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Abstract

The task of optical analysis and design has benefitted immensely from the 

power tha t the modern computer has brought to bear upon the highly nu­

merical processes involved. Ever since the earliest optical analysis tools were 

designed, the underlying model adopted by the scientific programming frater­

nity has changed very little. This model is based upon the sub-division of a 

general optical system into a sequence of surfaces. In the intervening years, 

computer languages and the associated operating systems have become more 

and more sophisticated. During the last decade there has been an increasing 

emphasis placed upon object modelling, and several object-oriented program­

ming languages have been developed in order to support this new view. This 

thesis attem pts to describe how such modern theories can be employed to 

construct a radically different optical model tha t is in keeping with current 

computer modelling practices. The background of earlier optical models is 

explored, detailing their strong and weak points. Prior to a full description 

of the proposed model, the various facets of object-oriented programming are 

described. A new computational model is then developed, highlighting those 

features where model and reality closely approach one another. Finally, re­

search work undertaken by the author into the field of immersed-echelles is 

reported.
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Preface

When I first embarked upon this research program I had little idea where it 

would take me. Initially, the intention was to write a computer program tha t 

would facilitate the analysis of complex optical systems, particularly systems 

such as astronomical spectrographs. One of the key features was to be the 

calculation of spectral thoughput, taking into consideration glass absorption 

and multi-layer inteference coatings.

One of the first problems th a t I encountered was the selection of a suitable 

computer language in which to write the program. I had decided early on 

tha t the target operating system was to be Microsoft Windows v3.11, the most 

current version at the time. Suitable languages for this platform were C-1-+ and 

Turbo/Borland Pascal, and it was these that I explored in the initial stages. 

Shortly afterwards Visual Basic (VB) appeared. The writing of a Windows 

program was much facilitated by this new arrival, and it rapidly gained in 

popularity throughout the business world.

Eventually, it too began to show its limitations as my requirements slowly 

shifted with time. The lack of true Object-Oriented Programming features 

meant tha t the rather complex ideas I was trying to develop could only be 

implemented with the greatest of effort. I had been aware some time earlier of a 

product known menacingly as VB Killer, or VBK. This was being developed by 

Borland International as a true object-oriented visual programming language. 

Its basis was a variant of Pascal known as Object Pascal. I instinctively knew 

tha t this was to be my salvation, but would it arrive in time? I shall leave the 

reader to ascertain the details further in this thesis.

The main reason I mention this is so tha t the reader who is unfamiliar with 

modern computing trends can appreciate the shifting sands upon which this 

work has been based. Computer operating systems and application develop­

ment languages have been of the greatest concern to programmers and devel­

opers since the invention of the modern computer. The one feature tha t has 

remained constant in this cyber-world is the ever-increasing pace of change. 

Standards, once introduced in order to maintain some degree of stability, are
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regularly superseded by more advanced standards, more closely reflecting cur­

rent and future technologies.

If you think tha t the poor pedestrian would-be computer user of today has 

a difficult time choosing which hardware/software packages to invest in, then 

spare a thought for the programmer who is at the leading edge of his/her field. 

It is only through the actions of long-sighted companies, such as Microsoft and 

Borland, tha t the ever increasing complexity of the computer world can be 

made manageable to lesser mortals like ourselves. In doing so, such endeavours 

as these will allow those of us who seek to create new worlds the perfect and 

timely opportunity to do just that.

In a world where change is the norm, and complexity is the vehicle of change, 

I sometimes worry as to where it will all end. I think this because I cannot 

imagine a world where change, at the pace we are used to today, can continue 

onwards indefinitely. Either science, the world’s resources or our own imagi­

nations, will eventually, I believe, falter. That said, the reader may conclude 

tha t I am one of the world’s many pessimists, and who am I to argue.

Finally, I wish to exhort all scientists who are actively engaged in developing 

technical software applications to consider the new vistas tha t object oriented 

programming languages make possible. I have read in many computer-related 

journals and magazines of the difficulties faced by general programmers in 

adapting to this new approach, but my own experience, if typical, leads me 

to believe tha t scientists should find the transition to be much easier. I say 

this because I am aware tha t scientists are involved in developing system mod­

els tha t encapsulate how the elements of a model are constructed and how 

they interact with one another. In essence, we are constructing objects and 

describing their behaviour. These qualities exactly correspond to those we 

would develop and make visible in an object-oriented application. Such a close 

correspondence should not be ignored.
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C h a p t e r  1

I n t r o d u c t i o n

The following chapters go into great detail as they begin to unfold for the reader each of 

the premises upon which this thesis is based, but it is probably appropriate at this point 

if I try to summarise them in a manner tha t is synonymous with a historical record, while 

also imparting the degree of inherent innovation tha t I believe each to have.

The origins of this work lay in a perceived need to quantify the optical throughput 

of an optical system, particularly systems belonging to the class we know as ‘astronomical 

spectrographs’. This was to be achieved by the design and construction of an optical 

analysis program (IRIS), allowing configuration data  to be entered by the designer (user) 

and subsequent analysis to be undertaken. As time passed the emphasis began to shift 

away from the physics-related algorithms and towards the design of the user interface. 

Through my own work in the past as an optical designer I knew tha t any successful lens 

analysis is dependent upon i) the analysis program being accurate and reliable, and ii) 

the description of the system as entered by the designer being a faithful one. My own 

experience has taught me tha t the majority of problems usually arise from a fault or error 

in the second part, while defects in the program code are much less common. In general, 

most optical design programs require the user to enter system data in a manner tha t is 

peculiar to the program, but for simple axisymmetric systems all programs seem to agree 

on a similar input format. In contrast, a generalised non-axisymmetric optical system, 

such as a spectrograph, poses far greater problems, not only for the lens designer but 

also for the systems programmer who might be responsible for the general look-and-feel 

(‘usability’) of the program.
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If a lens designer is unable to understand every syntactical nuance of data  entry, 

which results in incorrect data  being input into the program, then regardless of what power 

lies under the ‘hood’ {English: bonnet), it can never be properly realised. This dilemma 

caused me to reconsider the direction my work should take. I realised shortly afterwards 

tha t the real problem stemmed from the disparity in models tha t were held by the program 

and by the user. It became clear to me tha t during the many years tha t software was 

being developed for the purpose of enhancing the capabilities of the optical designer, at 

no time had any programmer ever considered the internal or imaginary model tha t a lens 

designer held, or so it appeared. It would be conceited indeed to think tha t users should, 

for a period of atleast 20 years, be required to abandon the physical model of a lens system 

in favour of a system based upon a sequentially ordered series of surfaces, but in fact this 

is exactly what has happened. Optical designers do not necessarily achieve a reputation 

based upon the quality of their designs or analyses alone, but also for their ability to 

understand the most complex workings of some of the most complex design programs. If 

the human-computer interface is so essential to the task of design and analysis, then why 

can’t it be made simpler? This was the question tha t I posed myself, and the solution I 

found is recorded herein.

Probably the primary reason why the interface had remained so counter-intuitive 

for so long was because the necessary programming tools (and operating systems) could 

not support such a complex model. But th a t was in the past, and I realised tha t such 

a restriction might not apply to today’s software technology, and with tha t in mind I 

proceeeded to create a radically new model in software tha t would be the similitude of 

the user’s model in the mind’s eye, tha t same model tha t had to be abandoned each 

time a designer logged-on to a conventional design program. It was my belief th a t the 

time was right to attem pt such a transition in models for the following two reasons: i) 

most operating systems (OSs) have now evolved to  encompass a graphical user interface 

(GUI) tha t is itself a representation, or model of a desktop; since the OS supports such a 

capability for model abstraction, then it would be likely th a t any other model might also 

be simulated, within reason; and ii) language development tools have recently progressed 

in such a way as to facilitate, as never before, the creation of complex GUIs; along with 

the new object-oriented features (see Chapter 3) tha t these languages support, these GUIs 

may be coupled to advanced system models in much the same way as the operating system 

is coupled to the model of a desktop, i. e. a filing cabinet may be viewed on screen as a
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filing cabinet icon, and its contents viewed as a list of documents.

The first challenge was the development of an ideological model around which I 

could create a system tha t supported the normal physical attributes and characteristics of 

a real optical system (i. e. lens insertion, deletion, copying, moving, editing, etc.) a t both 

the screen and code levels. Such a task in itself is quite a challenge, but fortunately there 

was one development tool (Delphi) tha t offered an environment th a t was object-oriented 

at both these levels, and so completion of the task was atleast feasible. The main aim 

at this stage was to arrive at a form of development editor tha t minimised the use of the 

keyboard, and this was acheived by providing greater functionality for mouse operations. 

This approach proved to be quite successful, if measured by the fact tha t virtually all but 

one of the above functions (insertion, deletion, etc.) are completed through simple mouse 

operations.

The second challenge was to create a graphical screen environment tha t would pro­

vide the user with sufficient functionality to undertake the required operations as briefly 

outlined in the preceding paragraph. A major step forward was the reduction of a gen­

eralised optical system into a much simpler form tha t conformed with normal design 

practices. The lens system as a whole was abstracted to resemble a standard window, 

while the lens elements were reduced to iconic form (components) tha t occupied distinct 

positions upon a rectilinear grid within the system window, much like a chess board pop­

ulated with chess pieces. System editing functions, such as lens moving and copying, are 

facilitated by the computer mouse, much in the same way as these functions are accessed 

in Windows 3.X and other GUI operating systems. In axddition, non-optical components 

such as axial tilts and décentrations may be represented in a similar manner; in fact, using 

this architecture it is possible to represent and correctly integrate almost any optical and 

non-optical component into the system environment. This powerful feature is used later 

on (see Chapter 8) to develop the notion of a multi-pass optical component, something 

tha t is extremely difficult, or even impossible to simulate in current commercial software 

offerings.

Dispensing completely with prior practices, I abandoned the more common spread­

sheet editor in favour of a component editor, in keeping with the component centred model 

tha t I was developing. This approach is not of my own creation, but is a solution adopted 

by companies such as Borland and Microsoft and included in their Rapid Applications
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Development (RAD) tools: component based programming environments such as Delphi 

and Visual Basic. The component editor has proved to be universally popular and ex­

tremely flexible, easily adapting to  unforseen components of the future. I could do a lot 

worse than follow in the same footsteps as these giants of the software industry!

In order to bring all these ideas together into a working model it proved necessary 

to design many subsidiary software modules, not least the components themselves, which 

comprised such familiar elements as the prism and the single lens. Two such items tha t are 

not usually associated with an optical analysis program at this stage of development are 

customised V ector and M atrix units. I had anticipated earlier on tha t since the tracing 

of polarised light rays might be an im portant feature of the program, then such modules 

would be of great benefit. In fact they are employed by virtually all algorithms tha t can 

possibly use them, with the exception of the routines responsible for ray transfer and 

ray refraction, which are coded for speed rather than elegance. Additionally, reflecting 

the versatility of the v e c to r  class, the all-important finite ray is actually a vector ‘mas­

querading’ as a ray. Both the V ector and M atrix units supply the class definitions tha t 

enable real entities of either type to be created at any point within the code. In order to 

support the many operations that such types are capable of entering into, both units also 

provide class methods (procedures) th a t enable a large variety of fimiliar operators (dot, 

cross, vector rotation, etc.). A particular problem th a t I encountered involved those class 

methods tha t ideally should return a new object, but which proved difficult in practice due 

to the dynamic nature of the v e c to r  and m atrix  entities (see §5.6 for a more complete 

description of the problem and its solution). The solution proved to be both effective and 

innovative, and is known to be applicable to other categories of this problem peculiar to 

Object Pascal and similar languages.

The final few chapters consider how the completed program and its underlying 

component-based architecture perform under actual operating conditions. Though the 

various tests applied to it may not appear overly difficult or stringent, they do however re­

veal the great potential of such a novel approach. Constructing a bank of prisms and then 

tracing a ray through them is normally a very difficult task under any raytrace program, 

but IRIS succeeds in performing the same task with simplicity combined with efficiency. 

The unique architecture also lends itself to  other more sophisticated developments, such 

as ‘cooperative’ and ‘intelligent’ components (see Chapter 11, ‘Future Trends’), that are 

able to engage in semi-autonomous behaviour. Such enhancements could constitute the
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first step toward, for example, a self-optimising system - the theory of which is yet to be 

fleshed out!

1.1 Evolution

The idea of a lens data-model as we know it today probably came into being unbeknownst 

to the earliest pioneers of lens design. In laying down the fundamental principles of lens 

analysis, the data-model arose out of a need to organise data  in a meaningful manner tha t 

would facilitate numerical calculation. There are two distinct periods in the evolution of 

the data-model, each of which is separated from the other by the birth of the modern 

computer. There is little evidence available today, in the way of source code (much of 

which was/is commercially confidential) or development reports, to suggest how the various 

models were constructed, but much can be inferred from the interfaces presented to the 

lens designer and the state of software technology at the time.

The most major problematic area during the dawn of lens analysis concerned the 

copious numerical calculations required to trace finite, or real rays through even the most 

simple of optical systems. The data-model used to represent the system was of compara­

tively lesser importance, but is worth describing even briefly, since it forms the basis for 

subsequent work, and it also illustrates the simplicity and efficiency embodied within it. 

The table below illustrates the current industry accepted format for presenting lens data, 

although no such standard actually exists. The rows are identified with the surfaces of a 

system, but for completeness the object, image and stop (sometimes called the iris) sur­

faces are often included. The first column gives the curvature (occasionally the inverse), 

the second is the inter-surface separation, the third is the refractive index or name of 

the inter-surface medium, and the final row is the semi-aperture or occasionally the full 

diameter. There are other variations of data-table designed to encompass the specific data 

entry requirements of any particular program, although the differences are quite minor.

During that time prior to computers it is very difficult to  find any evidence of a 

computational data-model being supported, as obviously none was required. On the other 

hand, there is indirect evidence to suggest tha t analytical data-models were being used, 

and it is probably here th a t later models have their origin. The mathematical notation 

prevalent in optics uses simple variable names and associated subscripts. For example, the
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Surface Curvature Sepn Glass Aperture/2

1 0.032800 4.00 SK3 11.50

2 -0.007577 3.47 Air 11.50

3 0.024000 1.80 LFl 10.50

4 0.035643 3.70 Air 10.00

5 0.000000 1.30 Air 9.86

6 -0.013500 1.80 KF8 10.50

7 0.032500 6.20 SK8 11.00

8 -0.032166 92.07 Air 48.00

Table 1.1: Example Lens Data-Table (Kingslake Tessar)

curvature of the surface is given by Cn and the refractive index of the glass following 

the surface is r i j .  This notation corresponds very closely to tha t which one would 

intuitively expect from the spreadsheet data-table in Table 1.1.

Whilst the first electronic computers were programmed using machine language, that 

is simple instructions which were directed at a very basic level of the computer’s central 

processor, the later development of F0RTRAN[3] enabled instructions to be much larger 

in scope. Since FORTRAN was a language designed by scientists for scientists, it was a 

natural choice for scientific work from the 1950s and onwards. Even in its earliest form 

it was able to provide the scientific programmer with subscripted variables th a t would 

allow arrays to be constructed. FORTRAN was therefore used extensively in the field 

of optical analysis and design, where not only could the subscripted variables be put to 

good use, but other features, such as looping and especially subprogram support, enabled 

large and complex tasks to be broken down into more manageable modules. Thus we see 

a natural transition from an analytical model to a computational model, based upon a 

certain degree of commonality between the two. From the 1950s to the present day, both 

the independent programmers and larger commercial concerns who are engaged in optics 

programming are still largely using this model.
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1.2 H andling C om plexity

The emphasis tha t has so far been placed on the visual presentation of data  and its corre­

spondence to the internal model has, for the past 50 years atleast, been of little consequence 

to most lens designers. After all, when the activity of lens design once involved numer­

ous individuals employing slide-rules or electromechanical calculators in order to trace 

just a few skew rays, then any modern lens design program might be greeted with much 

joy and celebration, particularly in the knowledge tha t productivity could be increased a 

thousand-fold. But, in the intervening years optical systems have steadily grown in com­

plexity, and the ability to create and manipulate these systems has been compromised by 

the shortcomings inherent in the human - computer interface.

Nowhere does this become more apparent than in the design of the high resolution 

spectrograph. The reason why this is so stems from the underlying lack of axial symmetry 

tha t these systems exhibit. Consider the optical train comprising three cross-dispersing 

prisms tha t are to be found in the UCLES[1] spectrograph. There are six surfaces, each 

tilted with respect to any other, and there is a complete absence of any optical axis; 

the latter point results in five of these surfaces also being assigned décentrations. The 

lens designer is faced with an enormous task just to set up this configuration. If the 

requirement dictated a double-pass through this sub-system, then the difficulty faced by 

the lens designer increases enormously.

