.• MORE

LESS
■ • MORE

LESS

MORE

LESS

Figure B.3: min-max composition of assertions

A real value is then produced from the final consequent fuzzy set using by

defuzzification. The most common method of deffuzification is to evaluate the

composite moment or centroid of the final consequent fuzzy set:

(= - 4 r

(= 1

where:

c

Ci

(̂/)

value in domain C

is the domain value in C

is the truth of the domain value in C in the final consequent fuzzy set

The centroid is a weighted mean of the consequent fuzzy set.

- 172-