1.3 A N ew  V iew point

At the heart of these problems lies the surface-based model, and particularly a sequential 

surface-based model. A sequential model requires tha t ray-tracing progresses from one 

surface to another, in the same way tha t one surface follows another surface in the lens 

data-table. Sequential ray-tracing may only proceed from one surface to another surface 

tha t occupies the next row lower down the data-table. Any other sequence is not permitted, 

and so surface groups tha t are in double-pass have to  be recreated further down the table.

The component-based model is an attem pt to simulate a lens system by emphasizing 

the various functional surface-groups, such as those that comprise lens singlets, doublets, 

prisms, etc. In doing so, the model becomes more meaningful to the designer, particularly
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the novice or apprentice optical designer who cannot make the transition into the 3D 

world of the imagination, for it is the ability to view an optical system through the mind’s 

eye tha t ultimately determines the degree of success one has in modelling it. Putting 

it another way, the surface-based model is akin to viewing this paragraph as a sequence 

of characters, while the component-based model puts emphasis on the character groups 

tha t we know as words. The former interpretation offers the computer word processor 

the greatest advantage when manipulating text, but it is the latter interpretation tha t 

is of the greatest benefit to the human reader. Taking this analogy one step further, it 

appears that current lens models have been designed to conform to machine interfaces and 

software practices tha t have been prevalent from the 1950s, and onwards; no attem pt has 

been made to alter this model to make it conform to the most modern software practices 

of today, nor has the human-computer interface been satisfactorily improved upon. It 

is not a coincidence tha t at the time of writing, some modern computer languages have 

been radically updated to include theories of object oriented programming (OOP). It is 

this paradigm shift tha t makes the world of objects accessible, and we shall see in later 

chapters how it can be put to use in creating a practical and intuitive model of an optical 

system.

The following chapters and sections will attem pt to derive in greater detail, as 

explained above, how the transition from a surface-centred to a component-centred model 

is achieved. In doing so it will be necessary to review in some detail the salient points 

th a t are embodied in object oriented programming. To flesh out these ideas, the author 

has developed a computer program tha t employs several im portant elements tha t prove 

crucial to supporting the proposed model. Emphasis will be placed upon explaining how 

these software elements correspond to meaningful entities which the lens designer will 

immediately recognise in the context of an optical laboratory. In order to illustrate how 

these ideas are put into practice, a simple spectrograph will be used as the basis of a model 

and raytracing results will be obtained and analysed. Finally, having torn down the ‘false 

gods’ of old in favour of the ‘new gods’, we shall speculate upon how the domain upon 

which these new gods walk, may be extended.
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C h a p t e r  2

L e n s  M o d e l l i n g

Probably the most significant feature tha t separates human beings from the rest of the 

animal kingdom is the capacity and functionality of the brain. One of the higher level 

functions of a brain is the construction of a world model in which the organism, be it 

human or not, may operate in a manner that is both efficient and productive, where the 

latter implies tha t the organism will survive the trials of life and so reproduce. In so doing 

the organism will ensure the survival of its genes and tha t of its species. In man, the world 

model is more advanced and complex than that of any other creature. It has reached such 

a level of sophistication tha t it has allowed mankind to  transfer conciousness into the 

surrounding environment. The manner in which we see this manifested is through the 

diverse ways in which order has been forced onto a world where none was evident before. 

Society and even civilisation itself has arisen from m an’s need to create order and to 

witness reflections of his own self. All these aspects of order may also be considered as 

world models tha t have stood the test of time, since it is the wide and popular acceptance 

of a model tha t ensures its long term survival. The success of any model ultimately 

depends upon how well it serves its purpose. Models exist to bind together individuals in 

a common purpose, to enable meaningful and sophisticated communication, or to provide 

a framework for abstract exploration.

A model, in the current context, is an attem pt at a description of a real-world 

phenomenon or system. It is usually based upon a set of axioms or principles tha t are 

accepted to apply in such a circumstance, and is generally considered to represent one 

instance of a model amongst many others. A model may be used to  prove or disprove
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theories tha t relate to how such a system or phenomenon operates. W hether it succeeds 

in this task or not, it does not necessarily invalidate the original premises of th a t model. 

Either way, the model is shown to be robust or it is modified. In the long term, most 

models can be shown to undergo some degree of evolution. This is only natural and 

expected. Alternatively, a model may be used as a basis for calculation and extrapolation. 

Such models are prevalent throughout our society. To name just a few, we have economic 

models, population models, ecological models and galaxy formation models. In some of 

these cases the mechanisms involved are well understood, but in other cases there may be 

factors tha t are either ill-defined or unknown.

A computational model is a description of a system tha t is embedded in software, and 

as such is limited by the capabilities of the underlying operating system and the computer 

language employed. In addition, it may also be developed in such a way as to  allow the 

model to be extended into unforeseen territories. The range and extensibility is ultimately 

determined by the starting point, which is the crux of this thesis. The following sections 

throw light on the two principal models tha t relate to an optical system, highlighting their 

capabilities, weak points and strong points.

2.1 Requirem ents

Any modern computer application has some basis in a model if it is to operate in a 

meaningful manner. At the simplest level, the very architecture of the operating system 

behaves as a surrogate model. Present-day operating systems such as those based on 

Microsoft Windows or IBM OS/2 endeavour to  create a graphical environment tha t may 

be intuitively understood in terms of an olfice or personal desk-top. This environment was 

adopted in preference to any other because the original developers recognised tha t people 

who are involved in creative work are also office-bound or desk-bound individuals. The 

domain over which these people usually operate extends to their office furniture, and the 

function of the operating system is to create an environment similar to tha t which the 

computer user is already immersed in. Thus we can see several parallels between entities 

tha t exist in the office and those tha t exist on the computer screen, as Table 2.1 shows.

When Windows was originally developed during the late 1980s it was widely re­

garded as a graphical user interface (GUI) with object oriented pretensions. That is, the
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Office Computer

Desk — > Computer screen

Filing cabinet — y Disk drive

File — y Disk file

Telephone — y Modem/Terminal

Letter pad — y Word Processor

Table 2.1: Office Parallels

organisation of the basic functional elements of the operating system conformed to an ob­

ject model as described above. While Windows offered the user new and simpler ways to 

interact with software, it proved to be a difficult environment to program for. The reason 

why this should be so stems from the structure of the supporting code tha t Windows pro­

vided in the form of library routines tha t were made accessible to developers. Requiring 

many tens of man-years to develop, the Windows operating system was coded entirely in 

a language called C% which at the time had absolutely no facilities for object oriented 

programming. The result is tha t the simplest of tasks required many lines of code. Even 

today, programmers still refer to having had to  write several hundred lines of ‘C ’ code in 

order to open a window and write ‘Hello’ inside it. Amongst other things, what Windows 

lacked was the ability to encapsulate data  and function, which is the first prerequisite for 

an object oriented language.

Rather than rewrite Windows in an OOP style, which would have been a terrific 

undertaking, Microsoft and Borland (two of the leading proponents of the object oriented 

approach) subsequently employed true OOP languages like C-|—1- and Borland Pascal to 

encapsulate the original ‘C ’ code and reformulate Windows into a new framework. Mi­

crosoft called this framework MFC (Microsoft Foundation Classes) and Borland called 

their framework OWL (Object Windows Library). Both models allowed developers to 

interact with the Windows operating system in a more intuitive and structured manner, 

and more importantly in an efficient manner. Thus the traditional ‘Hello’ program could 

now be written in around a dozen lines of code.

The above example concerning Microsoft Windows illustrates the importance of 

having a well constructed graphical user interface matched by an appropriately constructed
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internal model. This leads us to a few key points one may make regarding the nature of 

a computer model:

1. the visual aspect of the model must reflect a familiar environment;

2. the visual interface must be in context;

3. the user must be allowed to interact meaningfully with the environment of the ap­

plication;

4. the underlying object model must closely conform to the visual description;

5. the object model must reflect the behaviour of the real-world model, at the graphical 

level and preferably the data level also;

6. the object model must be capable of extension.

The first three points concern the nature of the user interface and its applicability to 

the task a t hand, whilst the two points tha t follow are concerned with the accuracy and 

integrity of the model. The final point reminds us tha t a model may be a transitionary 

one, and tha t at some time later it may require to be modified in order to  conform with 

some new understanding or behaviour tha t is to be imparted to the model.

2.2 T he Surface-Based M odel

Largely due to its simplicity and efficiency, the surface-based model (or SBM) has domi­

nated the world of optical analysis and design programs. Another reason why it has pre­

vailed over the years is due to the limitations imposed by the various computer languages 

tha t have been employed to develop these applications. Languages such as FORTRAN, 

Basic, Pascal and ‘C ’ provide only basic functionality for data  abstraction, while combined 

data  an d  function encapsulation is completely absent. That is not to say tha t it is im­

possible to achieve this goal using any of these procedural languages, but tha t attem pting 

to do so puts a greater burden on the programmer, who then has to take care of the 

various administrative tasks, such as creating a consistent naming scheme and devising 

the functional interfaces.
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The implementation of a SBM can never be unique, since it is intimately dependent 

upon the machinations of the developer, which are themselves determined by culture, 

background and ability. Never-the-less, in order to demonstrate how the SBM might be 

constructed, the author has chosen a system that, hopefully, will be generally accepted 

by most readers. Thus, consider a record structure called TSurf ace tha t embodies within 

it the essential characteristics of a spherical surface, and which can be described by the 

following type declaration:

TSurface = reco rd

ap : double; (♦ a p e r tu re O
cv : double; (* cu rv a tu re O
ndx : double; (* p r io r  r e f r a c t iv e  index *)

sep : double; (* p o s t su rfa c e  s e p a ra t io n *)

end;

In addition, let us declare new types tha t describe a ray of light and a lens system:

TRay = reco rd

x ,y ,z  : double; (* p o s it io n  c o o rd in a te s  *)

l,m ,n  : double; (* d i r e c t io n  co sin es  *)

wvl : double; (* w avelength *)

end;

TLensSystem = a r r a y [ 1 . .MaxSurfaces] of TSurface;

. . .  where the lens system is seen to be comprised of an array of surfaces.

In support of these basic entities it is necessary to have various functions and pro­

cedures tha t will undertake to perform the various operations and transformations tha t 

characterise an active optical system. As an example, consider the case of ray-transfer, 

which is the process whereby the intersection of a ray of light with a surface is determined.

procedure R ayT ransfer(const s u r f  :T Surface; v a r rayzTRay);
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var

x t , y t , F , G, c o s i , d e l t a : ex tended ; 

beg in

(* tre m sfe r  to  th e  ta n g en t p lane *)

x t := ra y .x  + ( s u r f .s e p  -  ra y .z )  * ( r a y .1 / r a y .n ) ;

y t := r a y .y + ( s u r f .s e p  -  ra y .z )  * ( ra y .m /ra y .n ) ;

(* tre u is fe r  to  th e  su rfa c e  *)

F := s u r f .c v  * ( s q r (x t)  + s q r ( y t ) ) ;

G := ra y .n  -  s u r f .c v  * ( r a y . l  * x t + ray.m  * y t ) ;  

co sI := sq r t(sq r(G ) -  s u r f .c v  * F ) ; 

d e l ta  := F /  (G + c o s i) ;

(* s e t  th e  ray  in te r s e c t io n  co o rd in a tes  *) 

r a y .x  := x t + r a y . l  * d e l ta ;

r a y .y := y t + ray.m  * d e l ta ;

r a y .z  := ra y .n  * d e l ta ;

end;

In its simplest form, we can also consider the process of ray propagation through an optical 

system to be adequately described by the following code fragment:

fo r  k := 1 to  MaxRays do begin

f o r  j  := 1 to  M axSurfaces-1 do begin  

R ayT ransfer( s u r f [ j ] ,  ray [k ] ) ;

Ray Ref r  a c t ( s u r f [ j ] ,  ray [k ] ) ; 

end;

(* t r a n s f e r  to  th e  image p lane  *)

R ayT ransfer( su rf[M axS urfaces], ray fk ] ) ;  

end;

. . .  where Ray Refract () is a procedure tha t accepts both surface and ray arguments, just 

as Ray Transfer, and transforms the ray argument to conform to the new refracted ray.

A simple inspection of the above code shows tha t all the activity connected with ray 

propagation occurs within the two procedures Ray Transfer and Ray Refract, while surface 

and ray references are reduced to arguments of the aforementioned procedures. It is clear
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Surface Curvature Sepn Glass Diameter

1 0.086318 0.70 Ge 10.50

2 0.070305 10.33 Air 10.20

3 0.146526 0.50 Ge 6.30

4 0.115933 3.32 Air 6.20

5 0.000000 0.00 Air 1.00

Table 2.2: Petzval Lens D ata

that though the process of refraction may be associated with a ray interacting with a 

refractive index boundary represented by a surface, the above code does not make any 

such distinction. Similarly, the process of ray transfer is a function of the space between 

two surfaces, but here again the subtlety is lost. In other words, the surface-based model 

cannot represent in code what we intuitively perceive to be happening.

It is not just at the level of code tha t the above disparity is apparent, but also at the 

level of the user interface. Consider the usual form in which lens data  is presented, either 

for inspection or for editing. Table 2.2 represents a simple Petzval lens of the type com­

monly used in infra-red imaging, comprising two separated single lenses of Germanium. 

For the purpose of demonstration, let us attem pt to reverse the order of the two singlet 

Germanium lenses by swapping surfaces 1 and 3, and surfaces 2 and 4, resulting in Table 

2.3. Inspection of this new table reveals tha t while the order of the lenses has indeed been

Surface Curvature Sepn Glass Diameter

1 0.146526 0.50 Ge 6.30

2 0.115933 3.32 Air 6.20

3 0.086318 0.70 Ge 10.50

4 0.070305 10.33 Air 10.20

5 0.000000 0.00 Air 1.00

Table 2.3: Petzval Lens D ata

reversed, the spacing between them has unintentionally changed and leaxiing to an un­

foreseen configuration change. The reason for this arises from the unfortunate association 

in any row of both surface curvature and separation, and so long as this lens description
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format is adhered to then such surface exchanges will lead to spurious results. We say that 

the table representation of a lens system is not commutative with row exchanges, which 

implies tha t the surface-based model is also non-commutative.

We may draw three conclusions based upon the above analysis of the surface-based 

model:

1. In terms of coding effort, the SBM is an efficient model;

2. The visual interface (spreadsheet) is a familiar one;

3. The SBM does not conform to our intuitive understanding of a lens system.

Both Items 1 and 2 are, without a doubt, strong reasons for adopting this approach. That 

is not to say tha t we should be complacent and restrict our attem pts to improve upon 

this model. Indeed, the spreadsheet has, over the years, been endowed with ever-more 

useful features such as embedded drop-down list boxes (useful for the selection of glass 

types) and graphical cells tha t can show an image of a surface profile. These features 

all add to the functionality of the spreadsheet which in turn aid the user in inputting 

da ta  and comprehending the system tha t is entered. Item 3, on the other hand, tells us 

th a t this interface is only an abstract and not ideal representation of a lens system. In 

addition, neither is it possible to visualise the system by casual inspection, nor can it be 

manipulated in a similar manner as a real lens system might.

2.3 The C om ponent-Based M odel

The essential idea behind all object modelling is tha t of abstraction, tha t is, a model tha t 

provides the required functionality and data  encapsulation while hiding the unnecessary 

details tha t can be overlooked by the user. Ideally, a model will make visible those aspects 

of a system which it is designed to express. In this regard the component-based model 

(or CBM) can be viewed as expressing a higher level of complexity when compared to the 

SBM, and this becomes evident to the user by the provision of a truly graphical interface 

to the layout of the lens system and a greater facility for system synthesis.

The basic component of the CBM is the lens. While a lens may be understood, in 

its simplest sense, to be a glass element bounded by two regular surfaces and providing
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some form of imaging quality, in the model to  be described a lens represents an ab s trac t 

elem ent th a t  may be a m irror, a  diffraction grating  or even a light source. In fact, the  

ab s trac t lens may represent any physical en tity  th a t  one m ight associate w ith the  m ajor 

elem ents of any imaging system .

In order th a t  this lens be m anifested to  the user, it becomes necessary to  imbue it 

with som e form of graphical quality  th a t  distinguishes it from any o ther lens. In W indows 

program s it is quite common for minimised executables or program s to  be represented by an 

icon having some m anner of graphic depicted w ithin its bounds. In doing so, the underlying 

program  is effectively announcing its presence to  the user, and distinguishes itself from 

any o ther program  by the uniqueness or characterisation afforded by its graphical icon. 

Similarly, a  lens may have a picture-icon th a t  suggests th a t  the lens is a m irror, a singlet

lens or a source, as the following Figure 2.1 shows.

*

Figure 2.1: The D oublet-Lens Icon

T here is obviously more to  the lens icon th an  its simple arrangem ent of coloured 

pixels. In much the  sam e way as the visible portion of an iceberg is a po rten t of som ething 

much larger (and occasionally sinister) below the waves, the  lens icon is simply the  visible 

m anifestation of an ob ject th a t  encapsulates far more d a ta  and inform ation th an  it is 

possible to  represent graphically. B ut the im portance of the icon is th a t  it isolates the 

lens in space {viz. - the com puter screen) and prom ises o ther behaviour (which will be 

discussed later in th is section) more in tune w ith a physical entity, as opposed to  the  ra th er 

complex and not-so-independent surface representation of a row in a spreadsheet.

In addition to  the graphical na tu re  th a t  has been a ttr ib u ted  to  a lens, we can 

also consider how a lens system , com prising several individual lens com ponents, may be 

represented. Again, we borrow from the m any graphical s tru c tu res  th a t  the  W indows 

environm ent provides, and note th a t a class called TForm (generally known as a window) 

exists which acts as a  container or containm ent vessel for o ther W indows elem ents such 

as bu tto n s and labels. The fact th a t  TForm has properties th a t  enable it to  identify and 

reference all ob jects within its confines makes TForm an ideal cand idate  for this purpose.
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Figure 2.2: T he Lens-System C ontainer

Figure 2.2 shows such a form acting as host for several differing lens types, including a 

source (top-left) and a prism (the eighth from the  left on the  top row). T he order of

com ponents w ithin the  system , or the direction in which light travels, com m ences from

the  top-left and prodeeds to  the right, and continues a t  the left-m ost com ponent of the 

following row, and so on.

A simple description of a lens com ponent is given below:

TLensIcon = object
picture : TIcon; (* picture icon *)
lens : TLens; (* lens object *)

end;

TLensIcon is a class th a t  encapsulates two o ther objects, TIcon and TLens, each of which 

is recognisably an essential elem ent of a  lens-com ponent. In the  language of O O P, they 

are also referred to  as properties of TLensIcon. The picture property  is the icon th a t  is 

visible on th e  com puter screen, while lens is a  reference to  a generic lens description. For 

exam ple a singlet lens, as described below, is derived from a largely ab strac t class called 

TLens, and so may be assigned as a lens property  of TLensIcon.

TSingleLens = object(TLens)
surfacel : TSurface; (* first surface *)
surface2 : TSurface; (* second surface *)
sep : TSpace; (* inter-surface space *)
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glass : TGlass; (* glass type *)
procedure ProcessRays(rays : TRayArray); override; 

end;

Notice tha t the properties of the singlet lens are all familiar quantities, but in keep­

ing with the object paradigm they have been converted into new class descriptions that 

themselves encapsulate the required data  and functional properties of the abstracted en­

tities. One other noteworthy feature in the above class definition is the presence of a 

procedure called ProcessRays. This procedure accepts as a parameter an array of rays, 

which are then refracted and transferred from surface to surface until the rays are in a 

suitable form to be passed on to  the next Lens component for processing. ProcessRays 
is identified as a procedure associated with all classes derived from TLens, but since each 

newly derived lens component will interpret ProcessRays in a different manner, then 

this procedure will need to be re-coded to reflect this, hence the need to override the 

procedure for each descendent of TLens. Naturally, for simple refractive elements, the 

underlying code to ProcessRays is similar to tha t we have seen earlier in the previous 

section, i. e. RayTranfer and RayRefract.

In keeping with the previous section, we shall develop the necessary structures and 

code tha t describe a lens system and the manner in which rays are propagated from the 

source to the image plane. Firstly, a lens system may be described as an array of lenses, 

i. e.

TLensSystem = array[1..MaxLenses] of TLensIcon;

In practice, the TLensSystem would be described as a class having the array of 

TLensIcon specified as a property of the class, again in accordance with the aim of de­

scribing all entities as class objects:

TLensSystem = object 
MaxLenses : integer;
property Lens[n:integer] of TLens read GetLens write SetLens; 

end;

The property description specifies tha t the identifier called Lens should be interpreted 

as an array, where the two procedures GetLens and SetLens define how reference and
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assignment of Lens [ ] is handled. Thus a reference to the n*  ̂ lens in a system called 

ALensSystem is given by ALensSystem.Lensfn]. With this information we can now write 

the code tha t implements raytracing in an object-based lens-system.

with ALensSystem do begin 
for j := 1 to MaxLenses do 
Lens[j].ProcessRays(rays);

end;

The im portant difference to note between this piece of code and tha t associated 

with the SBM is tha t the subject within the loop is of type TLens while in the SBM code 

it is the ray-transfer and refraction procedures. The OOP rendition of raytracing results 

in both subject and action being tightly bound to one another, as allowed by the class 

definition, but the purely procedural form shows no such tight binding. The reason why 

binding in these circumstances is so beneficial stems from high degree of security tha t 

exists when employing methods tha t originate from and have been developed within the 

same class structure.

There are other ways in which the component-based model is superior to the surface- 

based model. Firstly, due to the similarity of structures tha t have been developed in code 

and tha t exist in the real world, it is possible for individual lenses to undergo physical 

transformation in a manner tha t would be difficult to consider in the lower order SBM, As 

an example, take the case of lens reversal. In its implementation we must develop reversal 

procedures for the surfaces first, and then introduce a reversal method for the lens itself, 

as the following code fragments indicate,

TSurface = object
x,y,z : double (* position *)
l,m,n : double (* orientation *)
glassl : TGlass (* prior glass ♦)
glass2 : TGlass (* post glass *)
procedure ProcessRays(rays : TRayArray); virtual; abstract; 
procedure Reverse; virtual; abstract;

TSurface is the ancestor of all surface types, where the data-sets ( x , y , z )  and
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record the position and orientation of the surface, and glassl and glass2 are the glass 

types on either side of the surface boundary. Since we haven’t given TSurface any specific 

geometrical form, then the methods ProcessRays and Reverse cannot be properly defined 

and so are specified initially to be virtual and abstract methods. That is, they cannot be 

employed as is, but must be overriden and defined by a descendent class first. A descendent 

class might be TSphere, TAsphere or possibly TTorroid. Each descendent will have its 

own method of implementing these abstract methods of TSurface.

TSingleLens = object(TLens)
surfacel : TSurface; (* first surface *)
surface2 : TSurface; (* second surface *)
sep : TSpace; (* inter-surface space *)
glass : TGlass; (* glass type *)
procedure ProcessRays(rays : TRayArray); override; 
procedure Reverse; override; 

end;

This slightly modified version of the earlier TSingleLens now includes a Reverse 
method which is implemented below:

procedure TSingleLens.Reverse; 
begin

Surfacel.Reverse ;
Surface2.Reverse ; 

end;

Thus, assuming tha t the Reverse method for any particular surface type has been defined, 

then the reversal of any single-lens component is given by: ASingleLens.Reverse. The 

equivalent method for a set of surfaces within a SBM environment will not be as simple 

to implement. Firstly, there is no clear way of knowing or distinguishing which surfaces 

belong to which lens, since the concept of a lens is not defined in the SBM. This argument 

is simplistic since the originator of a lens system will have had some clear goal in mind 

during the construction process, but it does not contraxlict the original premise th a t the 

single-lens is an artificial construct within the domain of a SBM. The implementation of
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Reverse in a SBM will require a process of inspection and the application of logical rules in 

order to isolate various lens combinations prior to implementing any lens transformation. 

This procedure will be laborious and contrary to the methods tha t a lower order model 

should support or provide.

In contrast, the CBM does indeed support commutative properties with respect 

to  lens exchanges and movements. If we consider the graphical representation of a lens 

system, as in Figure 2.2, then this does not appear at all surprising since the lenses are 

clearly to be seen as independent entities, and lacking any degree of cross-coupling as in 

the case of the row-data in the SBM. How this, in terms of code and modelling, is possible 

will be the subject of Chapter 5.
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C h a p t e r  3

O b j e c t  O r i e n t e d  P r o g r a m m i n g

The last forty or so years has seen considerable development in the field of computers and 

computer architectures. In order to harness the ever increasing power tha t these hardware 

platforms provide requires programming languages to be regularly updated and improved. 

Since the late 1970s when the 8-bit C P/M  operating system prevailed, the advent of the 

IBM-PC has resulted in operating systems progressing from the 16-bit code of Windows 

3.x to the recent releases of the 32-bit operating systems, Windows NT and Windows 95. 

At each stage of the operating system development cycle, new compilers and language 

enhancements have been required to match the new capabilities offered. The principal 

driving force behind this frenzy of activity is the goal of a fully object oriented system.

At a simplistic or naïve level one may state tha t “God is the greatest programmer 

of all time” , where the proof is around us for all to see. How can we, as imperfect 

mortals, hope to emulate such creativity in our programming efforts? Not, it seems, by 

improving our ability to code using conventional languages such as FORTRAN and C, 

but by developing a new methodology tha t harnesses the power and simplicity of creation. 

The object-oriented paradigm recognises tha t systems exist as distinct entities and tha t 

they may also be evolutionary. For support of such a premise we look to biological systems 

(God’s objects) for inspiration. In reality, those biological systems tha t have arisen from 

some obscure evolutionary process have not done so according to some well defined plan, 

but have in fact arrived at their stage of existence having meandered, seemingly un­

directed, through the multiple-spaces of infinite possibilities. This is most definitely not 

the approach th a t transitory creatures such as ourselves can afford to take. Indeed, in
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essence, what we have chosen to do is take what is most simple and efficient from the 

biological evolutionary process and applied it to a new set of computer languages. These 

we have chosen to call ‘object-oriented’ languages.

Object oriented programming, or OOP, represents the latest and most potentially 

rewarding paradigm shift since assembler language. Since the dawn of the computer, man 

has sought to gain control over the massive computing power tha t lies dormant within 

the few square centimetres of silicon tha t is the playing field of the central processor. 

The central processing unit, or CPU, is inactive unless instructed otherwise. A computer 

language is the means by which instructions are given to the CPU - ignoring for the 

moment the necessary intervention of the compiler. There have so far been four stages in 

the evolutionary process of the computer language, where the emphasis of each has been 

placed upon a basic unit of data  and/or code. They are:

machine-code -  this uses the native language of the CPU. Earh instruction normally 

comprises two parts: op-code and operand. The op-code indicates which operation 

is to be performed, while the operand supplies the necessary data;

assembly language -  by replacing the machine language instruction with a mnemonic 

code and symbolic address, the task of writing a program is made easier. Prior to 

execution the assembler code requires translating to machine code;

procedural language -  FORTRAN, Pascal, Basic and C are typical procedural (high-level) 

languages. Their overall structure is considerably closer to our everyday language 

and are much simpler to use. Structured programming methods are applicable to 

this class of computer language as they all support procedural and modular code 

blocks.

object oriented language -  there are two forms of object oriented languages; the pure OOP 

languages as typified by Smalltalk, and the hybrid types such as Object Pascal, Ada 

and C-f-+. Both provide new constructs tha t support the necessary features of a 

OOP language (see later in this chapter).

In terms of object-orientation, it should be pointed out that not all languages or 

tools tha t describe themselves as object-oriented are in fact so. An OOP tool must pass 

four basic criteria [8] in order to be truly object-oriented:
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•  E n cap su la tio n  — D ata and program code must be locatable within single entities. 

That is, an object must be able to store both data  elements (as a record struc­

ture does) and procedure elements (called methods). Procedural elements within an 

object must have automatic access to data  elements within the object.

•  In h e r ita n c e  — New object types must be able to be synthesised from existing ones 

by inheriting their attributes and method procedures.

•  P o ly m o rp h ism  — Object methods must be callable without respect for the actual 

object type in which the method resides. For example, the Show method performs 

radically different tasks when drawing a button control as opposed to drawing a 

grid control, though the call is identical. Also, provided they both descend from a 

common ancestor, calling the ancestor’s Show method using an instance of either 

the grid or button control should properly display the correct control.

•  P r im a ry  m e thodo logy  — The ob ject-orientation of a tool must be the primary 

method of constructing program code, not an afterthought or add-on.

The following sections will shed more light on the meaning and importance of the 

first three of the above items, Borland’s implementation of Object Pascal will be used 

to illustrate these features, though the code should also be familiar to C-|—t- and Ada 

programmers alike. Note: It is not possible in this chapter to convey to the reader all of 

the finer details regarding object oriented prorogramming, but it is hoped that the general 

points will come over and that the reader will seek further information in the bibliography.

3.1 Encapsulation

Languages such as Basic and Pascal are typified by their clear discrimination between 

data  and procedural code-blocks. Virtually any program may be considered to possess a 

data-body tha t is subsequently processesed by numerous code-blocks and resulting in a 

transformation of the original data. The two entities remain separate at all times.

The paradigm shift associated with OOP stems from the argument th a t rather 

than data  and procedures being separate entities, they should indeed be considered to be 

separate aspects of a single new entity. Consider the case of a vector of type TVector, 

where the coordinates of the end-point are represented by the two real numbers (z, t/). In
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the simplest case these data are bound to the type TVector by the record, or structure, 

definition given by:

TVector = reco rd  

X , y : r e a l ;  

end;

Let us declare a variable vec of type TVector, then a reference to the vector coor­

dinates occurs using the dot notation, i. e. v ec .x  and vec .y . If now a procedure called 

le n g th  is introduced which accepts a TVector type as a parameter and returns the length 

of the vector, then it might be defined as follows:

fu n c tio n  lengthC vec : TVector ) : r e a l ;  

beg in

w ith  vec do

r e s u l t  := s q r t (  x * x + y * y ) ;  

end;

. . .  where a reference to the length of a vector is le n g th (v e c ). Now, one could argue tha t 

both the vector type and the function are intimately connected to one another since the 

function may only operate on vector parameters. This being so, one could also consider 

other functions and procedures that act only upon entities of type TVector. Going one 

step further, could not a type be considered tha t bound both the vector and its supporting 

procedures into a new entity? Let us call this new entity an object and we shall refer to 

its definition as a class. TVector is now a class, not a record, and is defined below:

TVector = c la s s  

X , y : r e a l ;  

ndims : in te g e r ;  

fu n c tio n  le n g th :r e a l ;  

end;

. . .  where ndims contains an integer value of the number of dimensions occupied by the 

vector. The le n g th  function is referred to as a method of TVector and is implemented as 

follows:
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function TVector.length : real; 
begin

result := sqrt( x * x + y * y ) ;  
end;

This class is similar in some respects to the earlier definition of the TVector record, 

and is accessed in a similar manner, i. e. the length of the vector vec, is given by 

vec.length. Note how the length function no-longer requires a vector parameter to 

be passed as an argument. The reason for this is tha t since length is now embedded 

within the new class TVector it automatically has access to data  and other procedures 

declared within any instance of this class.

The process of melding both data and data-related procedures into a new structure 

is called encapsulation, and is one of the core concepts of obect oriented programming. 

It arises through the recognition tha t programs almost always possess certain data-sets 

tha t appear to be bound to specific procedures, in the same way as we have seen with 

TVector. A recognised practice during software development for identifying classes is to 

inspect the system model with a view to isolating nouns, such as vector, lens or ray, and 

then to assign methods tha t correspond to natural operations or transformations that 

these classes would be employed in. For illustrative purposes the class TVector is shown 

below in a more complete form.

TVector = class 
X , y  : real; 
ndims : integer; 
constructor create;
procedure init(const a : array of real ); 
function length:real;
function cross( vec : TVector ) : TVector; 
function dot( vec : TVector ) : real; 

end;

Thus, if u ,v  and w are vectors, then the scalar triple product u.{v X w) is given 

by u.dotC V . cross(w) ). Note the appearance of a new procedure with the title of 

constructor. The creation of a class instance requires a single statem ent of intent to that
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effect  ̂ which is the purpose of the constructor c re a te . Given a variable vec declared 

to be of type TVector then the creation of an instance of tha t type is through the state­

ment vec := T V ecto r.c rea te , and initialised by vec. i n i t ( [1 ,2 ]  ). The constructor and 

initialising procedure is given below:

c o n s tru c to r  T V ec to r.c rea te ; 

beg in

in h e r i te d  c re a te ;

{ th e  va lu es  of x and y a re  by d e fa u l t  equal to  zero  } 

ndims := 2;

procedure TV ector. in i t ( c o n s t  a : a rra y  o f r e a l  ) ;  

begin

X := a[0] ; 

y := a [ l ]  ; 

end;

It is clear from the above code how the array argument a[n] copies over to the 

internal variables x and y. The presence of the line in h e r i te d  c re a te  in the constructor 

is necessary to set aside the memory space for the declared variables and to maintain links 

to the declared functions for this class, as well as performing the necessary book-keeping 

chores tha t support all declared classes.

3.2 Inheritance

The previous section has demonstrated the useful facility for creating new types called 

classes tha t enable the form and function of objects to be encapsulated into a single code­

block. If this reflected all there was to the much touted OOP paradigm then indeed there 

would be little benefit. To illustrate this point, consider developing a new class th a t is 

specific to three-dimensional vectors, and call this class TVectorS, It might be defined as 

follows:

 ̂C-|—I- offers a limited form of automatic construction of objects
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TVectorS = class 
X , y , z : real; 
constructor create;
procedure init(const a : array of real ); 
function length:real;
function cross( vec : TVectorS ) : TVectorS; 
function dot( vec : TVectorS ) : real; 

end;

To complete this specification the above functions need to be rewritten to account for the 

new type to which they belong, i. e.

function TVectorS.length : real; 
begin

result := s q r t ( x * x + y * y + z * z ) ;  

end;

The OOP vision is an organic one, where a class may be the progenitor of other, 

more complex, classes. In this regard, the above example fails to satisfy since there is 

no apparent inheritance mechanism in evidence during the definition of TVectorS. Since 

the three-dimensional vector has much in common with the two-dimensional vector, we 

would expect some degree of repetition in the code implementaion. W hat is required 

is a mechanism tha t will allow TVectorS to be a descendant of TVector. In doing so, 

the various new methods might be updated in a similar manner, through inheritance. A 

clearer understanding will be obtained by re-writing the above example to include the new 

features for inheritance. Firstly we shall redefine the TVector class to make it suitable as 

an anscestor class.

TVector = class 
X , y : real; 
ndims : integer; 
constructor create; virtual; 
procedure init(const a : array of real ); 
function length:real; virtual;
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function cross( vec : TObject ) : TVector; virtual; 
function dot( vec : TObject ) : real; virtual; 

end;

There is one im portant addition to this new definition which is worth pointing out, 

and tha t is the presence of the directive virtual following each of the methods. This 

declaration indicates tha t the function may be overriden or redefined in a descendant class. 

Continuing on, a descendant of TVector is now defined tha t caters for three-dimensional 

vectors:

TVector3 = class( TVector ) 
z : real;
constructor create; virtual;
procedure init(const a : array of real );
function length:real; override;
function cross( vec : TObject ) : TVector; override;
function dot( vec : TObject ) : real; override;

end;

It is with this new definition of a descendant class tha t inheritance features are 

evident. Firstly, the appearance of (TVector) following class states tha t TVectorS is a 

descendant of TVector. Secondly, the variables x and y are not present as they have been

inherited from TVector, and so only z is required to be declared; and thirdly, the methods

tha t follow are to be redefined due to the inclusion of the directive override. Fortunately, 

inheritance can make this process simpler as the following two function overrides make 

clear:

constructor TVectorS.create; 
begin

inherited create; 
ndims := 3 ; 

end;
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procedure TVectorS.init(const a : array of real ); 
begin

inherited init([ a[0],a[l] ]); 
z : = a [2] ; 

end;

a n d ...

function TVectorS.length : real; 
begin

result := sqrt( sqr( inherited length) + z * z ); 

end;

The procedures above illustrate the use of the inherited keyword, showing tha t 

the ancestor TVector is still visible to TVectorS, although the contrived use of inherited 
in the length function is inefficient and so not appropriate nor absolutely required. One 

other interesting feature is the presence of TObj ect as the argument type in the functions 

cross and dot where one would expect TVectorS in a class of the same type. Obviously a 

cross product cannot be envisaged between a vector and an object of unknown type, but 

this incongruity arises from the need to maintain an identical interface to  both ancestor 

and descendant, when functions are to be over-ridden. This dilemma will be resolved in 

the next section.

3.3 Polym orphism

The word polymorphism originates from the Greek word meaning many shapes. It is 

through the virtual method facility tha t polymorphic objects are realised — literally object 

instances tha t can assume different forms when the program runs. A polymorphic object 

instance might take on the identity of itself or any of its descendants. The following code 

segment will help to illustrate the multi-personality traits tha t polymorphism allows:
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1. var

2. v ec l : TVector;

S. vec2 : TVector;

4. vecS : TVectorS;

5. l e n l . le n 2 , lenS : r e a l ;

6. dot : r e a l ;

7. beg in

8. v ec l := T V ec to r.c rea te ;

9. v e c l . i n i t (  [1 ,2 ] ) ;

10. vec2 := T V ecto rS .c rea te ;

11. vec2. i n i t (  [1 ,2 ,S ] ) ;

12. vecS := T V ecto rS .c rea te ;

IS . vecS. i n i t (  [1 ,2 ,S ] ) ;

14. le n l := v e c l .le n g th ;

15. len2 := v ec 2 .le n g th ;

16. len2 := T V ecto rS (vec2 ).leng th ;

17. lenS := v ecS .len g th ;

18. dot := v e c l .d o t ( vec2 ) ;

(* Wrong answer *)

(* same value  as len2  *)

Lines 2—3 declare v ec l and vec2 to be of type TVector while line 3 declares vec3 to be of 

type TVectorS, These three variables are then created and initialised in lines 8—13. The 

point to notice here is tha t vec2 is created using the TVectorS constructor tha t is assigned 

to 3-dimensional vectors, while the vector is declared as a 2-dimensional vector. That this 

was possible indicates tha t the constructor was successful in creating the necessary memory 

resources and assigning the appropriate values to the vector variables.

A clearer picture emerges when the le n g th  method is accessed for all three vectors 

in lines 14—17. The vector length le n l  produces a correct result (\/5), but the value of 

len2  is identical when it should be VTi- The reason why this is so stems from the fact 

th a t vec2 is declared as a 2-dimensional vector and may only legally access the internal 

variables x and y, and the 2-dimensional length-m ethod. On its own, vec2 cannot gain 

access to the 3-dimensional length-m ethod. Line 16 shows how this may be achieved using 

the technique known as typecasting. This technique, as demonstrated in line 16, forces the 

compiler to view vec2 as a variable of type TVectorS, which then makes it possible for
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vec2 to  employ the 3-dimensionaI length-m ethod. Finally, as one might expect, line 17 

also results in a correct value being passed to len3.

The previous section concluded by noting th a t in order tha t equivalent methods 

should be available to all descendent classes, then the form of the method definition 

should remain unaltered. Thus, in the case of the dot-product method, the argument 

type is TObject in order to allow both 2-dimensional TVector and 3-dimensional TVectorS 
parameters to be passed. Note: Object Pascal declares a type TObject that is the primitive 

ancestor of all classes; in other words, TObject is to TVector as Adam is to Mankind. In 

achieving this compatibility across descendant classes, one must now ask how it is possible 

for a method to determine what kind of object has been passed as an argument, since we 

cannot speak meaningfully of a dot-product between a vector and a generalised object of 

unknown quantity.

RTTI, or run-time type information, is the means by which a class variable may 

be interrogated in order to ascertain its type. This is implemented in Object Pascal by 

the new operators, is and as. As an illustration of this powerful enhancement to OOP 

languages (also recently axlded to C-t—|-), the length method for the TVectorS class is 

given below:

function TVectorS.dot(vec : TObject): real; 
begin

with vec as TVector do begin 
if ndims >= S then
result := sqrt(x * vec.x + y * vec.y + z * vec.z) 

else result := inherited dot(vec) 
end; 

end;

This new implementation of the 3-dimensional dot method initially checks if the 

vec argument is of type TVector, and if so, performs the 3-dimensional dot-product if 

the number of dimensions is 3 or greater, else it defers to the inherited method of the 

ancestor to implement the 2-dimensional dot-product. On the other hand, if vec is not 

of type TVector then an exception will automatically be raised. In a similar manner, the 

inherited method will check for a 2-dimensional vector as an argument (which in this case
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will always be true), and then return the 2-dimensional dot-product, i. e.

function TVector.dot(vec : TObject):real; 
begin

with vec as TVector do begin 
if vec.ndims >= 2 then
result := sqrtCx * vec.x + y * vec.y);

end;
end;

Such a cascading sequence of events allows for any size vector to be treated accordingly 

and correctly, whilst the exception is raised only in the event of a non-vector parameter 

being passed.

It has become clear tha t polymorphism enables complex and evolving structures to 

come into existence, which, along with the supporting operators tha t implement RTTI, 

also allows for graceful method transfers along the evolutionary chain. In the case of n- 

dimensional vectors tha t have been developed as part of a structured development plan, 

polymorphism allows convenient and efficient handling of non-matched vectors in the case 

of the dot-product method. Similar benefits are to be derived from any class hierarchy 

tha t has been constructed with polymorphism in mind.
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C h a p t e r  4

I m p l e m e n t a t i o n  D e t a i l s

When commencing a project such as this, particularly in an academic environment, there 

are inevitably two questions th a t arise before any progress may be made. These are: 

“W hat is the computer platform on which the application will run” , and “W hat computer 

language(s) will it be coded in” . In some situations the answers will be obvious where no 

other choices are available. In other situations the answers will depend upon factors tha t 

may be outside of one’s control.

4.1 C om puter Platform

W hat has an academic environment to do with the decision making process? Well, firstly, 

the nature of an academic environment is to minimise the constraints on creativity, and 

in this case we recognise the diversity and power afforded by the considerable computing 

resources tha t all universities make available to both staff and students alike. Almost 

invariably this takes the form of networked facilities tha t are underpinned by powerful 

workstations. In general the operating system is almost always some variant or flavour 

of Unix, which has been the mainstay of universties throughout the world since the late 

1970s. It is characterised by its ability to provide multi-tasking services and by the relative 

stability of the open standards to which it conforms. The picture is not so clear-cut today 

due to the marked market impact of MSDOS/Windows during the last decade, and to a 

phenomenon known as the ‘Unix wars’. The nett result is tha t local Windows networks 

are becoming increasingly common in environments such as offices and laboratories.
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The ever increasing thrust of the personal computer, and particularly of Windows, 

into all avenues of computer usage has also had a dramatic effect upon the number and 

types of software tha t have been developed over the past few years. It is almost true to 

say that there is no human activity to which some computer related software or data  is 

not pertinent or available. This is especially so in the field of programming tools, such as 

computer languages, ‘rapid application development’ tools, and new ‘object technology’ - 

based controls. A cursory glance through any bookshop will show tha t the vast majority of 

computer-related titles on sale belong to the class dedicated to the PC user, and it is here 

tha t the move to operating systems such as OS/2, Mac System/7, and Windows95/NT has 

occurred. Today’s users of computer technology require it to be a personal experience, 

where the operating system is not overbearing and counter-intuitive, but friendly and 

accessible. No-one can say tha t Unix is a friendly system, or one tha t is easily mastered, 

although when seen in the guise of a shell such as X-Windows then usability is markedly 

improved.

The move of the computer out of the cloistered halls of academia into vitually every 

office and living-room of the western world is reflected by the ease with which computer 

power is made manageable via the modern operating systems and newly developed pro­

gramming tools tha t make the task of creating usefull programs far simpler than ever 

before. As a result of the ever-increasing size of the user base, the costs of both hard­

ware and software are much more affordable than their equivalents in the Unix world. In 

addition, due to the much higher cash flows involved, (successful) commercial software de­

velopers are able to fund new development programmes on an almost never-ending basis. 

This factor, coupled with the ever present competitive edge tha t drives all companies, leads 

to products tha t are state-of-the-art for maybe a year or so, only to be superseded by more 

sophisticated products. As an example of this market driven development cycle, during 

the last four years the author has witnessed, and even indulged himself in, several seminal 

products tha t will be remembered as milestones of the personal computer-age, such as 

Windows 3.XX, Visual BASIC, Delphi, and Windows 95. So long as raw processing power 

continues to increase year after year, then this trend is unlikely to falter.

Though the C ’ language was originally developed for Unix systems programming, 

it really came to the fore when it was upgraded to encompass greater functionality and 

object-oriented extensions in the guise of ‘C-I-+’. It only really gained world visibility and 

acceptance through the commercial language implementations tha t were released onto the
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mass of eager personal computer programmers th a t constituted the vast majority of pro­

grammers in general. The most sophisticated and powerfull of all C-f-1- implementations 

today are to be found serving the needs of Windows programmers in all walks of busi­

ness, and they are produced by some of the largest and most successful organisations in 

the world, the largest being Microsoft Corporation, naturally. Other languages have also 

been successful on both MSDOS and Windows operating systems, particularly Pascal, 

BASIC and Prolog. As in the case of C/C-|-+, these languages have also seen numerous 

new developments and enhancements tha t have considerably increased their productivity 

and scope. Thus it is clear tha t while the two principal computer platforms are Unix 

and Windows, they are differentiated from one another in the extent and sophistication 

of developer tools provided, with Windows easily being the target for a sizeable majority 

of system and product developers. So, if the most modern programming tools are to be 

sought after, at reasonable cost and with better than axiequate support in both journal 

and book form, then the choice must be Windows.

Another factor to be considered in the choice of computer platform is the intended 

audience or user. Where an application is to be produced within an academic environment 

and then scrutinised by one’s peers in the same environment, then whichever platform is 

prevalent will be a suitable one. If on the other hand one’s peers are of differing locales 

and available computer resources then it makes more sense to aim at a platform tha t is 

common to both. Invariably this common platform will be Windows. It is a fact tha t 

the Windows operating system is ubiquitous and the paradigm tha t it expresses, similar 

to tha t of the Macintosh System/7, OS/2, and X-Windows, is by now a familiar one, not 

only to programmers and users but also to the children in our schools.

4.2 Program m ing Languages

Life would have been much simpler if we (human beings) had chosen not to design any 

more programming languages other than the original machine code language, which came 

about out of necessity rather than a conscious decision. However the price of such a de­

cision would have been enormous, ruling out all the benefits th a t we would have derived 

from procedural and object-oriented languages, such as the very large and sophisticated 

applications we ‘enjoy’ today, with the likes of Microsoft Office and even the Rapid Ap­
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plication Development tools themselves. Languages have evolved out of necessity, arising 

from a need to fulfill some specialised task. For example, Lisp was developed as a tool to 

facilitate list processing, Pascal was originally used as an educational tool, ‘C ’ was targeted 

at systems level programming, and the business environment was served by Cobol. Many 

other languages also came into being during the last two decades, although few still serve 

the needs of todays programming community. Those tha t have survived do so because 

they have changed in some way to meet a more general requirement. As the programming 

languages and their operating environments have become more complex to deal with, the 

programmer has preferred to employ a language th a t is both general purpose and powerful 

rather than adopt a multi-‘lingual’ approach. This strategy is also the preferred course for 

the language developers, since it makes more business sense to support one or two main­

stream languages than several of the specialised languages tha t in time may eventually 

fold.

At any one time during the past decade or two the computer industry may be 

seen to have been in a state of flux. That is, one can view the past and review all the 

innovations tha t have contributed to the then current state of technology, and one can also 

be aware of new developments tha t are still in the pipe-line and are soon be established. 

Nothing stays still, not even the operating systems tha t we have dicussed above, although 

it is to be hoped tha t their longevity will far surpass tha t of those software components 

tha t rely upon a stable operating system. In the context of this thesis such software 

components are represented by the computer language tools. During the first year of 

this research programme the author became extremely aware of the changing tides of 

software technology, and the difficulty involved in choosing the ‘right’ tool for the task; 

not only was it a m atter of selecting the best tool, but one also had to discover whether 

the best tool was the right tool. For example, the author has spent many years using 

procedural languages such as HPBasic and Pascal on a casual basis. It may be tha t 

such an apprenticeship might create difficulties when given the task of determining the 

suitability of other computer languages for this project. In hindsight this was probably 

true.

Another factor tha t influences choice is the available timescale tha t the project 

extends over. During a short development programme it is im portant tha t the necessary 

resources are acquired almost immediately, since any undue delay will significantly cut 

into the remaining time. On the other hand, a longer programme will not suffer from the
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same urgency, but a situation may arise when more suitable resources are not immediately 

available but are ‘reported’ to be in the pipe-line. In such a case, as the author knows 

from his own experience, it can be tempting to gamble with the remaining time in the 

hope tha t the rumoured tools will be on sale soon enough, so as not to seriously jeopardise 

what time remains. This approach is not for the faint-of-heart, and is not recommended.

The following sections provide summaries of the three principal computer languages 

th a t were considered. Other development tools were also investigated, including Bor­

land’s Object Vision and Computer Associates’ CA-Realizer. It was fairly soon established 

tha t ObjectVision could not provide all the facilities tha t one would require of a general- 

purpose programming language since it was designed as a specialised database tool having 

a scripted language at its core. In contrast, CA-Realizer is based upon a superset of BA­

SIC, a language tha t is familiar to  almost all programmers. Though BASIC has not been 

highly acclaimed as a language for purists or academics, it has never-the-less carved out 

its own niche in the computer world. In its favour CA-Realizer has managed to extricate 

itself from such views by improving the capabilities and language syntax sufficiently so as 

to create a far better BASIC than its predecessors. Unfortunately it was released shortly 

after Microsoft’s Visual BASIC, and as such it has had to suffer unfair comparison against 

what is now the world leader in Rapid Application Development tools. It seemed to the 

author tha t Realizer could not hope to keep up with all of the latest developments in 

Windows and object technology, an opinion tha t has not changed with time.

4.2 .1  CH—b

The C programming language was designed and implemented by D. M. Ritchie, and it 

was published in the book The C Programming Language[6] by B. W. Kernighan and D. 

M. Ritchie in 1978. In its first years C was popular only in connection with the Unix 

operating system. Subsequently, it turned out to be a very good programming language 

for microcomputers as well, and a t the time of writing C can be used with almost any 

computer type or operating system. Due to its widespread popular acceptance it soon 

became necessary to introduce some form of standardisation into the language, and so in 

1983 the American National Standards Institute (ANSI) formed a committee (X3J11) to 

provide such a standard, known as ANSI C. This version of C did much to rationalise 

previous inconsistencies in the language, but it was only three years later, in 1986, tha t B.

50



Strousrup was spurred to write his book The C++ Programming Language [7]. This was 

almost two decades after the first object-oriented language, ‘Simula 67’, was demonstrated.

Despite the fact tha t ‘C ’ was preceded by ‘B’ which in turn was developed from 

BSPL, they were all substantially small languages tha t could be mastered in a few days. 

In particular, C was developed as a language tha t would bridge the gap between the 

efficient and fast assembler language, and the higher level languages such as Cobol and 

Fortran. One of the drawbacks (C programmers would consider it a strength) of the low- 

level bias exhibited by C is the ability to  mix types, i. e. characters and bytes may be 

interchangeable, resulting in a language considered not to be type-safe. For instance, a 

function might be passed two integer arguments m  and n and will return an integer that 

corresponds to the evaluation of m ’̂ . This represents an integer being raised to the power 

of another integer, but C will also allow characters to be passed to the function and in this 

case the result has no bearing on the data-type of the supplied parameters. The compiler 

will allow this whether the programmer intended it or if a genuine error was made. A 

type-safe language, such as Pascal or Ada, will allow only functions and operators to  act 

upon data if the required data-types are compatible. In so doing the compiler forces the 

programmer to be explicit about the operations tha t are to  be performed and the data­

types upon which they operate. Later versions of ANSI C rectified, or improved m atters 

by closing this loop-hole and so strengthening C ’s type-safe features.

On the other hand, C-|—|- was designed to provide both object-oriented extensions 

and stronger type-safety to  the C language, and so we find such constructs as classes, 

polymorphism  and inheritance. Not content with single-inheritance, version 2 of C4—|- 

implemented multiple inheritance tha t allowed a new class to be derived from more than 

one base class. Simple and complex data  structures, including arrays and user-defined 

data structures are supported, where object classes represent the most complex structures 

of all, incorporating both data  and procedural references. A rich set of operators is also 

provided tha t enable the processing and transformation of these same data  structures. 

One of the features tha t distinguishes C-|—f- from most of its current rivals is the ability to 

overload operators and functions. W hat this means in practice is tha t the same operator 

symbols or function names may be redefined to  operate on differing argument types. Thus, 

if X and y are integers then x + y will return an integer result, but the symbol may 

also be selected as a summation operator for vector quantities and so, if a and b are vector 

quantities then a + b will now return a vector quantity. In both cases the summation
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symbol ‘+ ’ has been used. Though this facility could be useful in some situations, the 

disadvantages are tha t the program code may become more difficult to interpret by those 

programmers other than the originator, and the compiler (linker) is required to work even 

harder in an attem pt to resolve code features tha t are context sensitive. Hence the often 

referred to ‘programmer’s coffee-break’, signifying a very long program compile.

In an effort to create a language tha t is both flexible and terse, C-f-1- has a myriad 

of symbolic operators tha t to the untrained eye may appear intimidating:

+ - *
/ %  ' &

Î = < > * =

=1 = 1 = -  >  * -  > X #

*
# # < <  > > «

> > = +  + 1 [ ]

The author is not ashamed to admit to the possible encroachment of a new form of dyslexia 

whenever these operators are viewed in the midst of a segment of code. Unfortunately 

nearly all of these operators may be overloaded so tha t their original meanings are modi­

fied, and they may also function in a way tha t is not expected!

In the process of melding all tha t was essential in C with the new object-oriented 

features tha t typify C-f-f as an object-oriented language, it was necessary to make a 

few compromises, leading to a language tha t is both complex to  learn and unwieldy for 

compilers to process. During compilation and the process tha t converts the textually coded 

program instructions to a set of machine-code instructions, several passes of the program 

will be required, commencing with the preprocessor expansion tha t will initially expand 

macro definitions and then insert all the referenced in c lu d e  (dependent) files. One of 

the compromises alluded to earlier concerns the need to maintain compatiblity with its 

progenitor. A consequence of this approach is tha t all C-f-f constructs are converted by 

the preprocessor into standard C code; thus, C-f-f is actually a refined form of C.

Both C and C-f-f typically employ a multi-pass compiler tha t can result in greatly 

extended compilation times compared to single-pass compilers as used by such languages 

as BASIC and Pascal. The combination of features such as virtual functions and operator 

overloading means tha t in any large application it simply isn’t  possible to look at a  line 

of code and be able to deduce for certain which functions are to be called. The multi­
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pass compiler thus becomes an absolute necessity if such references are to be adequately 

resolved.

Other features such as class templates, function templates and exception handling 

(the ability to safely intercept and proceed from run-time errors) result in a language tha t 

is both flexible and multi-purpose. It should therefore come as no surprise to learn th a t the 

majority of applications today are coded in C-I-+, and even the very operating systems 

tha t these applications run under (Windows and Unix) are also coded in C-|-+. But, 

through its immense popularity are sown the seeds of a growing discontent and uneasiness 

tha t perhaps C -f+  might just be too powerful, tha t maybe each new version produces 

a behemoth of ever increasing complexity requiring ever more effort on the part of the 

developer to master. In particular, both C and C-|—t- offer a flexibility of expression that 

allows for more than one method to implement many of the standard operations, such 

as looping and iterating, and which inevitably leads programmers to develop a style that 

might prove difficult for other programmers to penetrate. This flexibility is supposedly in 

the name of code efficiency, but in these modern times where multi-team programming 

projects are increasingly becoming the norm it is imperative tha t individual programmers 

should not have to overcome varied syntax-dialects and other cumbersome idiosyncrasies 

tha t C/C-f-1- deems to be legitimate. Despite these drawbacks C-I-+ is probably the most 

powerfull computer language available today and will continue to be so for some time to 

come.

4 .2 .2  V isu a l B a sic

If C-f 4- is the vanguard of programming languages, then BASIC[4] is the humble foot- 

soldier. Originally developed at D artm outh College in 1962 as a simple language that 

would allow students to write quickly and test programs of their own, it has a reputation 

for being not overly-complex to learn and reasonably safe in usage. BASIC is an inter­

preted language, tha t is the textual code comprising a program is not compiled directly 

to  machine-code as in a compiled language such as C, but instead the code is converted to 

a tokenised form^ which is then executed by the interpreter. Unlike C/C4—I-, the BASIC 

language has no facility for direct access to computer memory through the use of pointers, 

and so both variables and procedures remain in the abstract space of the program. In this

computer code intermediate between machine code and a high-level language
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manner the environment of a BASIC program can be reasonably well isolated from the 

operating system, and in so doing the operating system and other program components 

tha t exist in memory remain protected from the otherwise possibly unlawful or roguish 

behaviour of true compiled programs tha t allow access to all areas of memory, if permitted 

by the operating system.

During the intervening years BASIC has undergone one transformation after an­

other, either as a reaction to a change of platform or, alternatively, in an effort to  bolster 

an otherwise mundane language with features having increased functionality and scope. 

Since it was originally developed of unambitious goals, BASIC has had many reasons 

why it should need to evolve. Due to its simplicity the BASIC interpreter required little 

memory to operate, and for this reason it was chosen to be implemented on many of the 

pioneering and popular 8-bit computer platforms of the late 1970s (Altair, Commodore 

Pet, Tandy TRS-80) and the very first 16-bit IBM PC in 1985. In fact, it was the rapid 

expansion of the personal computer market tha t enabled the BASIC language to posi­

tion itself as the de facto  high-level development language of the masses. And so it has 

remained to this day.

More recently, when BASIC was thought to be showing its age in the light of new 

operating systems, Microsoft decided in 1992 to resurrect it as a much-improved language 

(Visual Basic) for the development of Windows programs. Considering tha t Windows had 

been written entirely in C and assembler language, it was indeed a brave and calculated 

move by Microsoft to market a new version of BASIC tha t would greatly facilitate the 

creation of Windows programs tha t were previously the sole province of more serious- 

minded programmers. Microsoft correctly reasoned tha t by leveraging the power and 

ease-of-use tha t Visual Basic brought to program development, the world would become 

more receptive to the adoption of Windows-type operating systems, and since Microsoft 

owned both products then its interests would be doubly served by such a strategy.

Unlike its predecessors which were procedural languages (where the application de­

termines the flow and execution of the program in a logical manner). Visual Basic manages 

to encompass the event-driven architecture (program instructions execute only when a par­

ticular event calls tha t section of code into action) tha t underpins those dynamic aspects 

we associate with the Windows environment. It is this harnessing and proper integration 

of the event-driven paradigm into an easy-to-use programming environment th a t has made

54



Visual Basic such a popular Windows development tool. Visual Basic has not attem pted 

to implement some of the user-definable language features found in its more powerful sta- 

blemate C-|—f , but instead has retained the spirit of the original Basic while attem pting 

to modernise the language through the inclusion of object-oriented facilities.

The term rapid application development tool, or RAD, came into being shortly after 

Visual Basic was presented to the world. It is through the success of Visual Basic th a t 

other RAD tools have had the opportunity to come into existence and show their own 

particular strengths. Naturally, this situation can only persist so long as RAD tools 

provide opportunities for improvement, as in evolution. In the case of Visual Basic there 

are some areas which may and have been improved on, and so at the present time there 

are several heirs apparent, including those offerings from Borland (Delphi), and PowerSoft 

(PowerBuilder).

The cornerstone of program development is the component or Visual Basic control 

(VBX). The VBX is a dynamic link library (DLL) tha t exports the methods and properties 

of an object instance, be it a particulat type of Windows form or a non-visual entity such 

as a database link. In order to access any one of the VBXs tha t ship with Visual Basic (or 

those tha t have been obtained from third-party vendors) a specialised toolbox is provided 

tha t contains, in iconic form, all the components. In order to utilise a visual component 

it is firstly dragged from the toolbox by using the mouse and then dropped onto the form, 

whereupon it may be repositioned or resized using the various handles tha t all visual 

controls possess.

Though initially hyped as an object-oriented development tool, in fact Visual Basic 

falls short of these claims. In tru th  the only objects evident in the Visual Basic environment 

are the forms and their associated visual components. The BASIC language has been 

extended to accommodate interaction with objects, such as object referencing and property 

referencing, but it does not allow the creation of new object or class stuctures; the only 

objects tha t are realised within the Visual Basic development environment are those tha t 

have been obtained from the toolbox. In other words. Visual Basic will only allow the 

object-oriented paradigm to operate over those visual and non-visual elements tha t derive 

from the toolbox, and the programmer/analyst is prevented from applying the paradigm 

to any other self-inspired structures or models That is not to say tha t Visual Basic does

^Visual Bcisic version 4, the current releaise, partially rectifies this shortcoming
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not support the creation of complex data structures or tha t it cannot readily be employed 

in the modelling of complex systems, but the point to using OOP is tha t the entities 

one creates (classes) can bear striking similarities to those entities of our own experience 

when considered in an objective manner. If we attem pt to use Visual Basic to emulate 

the syntactical cohesiveness tha t derives from axiopting the OOP approach then we may 

begin to loose sight of the problem and become overwhelmed instead by the necessity 

of performing the requisite book-keeping chores tha t an OOP language automatically 

manages.

At the present time Visual Basic has claimed for itself a significant proportion of 

the RAD development tool market. Not only is it being used by both the casual and 

serious-minded developer who might, for example, be interested in creating multi-media 

programs for education, but it is also to be found in the ‘city’ where it is normally employed 

as a ‘front-end’ to much more sophisticated programs tha t specialise in trading derivatives 

and the like. It is the latter tha t provides a glimpse of the true power and usefulness of 

Visual Basic. The language of Visual Basic is an interpreted one, and as such the speed 

of operation is limited by the ability to process the higher language elements a t run-time, 

resulting in an operational speed of ~  20% of compiled code, but while Visual Basic is 

executing code that resides within a control (VBX) or dll (dynamic link library) then 

speed is optimal. This leads us to two very im portant conclusions as to when and how 

VB should or should not be employed:

T h e  g en e ra tio n  o f  u se r in te rfaces. Virtually all the elements of a user interface are 

constructed from calls to the Windows API (application program interface), either 

directly or indirectly via a control. In each instance it is the code within the various 

Windows API routines tha t are executed and which result in the particular look 

and behaviour of a Windows element, such as a form being minimised or an edit 

component handling textual input. The component tha t one associates with a control 

is, in essence, a wrapper for a collection of API calls, but it also manages to surface 

various properties of the control in order to facilitate interactive editing by the 

developer. Thus, in general a Windows interface constructed with Visual Basic will 

not appear to be unduly slow, as long as there is not a great preponderance of BASIC 

code associated with the creation or destruction of the Windows elements. It is in 

this rôle tha t Visual Basic is now being used to revamp the legacy code (code that
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was originally developed in the pre-Windows era and employing such languages as 

Cobol or standard BASIC) tha t companies rely upon for current operations but are 

unwilling to invest in a complete rewrite in a modern Windows language.

M ulti-m edia or database applications. Interpreted development tools similar to Vi­

sual Basic rely totally on the availability of Windows components for their apparent 

power and flexibility of design. We have already seen in the previous paragraph 

how the construction of a visual interface of a program is a simple affair, but Vi­

sual Basic is capable of much more and is only limited by the power invested in 

the various controls tha t it can call upon. The advent of such operating systems 

as Windows 3.X  and Windows 95 has led to a profusion of applications tha t utilise 

sound and video effects, but of more importance to the ‘business’ user is the ability 

to access information stored in a database which Visual Basic comfortably manages 

to do. All of these technologies are provided by the Visual Basic custom controls 

(VBXs) tha t are either supplied with the Visual Basic development tool itself, or 

obtained from third-party vendors.

4 .2 .3  D e lp h i/O b je c t  P asca l

Pascal is a computer language which was designed by Professor Niklaus W irth at Eidgnos- 

sische Technische Hochschule in Zurich. The first draft was completed in 1968 although 

the first definitive text on the language was published in 1975 [9]. Since tha t time Pascal 

has become more and more popular for teaching principles of programming but also as a 

language in which to develop sophisticated software. The previous two sections described 

languages tha t are positioned at opposing ends of the language spectrum, where one is 

viewed as a powerful but, in the wrong hands, an unsafe language, whereas the other is 

seen as a language for the masses, but not terribly sophisticated or extendible. Pascal, on 

the other hand, attem pts to  tread the middle road by providing the flexibility and power 

of C while providing a syntax, much more similar to the English language than C, and 

a development environment tha t is both simple in concept and yet capable of providing 

sufficient power for almost all the tasks tha t a programmer is likely to encounter.

We have already seen how the C language treats both character and integer types as 

virtually identical (other anomalies also exist), only differentiating between the two when 

required to. The Pascal compiler will not allow such ambiguity and so the programmer

57



must explicitly declare variables of the appropriate type and ensure th a t they are employed

correctly. It is for this reason tha t Pascal is said to be a ‘type-safe’ language. However, it

is possible to circumvent type-safe restrictions, but in so doing the programmer must make

clear the intention to do so rather than allow the compiler to rely upon a default mode.

In addition Pascal requires the programmer to declare all variables (unlike C) and public

functions prior to use, and it is this methodical and structured approach tha t appeals to 
the educationalist.

Pascal owes much of its current popularity to the implementation introduced by 

Borland in 1984 and known as Turbo Pascal. As part of Borland’s continuing improve­

ments to the language, in 1989 a new version was introduced (v5.5) tha t implemented the 

much acclaimed object oriented extensions, much of it borrowed from the C4—I- language. 

This chain of events finally (at the current time of writing) culminated in a version of 

Pascal called Delphi tha t encompassed not only a very sophisticated implementaion of 

OOP but also a development environment that put it at the forefront of rapid application 

development tools. Unlike other RAD tools, the power and sophistication of Delphi is 

easily demonstrated by the fact tha t the whole of the visual development environment 

was created using the version of Object Pascal th a t underpins Delphi.

Program Development in Delphi has all the benefits of development in Visual Basic, 

plus a few more:

•  Enhanced C om piler and R un-Tim e Perform ance -  as discussed in the previ­

ous section, the Visual Basic compiler actually converts the source-code of a program 

into a set of intermediate instructions, sometimes called p-code, which are then inter­

preted and executed a t run-time. An interpreter will generally perform the compile 

phase much quicker than a true compiler, but will suffer in terms of execution speed 

when the program is eventually run by a user. In the case of Delphi and Object 

Pascal this no longer applies. Object Pascal is a true compiled language, meaning 

tha t compilation will reduce the source-code to machine instructions directly rather 

than intermediate p-code. The fact is tha t compilation under Object Pascal is as fast 

as compilation by an interpreter such as Visual Basic, and is attributable not only 

to the compiler being an optimising compiler, but to Borland substituting a more 

powerful and efficient object file for the Microsoft/industry standard object (.OBJ) 

file tha t is employed by C /C-f-1- and other similar language compilers. Another
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contributing factor is tha t the Pascal language was designed to undergo compilation 

in a single-pass of the source code, unlike the C/C-f—|- language, and it is for these 

two reasons tha t the Object Pascal compiler is demonstrably the fastest compiler 

among its peers -  the programmer’s coffee-break is now redundant! Naturally, a 

fast optimising compiler results in a run-time performance tha t is considerably en­

hanced, and is the equal of applications created using C-f-f and equally sophisticated 

compiler technology.

R eu sab le  L ib raries  -  one of the essential requisites of a high-level language is the 

ability to create and use code libraries. A library is a file tha t contains any or all 

of the following: constant declarations, e. g., pi = 3.14159265359 , and global 

variables; type definitions, e. g.

type
vector = class 

X : real; 
y : real; 
z : real 

end;

...and functional/procedural interface definitions, such as:

procedure InverseMatrixC mat : TMatrix );
function Determinemt( mat : TMatrix) : Real;

...that are exported to client applications as library resources. In the case of C /C -f-f 

the definition file^ is a separate text-file while the machine code associated with the 

implementation of the library is kept in an object file which is linked into the exe­

cutable during the final linkage process. Alternatively, Visual Basic provides library 

re-use to an application in the form of a global . BAS file tha t contains both interface 

and implementation details within a single text-file. In contrast, Delphi provides the 

same facility but instead uses a precompiled Pascal unit (. DCU) tha t combines both 

the interface section and the object code relating to its implementation. This form 

of library offers the advantage of very fast linkage. Additionally, unlike Visual Basic, 

Delphi libraries (units) are completely divorced from any necessity of belonging to

*The definition file is synonymous with header file.

59



a form or application, and in this respect they are truly reusable libraries, without 

restriction.

•  C u s to m  C o m p o n en ts  -  custom control components, or VBXs, can be written for 

Visual Basic tha t provide functionality across projects. A disadvantage to custom 

VBXs is the high degree of low-level Windows expertise required to create them. 

Controls in Delphi are called VCLs, and are much easier to create. Unlike Visual 

Basic, where controls must be created with an external C /C + +  compiler, VCLs 

(Visual Component Library) are created from within the Delphi development envi­

ronment itself, in the same Object Pascal language tha t is used for normal Delphi 

development. One other benefit afforded to the Delphi programmer is tha t a VCL 

may be subclassed in order to create a new and customised version of a VCL compo­

nent tha t is modified or enhanced according to  the programmer’s inclination. Such a 

facility in Visual Basic is not available. Custom controls in the C /C + +  language are 

not explicitly supported, although recent versions of C + +  produced by Microsoft, 

Borland and other vendors have the capability to import VBX controls as well as 

the more up-to-date and sophisticated OCX (OLE** derived) components.

•  A T ru e  O b je c t-O rie n te d  L anguage -  The basis of all tha t is Delphi is the Object 

Pascal language and its associated compiler. All of the core object-programming 

techniques are fully implemented in Object Pascal. For instance, it supports vir­

tual methods, real encapsulation (including the use of the P u b lic , P r iv a te  and 

P ro te c te d  keywords), real polymorphism, and real inheritance. It is not restricted 

to applying these techniques to forms alone, as in the case of Visual Basic. It also 

adds features such as runtime type checking, the P u b lished  keyword, properties, 

and functions tha t return complex data-types. In order to demonstrate the power 

tha t a fully object-oriented language such as Object Pascal wields, it was employed 

in the creation of Delphi itself, a development environment tha t is both modular 

and extendible in a fully OOP sense. Delphi is the product of hundreds of separate 

classes being developed and then melded together to form one operating whole, and 

to its credit all of these classes are made available to the programmer, whether to 

modify existing or create completely new VCL components tha t will integrate with 

the Delpi environment, or to develop totally new applications.

' Object Linking and Embedding -  a stemdeird for embedding one application within cinother.
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4 .2 .4  O th er  D e v e lo p m e n t T oo ls

Applications and languages such as FoxPro, PowerBuilder, Modula 2, and CA-Realizer 

were also possible candidates as the development tool for this research, but each suffers 

from some limitation, attributable to either the target technology or degree of m aturity 

displayed by the product. In particular, both FoxPro and PowerBuilder are products tha t 

are aimed at serving the database development market, and although both are endowed 

with reasonably sophisticated macro languages, they cannot be considered as general pur­

pose languages, nor do they support a complete application framework tha t is capable 

of harnessing the complexity or totality of the Windows operating system. On the other 

hand. Modula 2, though regarded as a powerful language in its own right, has not at the 

present time made any impact at all as a language for commercial use. Instead, during 

the last 8 years it has served the educational community in much the same way tha t 

early versions of Turbo Pascal did, tha t is to teach good programming practices. Other 

than serving this niche market. Modula 2 has lacked the necessary tools, support and en­

hancements tha t are prerequisites for commercial take-up. Similarly, CA-Realizer, though 

supporting a much enhanced version of BASIC, appears to  have gone the same way.

4 .2 .5  C on c lu sio n

The choice of computer language or development tool is not a simple m atter, and just as 

the choice of our next car is dependent on such factors as cost, design, colour and utility, 

so the choice of language may be dependent on other similar criteria. Unfortunately, in 

spite of all the facts the final decision is usually a m atter of personal choice; and so it is 

with programming languages. The differences between various language implementations 

are usually quite significant, and may amount to purely syntactical, technological, or even 

visual differences. While such criteria as fuel efficiency and power output may be sufficient 

to separate one vehicle from another, other less tangible criteria such as image conveyed 

(with all its the cultural overtones) and manufacturer perception (Lada vs Range Rover?) 

will probably have equal importance in the decision making process.

Bench-testing is the process whereby a product is tested against various performance 

criteria in order to assess its ability to meet or exceed said criteria. In most cases this 

amounts to a review of several products of similar class, such as modems, and the results
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are then tabulated showing the performance level reached for each test criterion. In the 

case of a modem it is quite possible to select tha t one which provides the highest perfor­

mance, based purely upon the objective measurements. In contrast, software applications 

have few features tha t are objectively quantifiable, and in today’s world of very fast com­

puters it might be irrelevant if one word-processor requires 0.13 seconds to complete a 

word search of a document while another requires 0.26 seconds for the same operation. 

Though one has twice the performance of the other, the actual perception is not so ap­

parent. Thus, given tha t simple bench-testing cannot be regarded as the sole criterion 

for the selection of a development language, and the realisation tha t the decision making 

process is as much subjective as it is objective, then the rationale behind any choice is, 

to some extent, irrelevant. This is the conclusion tha t the author has arrived at, and the 

final decision to adopt Delphi and the Object Pascal language as the system of choice is 

one based on those reasons given above and in the previous sections.

During the early stages of the research programme most of the initial coding was un­

dertaken in C4—I-, and although this proceeded satisfactorily it was not until the Windows 

interface needed attention tha t the difficulties of contending with the Windows framework, 

as provided by Borland became apparent. Since it was anticipated tha t a major part 

of this programme would require close interaction with Windows components, a tool tha t 

facilitated this process in a user-friendly manner would be of great advantage. It was for 

this purpose tha t Visual Basic was adopted, not for the reason tha t it provided a powerful 

language, but for the innovatory way it allowed the developer to easily create and manip­

ulate Windows components. Unfortunately it later became clear tha t the language itself 

would be the main limitation due to its inability to cater for true object programming 

techniques, although much work had been undertaken in designing the visual interface. 

It was at this time tha t Delphi appeared on the market and the decision was taken to 

transfer all work over to this new development system. On the whole this cycle of change 

must have impacted on the work schedule, but it was not totally without benefit since 

much research had already been accomplished and ideas had been tested. Ultimately 

the move to Delphi proved to be a rewarding experience as the author began to realise 

tha t technology no longer proved to be a hindrance, and instead all possibilities became 

tangible ones tha t could be explored in their entirety.

® Borland’s implementation of the Windows API is called OWL, or Object Windows Libreiry.
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C h a p t e r  5

D e s c r i p t i o n  o f  M o d e l

The Component-Based Model (CBM) is not the be-all and end-all of the optical analysis 

program as discussed in this thesis, but it is simply one of the leading actors in a play that 

depends very much on the props and supporting cast. In isolation, each cannot function 

without the cooperation of the other, and it is through the interplay of characters and 

plot tha t the whole process becomes meaningful and tangible.

In contrast, the Surface-Based Model (SBM) exists within the boundaries defined by 

the spreadsheet editor. The user is confined to viewing the surface relationships as a list 

of surface data  tha t conforms to a linear sequence, and all manipulation and interaction 

between user and system takes place in the same domain. This scenario obviously limits 

the types of behaviour tha t may be exhibited to those tha t can be implemented within 

this overall scheme.

The framework of components and their interactions tha t are required to  support 

the CBM are, without doubt, more complex than would be required of the SBM, and 

unlike the latter they are capable of a greater degree of independence. Whereas virtually 

all operations on a SBM are undertaken within the confines and limitations imposed by 

a spreadsheet editor, the CBM recognises that the sequential property of a lens-system is 

independent of the more localised properties of a lens, such as its shape or power. Thus, the 

CBM will distinguish between the global and local properties by offering facilities th a t de­

couple the operations tha t enable such property editing to take place. Similarly, the general 

lens system is derived from a number of lens components tha t are recognisably distinct. In 

the case of the surface-based model where lenses are constructed from surfaces alone, the

63



com ponent-based model provides building blocks th a t  already encom pass such com ponents 

as singlet lenses and prisms. The user is then only required to  set the particu lar properties 

of each com ponent.

In consequence, the com ponent-based model, as briefly outlined above, is clearly a 

much higher level characterisation  of a lens system  than  its predecessor, the  surface-based 

model. There are o ther facets to  the model th a t  are necessary to  m aintaining the  pretence 

of a real optical system , and these will also be described in more detail in the following 

sections.

5.1 The Toolbar

As already m entioned in the  introduction to  this chapter, the  com ponent-based model 

utilises com ponents th a t  em body complex arrangem ents of surfaces and glasses th a t com­

bine together to  produce essential lens-system subcom ponents, such as lens singlets, prisms, 

or even a t the lowest level, single surfaces. It is a t this level th a t  the distinction between 

a CBM  and a SBM becomes m ost apparen t, for the  CBM  actually  defines the num ber 

of com ponents th a t  are available to  the developer, while the  SBM is restricted to  a user- 

defined and application-specific collection of low-level surface descriptions. C om ponent
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Figure 5.1: The Toolbox

based applications have been familiar to  users ever since W indows was launched, and are 

to  be seen a t their sim plest level in such program s as File M anager^ and P rogram  M an-

' File Manager has been superseded by Windows Explorer in Windows 95.
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ager. In particular, such tools as CAD^ and graphics programs have easily lent themselves 

to component-centred interaction. The principal vehicle for the display and storage of 

components is the T oolbox or Toolbar, where an example of the latter is shown in Fig­

ure 5.1. The distinction between the two is tha t the former is implemented as a moveable 

window whereas the latter is fixed and usually located beneath the menu bar. In either 

case a collection of buttons is presented to the user with associated icons tha t provide 

visual clues to the functionality of each one. Naturally, each button provides a different 

service, much in the same way as a spanner or a screwdriver would, when selected from a 

hardware toolbox.

The construction of the lens toolbox is simple in essence, although there are a few 

steps to be covered for a fuller understanding. Firstly, the icon buttons are derived from 

simple speedbuttons, as the following code shows:

TLensIcon = class(TSpeedButton) 
public

LensRef :TLensRef; 
hBmp zHBitmap;
Dragable :boolean;
CompType :TLensType;
CompName : string;
Constructor create(AOwner:TComponent);virtual;

end;

where...

T L ensIcon  is the name of the new class, derived from TSpeedButton, tha t describes the 

behaviour of the buttons on the toolbar;

T S p e e d B u tto n  is the standard button, from which TLensIcon is derived;

L en sR ef is a reference to the type of lens tha t the Lenslcon represents;

h b m p  is the graphic tha t appears on the Lenslcon;

 ̂VISIO is an excellent example of a component-baised CAD application.
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C om pT ype is a variable of type TLensType which characterises lens components as 

belonging to one of several types, defined as:

TLensType = (alens, aspacer, atransform, asource, adisperser, 
areflector, amodifier, aregulator, anaperture, asurface, none);

C om pN am e is the name of the lens component, in string form, tha t the actual instance 

of TLensIcon represents.

Any lens type may be selected and then placed on a System Form by employing the 

common procedure of ‘drag-and-drop’.

The contents of the Toolbar are dynamically determined at compile-time, and is 

made possible by the initialisation^ feature of Pascal’s unit modules. Each lens type has 

been developed as a separate module, and included with each module is an initialisation 

section tha t loads details of the exported Lenslcon into an array that is owned by the main 

form. When the main form is about to paint itself onto the display (the method is known 

as FormCreate) for the first time, it checks the contents of this array and displays those 

buttons and bitmaps tha t were found. This procedure was axdopted in order to isolate 

the main form from the numerous lens modules, the result being tha t both could be 

developed in virtual isolation from one another, and new lens modules could be developed 

and included into the main application in a transparent and standard manner.

5.2 T he System  Form

While the visual representation of the Lenslcon component carries with it few implications, 

the way in which these components are to be grouped together in the manner of a real 

optical system proves more problematic. Previous sections have discussed the differences 

between the surface-based and component-based models, and it is clear tha t most arise 

from the visual models upon which they are individually based although, so far, little 

detail has been given of the component model. Historically, the spreadsheet has been 

the sole means for viewing a lens system in its non-visual and numeric form, neglecting 

those earlier programs tha t utilised the simple command-line. One exception is a program

Iiiiticilisation code a&sociated with each unit module is executed prior to the execution of the main 

program.
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Figure 5.2: The O ptikW erks ‘W orksheet’

called OptikW erks and initially released in 1993, one year after the  com m encem ent of 

th is research program m e. This program  was probably the first to  describe a lens system  in 

term s of com ponents, and to  provide a configuration editor th a t  m aintained this em phasis.

F igure 5.2 shows the configuration editor supplied by OptikW erks, otherw ise referred 

to  as a  ‘w orksheet’. Notice th a t two system  w orksheets are provided, possibly to  enable 

the  copying and moving of com ponents from one system  to  the  o ther. We may also observe 

th a t  the com ponent sequence in each system  proceeds from left to  right, com m encing with 

the  source, and proceeding uninterrupted. While th is complies w ith accepted practice^, it 

may pose a problem when dealing with system s whose com ponents are so num erous th a t  

they are no longer visible on the form. It was for th is reason th a t  the trad itional approach 

to  designing a configuration editor was abandoned in favour of one th a t is more closely 

allied to  m ore m odern practices.

Figure 5.3 shows the configuration editor as im plem ented in the  a u th o r’s program ^. 

Note th a t the  com ponents are now d istribu ted  within a  form , and th a t the  sequence 

proceeds from left to  right, commencing with a source.

W hen created , the form is initially em pty and com prising of blank icon b u ttons 

only, as shown in the bottom -m ost row. The process of populating the  form is achieved 

by dragging com ponents from the  toolbar and then  dropping onto the  chosen em pty  icon

 ̂A lens design and analysis program, produced by OptikWerk, Inc.
®It is ‘traditional’ in optical diagrams to have light rays travelling from left to right, prior to entering 

a system.
6 r’The program is called IRIS, named after the Greek word for Rainbow.
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bu tton . W hen a row has been completed then com ponent placem ent proceeds from the 

left-m ost bu tton  on the next row. Thus the com plete description of a lens system  is arrived 

a t by visually scanning the com plete array of lens icons, in the  sam e m anner as one would 

read a piece of tex t, i. e. scanning a row of tex t from left to  right, and then proceeding 

onto subsequent rows in a similar fashion. In this way very com plex optical system s may 

be viewed in their entirety, unlike the approach taken by OptikW erks, where only discrete 

segm ents of the sequence are visible at any one time. The sam e com m ent will also apply to 

spreadsheet editors, although the problem is much m ore m arked since no visual clues are 

available (other than  numeric d a ta  in tex tual form) th a t m ight describe the configuration 

of the  system  or the natu re of the individual com ponents.

One other point w orth noting is th a t the configuration editor is a  form and not 

a W indows elem ent, as in the case of the Optikwerks W orksheet, and so retains all the 

properties of a norm al window. As such, more than  one form may be present, where each 

may contain a different lens system  and com ponents may be moved and copied from one 

form to  another. Additionally, forms may also be minimised in order to  increase free space 

on the  desktop. The choice of a form as the repository for the  configuration editor thus 

reflects the sam e object characteristics to be found in a lens system , th a t is: it is unique, 

bounded, derived from com ponents and may enter into any legal transaction  with o ther 

sim ilar forms.
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5.3 The Lens Container

When a lens icon is dragged from the toolbox and dropped onto a system form it might 

appear tha t a direct copy has been made. This is not so, and the tru th  is th a t while the 

lens icon is only a reference to the lens-type that it represents, the lens-button is actually 

a container for the lens itself. The following extract of code is from the declaration, or 

definition, of the TLensButton class:

type
TLensButton = class(TSpeedButton) 
protected

{Protected declarations}
procedure MouseDownCSender : TObject; Button: TMouseButton;

Shift: TShiftState; X, Y : Integer);virtual; 
procedure DragOver(Sender, Source: TObject;X, Y : Integer;

State: TDragState; var Accept: Boolean); virtual ; 
procedure Click(Sender: TObject); virtual ; 
procedure DragDrop(Sender, Source: TObject; X, Y : Integer); 
procedure MouseUp(Sender: TObject; Button: TMouseButton;

Shift: TShiftState; X, Y :Integer); 
procedure DeleteLens; 
procedure CopyLens(src:TLensButton); 
procedure NewLens(ic:TLensIcon); 

public
{Public declarations}
copy:boolean;
ndx:integer;
TheLens:TLens; 
occupied:boolean;
constructor create(AOwner:TForm; n:integer);virtual; 
destructor destroy ;override; 

end;
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TLensButton is derived from TSpeedButton, a standard Windows component in 

toolbars, and so its visual representation is naturally tha t of a speedbutton. In addition, 

several procedures have been added that facilitate such editing functions as move, copy 

and delete. Probably the most important item tha t has been added to this newly derived 

class is a variable of type Tiens called TheLens. This variable is essentially a pointer 

to an instance of a Lens object. When an instance of TLensButton is first created it 

will also generate a new instance of TLens, the default, which has very basic properties 

tha t support all the normal properties of a regular lens of whatever type, but without 

effect. A consequence of this is that a lens system appearing within a lens form remains 

unchanged when one or more default lensbuttons are inserted at various points within the 

same sequence. Though such a feature is not to be found in any other program, the author 

considered it a necessary feature for inclusion in any program tha t puportedly supports 

graphical in-place editing, since the alternative would have been counter-intuitive^. Other 

given properties of TLensButton include occupied, which is f a l s e  when the LensButton 

is of the default variety and t ru e  when it is not, and copy which is t r u e  when a LensButton 

is being copied from one position to another and f a l s e  when the lens is being moved, 

instead. Both of these properties enable the instance of TLensButton to query its own 

state, which will be useful in some situations.

One other property worth mentioning is the integer variable ndx. During the creation 

of the system form all lensbuttons are given an index, commencing with the value of 1 for

the first lensbutton and incrementing this value for subsequent lensbuttons. These values 

remain with the lensbutton throughout the lifetime of the form and are unaffected by a 

lens being copied or moved. The purpose of the index is to give each lensbutton a sense of 

its own position relative to other neighbouring lenses. It manages to do this by using two 

methods. Next and Previous, that are declared within the base class TLens. A definition 

of the Next method is given here:

^When inserted into a system, a non-effective lens should have no affect -  cuiy other result would be 

undefined eind so unsupportable.
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function TLens.Next:TLens; 
begin 

try
with owner as TLensform do 
begin

{get the next lens reference from array Lens[]> 
result := Lens[ndx + 1];
{if a default lens...} 
if result.comptype = none
{...then ask the next lens for the next lens} 
then result := result.next; 

end;
{if the search falls outside array Lens[]}
{then return a null lens} 
except on Exception do result := nil; 

end; 
end;

Since every lens has a reference to the form in which it was created (owner), then it is able 

to access the lens array Lensfl. .MaxLenses], in which is stored a reference to every lens 

owned by the form. If a lens needs to know what is the next neighbour in the sequence, 

then the following call is made: self .next, which will return a reference to the next lens 

in the sequence. The type of lens that is returned in the result variable is tested and if 

valid then all is well, but if the type of lens found is a default type then the Next method 

for tha t lens is executed. This process cascades down the sequence until a valid lens is 

returned or the search falls outside the Lens array.

The previous two sections have described the System Form (TLensForm) and the Lens- 

Buttons (TLensButton). Both are containers: the LensForm is the host/owner of the 

LensButtons, which are in turn hosts for their own TLens reference. The following two 

sections will concentrate upon TLens -  after all, the lens is the principal ‘actor’ in this 

production, while the System Form may be considered as the stage and the LensButton 

as the corporeal presence of the actor.
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5.4 M ethods and Properties of TLens

Methods are the procedures and functions tha t are tightly bound to a class description. 

When an instance of a class (an object) is created, it is guaranteed tha t the object will 

have a data-set tha t is exclusive to itself and no other object. A method th a t is declared 

within the same class will, by default, have access to this data  and any other methods 

that are declared within the same class. When viewed anthropomorphically, the data  may 

be considered to represent the characteristics of the object, while the methods reflect its 

behaviour. The properties of a class are slightly more complicated in tha t they may refer 

directly to class variables, or alternatively they may return a data  type via a specified 

function call. The following segment of code is a complete description of the TLens class 

and its associated methods and properties.

TLens = class(TObject) 
protected

compname : string;
fRef : integer;
function GetNdx : integer; 
function GetLensName: string;virtual; 
function GetMedium:TGlass;virtual; 
function GetSurface :TSurface ;virtual; 
procedure SetARef(newval: integer); 

public
comptype :TLensType;
lensref :TLensRef;
EditorActivated :boolean;
parent :TObject; {reference to LensButton}
owner :TForm; {reference to LensForm}
editor :TForm; {reference to LensEd}
constructor create(par:TObject);virtual; 
destructor destroy ; override;
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procedure assign(lens:TLens);virtual;
procedure reverse ;virtual; abstract ;
procedure ProcessRays(rays:array of TGbject); virtual ;
procedure WriteToFile(const fname: string); virtual;
procedure ReadFromFile(const fnajne: string); virtual; abstract ;
procedure SetRef(j: integer;newval: string);
procedure LoadRef(s:TComboBox);
procedure GetPropertyList(lst zTStringList);virtual;
function initialise(var msg: string):boolean;virtual;
function Next:TLens;
function Previous:TLens;
function ActiveLensDirnzTDim;
function IsName(id:string):boolean;
function GetRef(j: integer): string ;
property Surface:TSurface read GetSurface;
property ndx:integer read GetNdx;
property name:string read GetLensName;
property medium:TGlass read GetMedium;
property Ref:integer read fRef write SetARef;

end;

The above listing shows the complex interface tha t TLens presents. Some of the 

above methods and properties will be discussed in more detail in later sections and so we 

shall concentrate on those tha t are particularly relevant to TLens alone and which reveal 

im portant insights into the inner workings of this class.

When deriving a base class it is important to identify those methods th a t may be 

easily overridden by subsequent descendants. For instance, a single lens will significantly 

differ from a diffraction grating in how it will affect incident rays, since the surface types 

are so different -  the former being comprised of refractive surfaces and the latter having 

only a single diffractive surface. The solution adopted by the author is to define a method 

ProcessRays tha t accepts a parameter rays of type array of TObject. ProcessRays 
is a method that implements whatever the action of a general lens-type (descended from 

TLens) is to an incident collection of rays, rays. When a lens is of the default type then
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the rays will be unaffected, the lens behaving as if it had no refractive power or spatial 

extent. Alternatively, a descendant of TLens will reimplement the ProcessRays method 

to handle its own specific raytrace algorithm.

The argument of the procedural method is of type array of TOb j ect and not array 
of Rays because the array contains not only finite rays but paraxial rays. Due to the lack 

of similarity between these two types of rays it was not considered appropriate to make one 

the descendant of the other, and instead two ray classes were devised: TParaxialRay and 

TFiniteRay. Since both are automatically descendants of TObject then the type array 
of TObject will always allow either or both types of rays to be included in the method 

call.

The assign method is used to copy lens data from the lens specified as the argument 

of the call to the lens whose method made the call, thus: Lensl .assign(Lens2), which

will copy data from Lens2 to Lensl. In the case where Lensl is of the same type as Lens2 
then there will be an exact correspondence between data  fields of the two lenses, and the 

assignment of data from one to the other proceeds in a straightforward manner. Where 

the two lenses are different, i. e. Lensl is a singlet lens having spherical surfaces while 

Lens2 is also a singlet lens but having an aspheric surface, then by virtue of polymorhism 

and RTTI (Run-Time Type Information) it is possible to ensure th a t only the fields that 

are common to both lenses are employed in the assignment transaction. In the case given 

above, this results in only the spherical form of the aspheric surface being passed over to 

Lensl, where anything more will probably result in an error tha t will be either caught at 

compile-time or will result in a run-time error.

One of the truly innovative features tha t has been included with TLens and other 

associated modules is the support for multi-pass components. Multi-pass optics, though 

not common occurences, are to be found in such systems as the Super-Schmidt camera 

(see [10]). This is a catadioptric imaging system comprising a double concentric meniscus 

surrounding a central crown-flint doublet Schmidt plate. The image surface is positioned 

on the object side of the final shell and so image rays will have to traverse this shell twice. 

Conventional optical design programs do not cater for such a circumstance but, instead, 

it is left to the designer to include the shell twice, where the second time it will be entered 

in reverse order and reversed curvatures. A more general system having component tilts 

will demand very much more care of the designer when entering the data. TLens, on
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the other hand, has been designed to operate with incident rays travelling from left-to- 

right (the conventional direction and right-to-left. In order to achieve this feat it must 

firstly recognise in which direction the rays are travelling when a call to the ProcessRays 
method is made. It achieves this through a method called ActiveLensDirn which returns 

a value of type: TDirn = (left,right,here), where left and right indicate tha t rays 

are coming from the left or the right, and here indicates neither.

The key to determining the ray direction is a variable called ActiveLens, of type 

TLens, tha t is stored in the system form and which is readily accessed by any lens com­

ponent through the owner field defined in TLens. Whenever a lens becomes engaged in 

processing rays it will inform the system form® of the fact by assigning its object address to 

the value of ActiveLens, thus allowing any other object tha t has read privilege to access 

the same lens. This is, in fact, what happens whenever the ProcessRays method is called. 

Prior to processing rays, a lens will refer to the system form for the index of the lens tha t 

was IcLst active in processing the rays. If the index is less than its own index then the 

rays are travelling in a normal direction (left-to-right), but if the index is greater then the 

rays have reversed their normal direction. When reversed rays are detected the lens will 

instigate a method called Reverse, which is a virtual method tha t is to be overridden by 

all descendants of TLens, In the case of a singlet spherical lens described by the following 

simple parameter set [ri, t, r^], and the order is important, then a reversal of this lens will 

result in the set: [—r 2 ,t, - r i ] .

5.5 Editor Linkage

Modern program development environments tha t support visual class and object modules, 

such as Visual Basic and Delphi, recognise tha t these custom controls require to be config­

ured for the particular task at hand. For instance, both Delphi and Visual Basic provide 

form controls, the same rectangular form or window from which dialogue and application 

main forms are constructed. Customisation of these particular controls may necessitate 

the setting of around twenty individual properties, such as the height, width and position 

of the window when it first appears on the display. Rather than set these properties in 

code, the development environment provides an Object Inspector or Editor tha t appears

*The system form is eilso known éis the Configuration Editor, and in code is refered to as TLensFrm.
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in Figure 5.4,
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Figure 5.4: The Delphi O bject Inspector

The presentation of the object editor appears sim ilar to  a spreadsheet, w ith the left- 

hand column providing a list of property names and th e  right-hand column the  current 

p roperty  values. Editing of a property is achieved by simply scrolling to  the  desired 

property  and entering a value via the keyboard. In cases where the property  has a value 

th a t  is a m em ber of a set, such as the colour of a form, a  drop-down list replaces the  edit 

field and the user simply selects a member from the displayed set of values.

The object inspector has become a common-place item in to d ay ’s applications th a t  

employ an object-based development environm ent, not ju s t for the reason th a t M icrosoft 

invented it when Visual Basic was first released and so everyone else should copy it, bu t 

because it seamlessly fits in with the visual object-based scheme th a t  is the  backbone of 

the  main application. The a rt of interface design is knowing how to  convey the  essence 

and supported  interactions of a program in a m anner th a t  appears to be both  efficient 

and intuitive, and the fact th a t this solution has been widely adopted leads us to  conclude 

th a t  it should not be ignored. Both the optical analysis program  and those applications 

m entioned above share the  same com ponent centred philosophy, and so it seems reasonable 

th a t  the IRIS program  should be adapted to  provide a sim ilar editor, which we shall call 

the  Lens Editor.

Figure 5.5 shows the equivalent editor for the IRIS program . Note th a t  it m aintains 

the  outw ard appearance of its ancestor, with the sam e two-column spreadsheet editor. 

T he lens editor is activated when a lens is dragged from a system  form and dropped onto 

the  editor. The editor will inspect the object th a t is dropped by employing RTTI, and if
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Figure 5.5: The IRIS Lens E ditor Inspector

it is found to  be a descendant of TLens then  it is accepted as a valid object, otherw ise it 

is rejected and no change to  the editor is forthcom ing.

How does the  editor know w hat properties of the TLens descendant to  show? The 

answer to  th is question lies in a m ethod originating in the  TLens class and is defined by: 

procedure GetPropertyList(1stiTStringList); virtual;
W hen the  lens editor has ascertained th a t the  ob ject dropped onto it is a  TLens descendant, 

a call is m ade to  the GetPropertyList of th e  object, supplying a TStringList^ as a 

param eter. The returned list supplies inform ation on every property  of the  lens, including 

the property  name, type of property, and if a set, then the values th a t  com prise the  set. 

As a property  on the lens editor is selected, a routine determ ines these param eters for the 

particu lar property, and then im plements a property  editor in the right-hand column. This 

procedure is repeated as each row becomes active. In the  case of the lens editor shown in 

Figure 5.5, we see by the title  of the form th a t  a thick lens has been selected from B utton  

# 3  of System  1. The active property is Catalogue, m eaning the glass catalogue from 

which the glass com prising the thick lens is to  be selected. Since th is is a  set of values, 

then the  string  th a t  relates to  each value is displayed in a drop-down list box, hence the 

values [Ohara,Schott .Special] th a t  appear in the  list box.

Unlike those editors supported  by Delphi and Visual Basic, IRIS has been designed 

to  work with more th an  one editor active on the  screen a t any one tim e. The reasons why 

this should be so are two-fold:

^T StringL ist is a container class for generail objects cind Pascal-style strings.
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1. Lens designers often need to set some properties of a lens to be identical with cor­

responding properties of another lens. This is facilitated if the properties of both 

lenses are displayed simultaneously on separate editors;

2. It was anticipated during the design of IRIS tha t multiple editors would permit 

links to be made between similar properties of different lenses. For example, it is 

common practice among lens designers to link the shape of one surface to  tha t of 

another surface of a different lens. By employing drag-and-drop techniques it would 

be possible create this link in a very simple manner.

The code tha t would support Item 2 has, due to insufficient time, not been included in 

the current version of IRIS.

5.6 Support M odules

The mathematical equations normally associated with raytracing are usually derived in 

vector form and then reduced to a corresponding set of equations in scalar form, usually 

as a means of increasing the numerical precision of the calculation. Occasionally when 

attem pting to arrive at a solution for some other related problem it may not be possible to 

arrive at a satisfactory scalar form and so we must proceed with the original vector form 

of the solution. Taking this latter course presumes tha t the appropriate software tools 

are available, in particular tools that enable mathematical operations to be undertaken on 

both vector and array quantities alike.

The C/C-I-+ language has, over the years, been the beneficiary of many support 

modules tha t have been developed in order to enhance the capabilities of the language, so 

much so tha t every commercial implementation of C/C-|—t- comes with modules (header 

files) tha t allow vector and array classes to be created. In addition, due to its ability to 

overload operators, C-|—H provides a simple and intuitive way of utilising these classes in 

a meaningful way. For instance, if we assume tha t a and b are instantiated^® vectors then 

the sum of the two is given by (a+b), i. e. the ‘-f-’ operator has been overloaded to enable 

it to function not just with simple scalars, but also vector quantities.

The Pascal language does not provide a capability for operator overloading and

Instantiate verb to create cm instance (object)of a clciss
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so, in general, does not offer any useful facilities for manipulating both vector and array 

quantities, other than the normal static types, i. e. types tha t are not classes. On the 

other hand, the Object Pascal implementation included with Delphi does offer a limited 

form of operator overloading that may be used to good effect in the creation of general 

non-scalar modules. Object Pascal classes are able to define array-like index properties 

tha t simulate the access and assignment of indexed classes. Access refers to obtaining 

the value of a indexed reference, while assigment involves the assigning of a value to an 

indexed reference, thus:

2 * a [ j ]  is an example of an indexed access specifier, while... 

a [ j ]  := 2 is an example of an indexed assignment specifier.

Unfortunately, Object Pascal does not allow any further form of operator overloading, and 

so we must rely upon simple function and procedure-type methods for the implementation 

of all other operations.

The IRIS program has made extensive use of the V ectors and A rrays modules, 

both designed by the author, in the various ray-vector manipulation procedures tha t were 

required to implement some of the special features tha t the application offered. The salient 

features of the interface and a small portion of the implementation to the TVectorS class 

are shown below:

type

TVec3 = a r r a y [1 ..3 ]  of double;

TVector3 = c la s s  

p r iv a te  

vec3:TVec3 

p ro te c te d

fnumber:word;

fu n c tio n  G etVaKj :word) : double; v i r tu a l  ; 

p rocedure S etV aK j : word; newval : double) ; v i r t u a l ;  

fu n c tio n  G etLength: ex tended ;v i r t u a l ;
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procedure SetLength(newval: extended);virtual; 
public

constructor create;
constructor InitCreate(a,b,c:double); 
procedure Init(a,b,c:double);virtual;
property value[j:word]: double read GetVal write SetVal;default ; 
property length:extended read GetLength write SetLength; 
function plus_(v:TVector3):TVector3;virtual; 
procedure plus(v:TVector3); 
procedure cross(v:TVector3); 
function cross.(v:TVector3):TVector3;virtual ; 
property x:double read vec[l] write vec[l]
property y : double read vec[2] write vec[2]
property z:double read vec[3] write vec[3]
property 1:double read vec[l] write vec[l]
property m:double read vec[2] write vec[2]
property n:double read vec[3] write vec[3]
procedure axisrotate(axis:TAxis; angle : extended); 

end;

function NextVector:TVector3; 
var

{define the unit vectors} 
x.vector, y.vector, z.vector : TVector3; 

(*********************) 
implementation 
uses Matrices; 
const
MaxVec = 15; 

type
EVectorErr = class(Exception); 

var
vec :array[l..MaxVec] of TVector3;
count : integer;
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ExitSave ipointer;

function NextVector:TVector3;
{returns vec[count] as a temporary null-vector} 
begin

result := vec[count]; 
result.init(0,0,0);
{cycle ‘count’ to next available vector} 
count := (count mod MaxVec); 
inc(count); 

end;

The first point to note is tha t the Vector class defined above is not an implementation 

of a generalised n-dimensional vector, but is in fact simply a 3-dimensional vector. While 

the former is not too difficult to design, the specialised 3-dimensional case was chosen for 

reasons of efficiency and speed.

The TVectorS class has a t its heart an array vec3, of type TVec3 which is de­

fined as array [1. .3] of double, i.e. a simple indexed variable having three values of 

type double, where each element may be accessed or assigned to. In actual fact this is 

not strictly true, since vec3 is to be solely a container and all procedures and functions 

appertaining to this class will mostly utilise the container indirectly through the use of 

properties.

The creation of a vector may be undertaken through one of the above constructors. 

For instance, create, as in a := TVector3.create will instantiate a vector called a and 

set its elements to a value of 0.00. Alternatively, InitCreate may be used if the vector is to 

be initialised to a particular set of values, as in a := InitCreate(1,1,1). The property 

definitions tha t follow enable the vector elements to be referenced either as direction 

cosines tha t use the notation (/, m ,n), such as a.m and a.n, or as Cartesian coordinates,

a.x, a.y and a.z, both using the familiar dot notation. The length of a vector is also 

accessed as a property value with supporting GetLength and SetLength methods, not 

listed here. The length property allows us to obtain the length of a vector by a.length, 
which will return a scalar value, or to set the length of a vector, a.length := 2.

81



The Vectors module also implements a sophisticated method for implementing inter­

mediate return values. W hat does this mean? Well, consider the expression (x * z^)).

The evaluation of this expression involves the calculation of and then storing these 

as temporary values, summing the two and storing again, and finally multiplying this 

value by X. In total, the evaluation of this expression requires three temporary values 

to be stored. By the time that the expression has been completed all the temporary, or 

intermediate, values will have been destroyed and the memory reclaimed. This procedure 

is followed when the variables are of a simple type, such as a r e a l  or o rd in a l type, but 

if instead they are dynamic objects, such as vectors, then how can intermediate dynamic 

objects be created and then automatically destroyed when no longer required?

The C-b-1- language implements the auto-destruction of objects when they are no 

longer in scope, but this is not the case for Object Pascal, where the responsibility for the 

creation and destruction of objects lies solely with the programmer. The solution to this 

problem, as devised by the author, relies upon the array:

vec : arrayCl..M axVec] o f TVectorS;

which is declared in the implementation section of the Vectors module. As mentioned 

in a previous chapter, a Pascal module may utilise an i n i t i a l i z a t i o n  routine prior to 

loading, and a corresponding exit routine prior to the unloading in memory of the module. 

In this case the i n i t i a l i z a t i o n  routine creates the vector objects comprising the vec 

array, where the maximum number created, MaxVec, is any suitably large number (15 

in this case). These vectors will represent our intermediate results and the number of 

intermediate vectors will determine the depth of the result stack. In other words, we can 

have upto fifteen pending results in any one or more expressions. This is usually sufficient 

for most needs. Let us consider the example of a vector triple product: r  =  a X (6 X c). 

The Vectors module supplies two methods tha t will handle the cross product,

1. procedure c ro ss (v :T V ec to rS );

2. fu n c tio n  c ro ss_ (v :T V ecto rS ):TVectorS;

and the applicability of each is given by:
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1. b .c ro s s  (c ) ;

2. v e c [ j]  := b .c ro s s _ (c ) ;

where the result of the first cross product is stored in b, while the result of the second cross 

product is assigned to one of the temporary vectors. Which of the temporary vectors to 

employ is the purpose of the NextVector function, which provides as its output a pointer 

to the next available temporary vector in the vec array. The vector triple product may 

now be implemented by the following code: 

r  := a .c ro s s _ (b .c ro s s _ (c ) ) ;

We note here tha t only two temporary vectors were created in this expression, and both 

were discarded once the assignment to the r  vector was made. When, finally, the appli­

cation is terminated, the Vectors module will execute the special exit procedure th a t will 

destroy the temporary vectors and allow the operating system to reclaim the allocated 

memory.

The one other supporting module worth mentioning in this section is the Arrays 

module, but in many respects it is very similar in principle to the design of the Vectors 

module, implementing as it does the same temporary 3-dimensional matrix array that 

allows for intermediate values to be created.
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C h a p t e r  6

L e n s  I n t e r n a l s

One of the first problems that the author encountered when attem pting to describe the 

component based model was whether the lens components should have defined within 

themselves a description of the refractive media that would encapsulate the entity, much 

in the same way as a real lens is always surrounded by air. The surface based model, as an 

example, consistently binds a geometrical surface description with a glass identifier, either 

in terms of a glass-name or a refractive index. If this approach were to be adopted then 

a consistent mechanism would require to be developed tha t would allow lens components 

to be freely moved from one position to another. In such a circumstance it would be 

unreasonable to maintain the specific reference to a refractive medium contained within the 

component. The only logical course forward would be to assume tha t the lens component 

would exist without prior knowledge of its bounding media, and tha t at some point prior to 

raytracing all glass references would be resolved. This conclusion necessitates the existence 

of lens components tha t are purely refractive in nature, serving only to fill the implicit 

spaces that would in actuality comprise the immersing medium. A lens system is normally 

viewed as one or more lenses, be they simple or complex, th a t out of necessity must be 

immersed in a refractive medium. An alternative description, and one tha t is followed 

closely by the raytracing algorithm, is that a lens system is a series of refractive media 

tha t interface with one another across distinct boundaries. It is this description tha t is at 

the heart of the component model.

The IRIS program was designed in such a way as to hide the complexity tha t sup­

ported the concept of a lens system. It achieves this by breaking down a general lens
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system into its natural component parts and then presenting these to the user in a much 

more user-friendly and idealised manner. Each optical or functional element of a system is 

represented by an icon, where each icon is in effect the surfacing of a particular property 

of the whole ensemble of properties that it supports. We have already seen in the previous 

chapter tha t the TLensButton class is actually derived from a TSpeedButton, which is why 

a lens element appears as a special type of Windows button, and it was pointed out tha t 

the specific lens properties of TLensButton were embodied in a property called TheLens. 
Similarly, as in the case of an onion, the TLens class is also the home for various surface 

and glass properties. This chapter will provide the reader with a detailed view of those 

properties tha t constitute the actual lens and which the lens designer or engineer has in 

mind when synthesising a lens system.

6.1 Glasses

Glasses, in general, encompass all media that are used to construct real lenses, and also the 

media tha t separate real lenses. From the theoretical point of view, one glass description is 

very similar to another glass, in tha t all perform the same function and all may be described 

by the same form of refractive power and dispersion characteristics. The real world, 

however, introduces non-essential complexities tha t originate from the various models 

tha t have been proposed which purport to describe in algorithmic terms the dispersion 

equation for a real glass. As yet, no uniform glass description has been adopted by the 

world’s glass manufacturers, and so it behoves the application developer to treat each 

model separately.

The two principal models [11, Chapter 9] are the Sellmeier and Schott formulae: 

Sellmeier... -  1 =
A2 - C i  A2 - C 2 A2 - C 3

S c h o t t . . .  71̂  =  Ao +  AiA^-h ^  +  ^  + ^  +

While the Sellmeier formula is based on a physical model of a dielectric medium (see [12], 

Chapter 2.3), in practice the Schott formula is found to give better results^ for a wider

^The current Schott catcdogue has now adopted the Sellmeier formula
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spectral interval (near ultraviolet to mid-infrared), achieving an interpolation accuracy of 

better than 0.00001 in refractive index.

Each of the major glass manufacturers usually chooses, for whatever reason, one of 

these formulae to represent the dispersion characteristics of any glass tha t is produced, 

and provides a catalogue tha t details the coefficient values for every glass tha t they supply. 

Fortunately, the same manufacturers also provide, on request, this same data  in an elec­

tronic file format, usually a dBase or text file. Since there may be upto several hundred 

glasses in any one catalogue, the electronic form is undoubtedly a great time saver when 

it is required to include such data in third-party software.

The TGlass class is relatively simple when compared to previous classes discussed 

since its main function will be to return a refractive index value for any given wavelength. 

A listing of the class interface section is given below:

type
TCatalogs = (SCHOTT, OHARA, SPECIAL, NONE);
GlassCatalogs = set of TCatalogs;
TGlass = class 
private

coeffs:array[0..6] of double; 
public

name:string; 
catalog :TCatalogs;
function index(wvl: double): extended;virtual ;
procedure assignCg:TGlass);virtual;
constructor create (catalog: TCatalogs; aname : string) ; 
constructor createair;
procedure SetGlass(catalog :TCatalogs; aname: string) ; 
function GetGlassname(j: integer): string;
procedure SetGlassname(j: integer ;newval: string);
function GetCatalog(j: integer): string;
procedure SetCatalog(j: integer ;newval: string);
procedure LoadCatalogNames(s:TComboBox);
procedure LoadGlassNames(s:TComboBox);
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end;

The c re a te  method requires the glass catalogue and glass name to be passed as initialisa­

tion parameters: the glass catalogue is an enumerated parameter having values given by 

the type TCatalogs (American spelling for brevity), while the glass name is of type s t r in g  

and may include any name that exists within the specified catalogue, such as ‘BK7’. The 

action of the c re a te  constructor is to search the relevant catalogue file and load the array 

c o e ffs  with the correct dispersion constants.

The index method is used to obtain the refractive index of the glass when a wave­

length is passed in the wvl parameter, i.e. g l a s s . in d ex (0.589) will return the refractive 

index of the glass at a wavelength of 0.589/xm. During the evaluation process the glass 

catalogue will be used as a pointer to the appropriate dispersion equation, so tha t the 

coefficients read from the database table will be correctly recognised as either Sellmeier 

or Schott coefficients.

6.2 Surfaces

Historically, the first optical surfaces were spherical in form since these were intrinsically 

easier to generate and test without specialised techniques. In this instance a surface is 

an abstract form devoid of any technical specification, but insteaxi the abstract surface is 

developed as an ancestor for all real surfaces tha t are ultimately derived from this type.

6 .2 .1  T h e  A b stra c t Surface

The general surface is unlike other components in tha t not only is it provided in component 

form and may be included within a system, but it is also the main class tha t is used to 

derive other more complex components, such as prisms and lenses. In its singular form, 

the surface does not own any refractive media tha t exist on either side of the boundary, 

but instead it borrows the media tha t are provided by adjacent components. In contrast, 

a singlet lens component will own the internal medium but will still require to borrow 

adjacent glasses in order to fully implement itself. The following listing presents an edited 

view of those properties and methods tha t TSurface implements.
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TSurface = class 
protected

norm :TVectorS; 
fpoint :TVectorS; 
glassl,glass2:TGlass ; 
faperture:double; {aperture radius} 
q:extended; {ndxl/ndx2} 
function GetGlassCj: integer):TGlass; 
procedure SetGlassCj: integer;const newval:TGlass); 
procedure SetPoint(newval:TVectorS) ; 

public
reflect:boolean; 
lensowner:TObj ect; 
formowner:TObj ect;f ;
constructor create(Insowner:TObject);virtual; 
destructor destroy ; override;
function Normal(point:TVectorS;var failedrboolean):TVectorS;

virtual ; abstract ; 
procedure Transfer(rayszTObject);virtual; 
procedure Refract(rays:TObject);virtual; 
procedure Transfract(rayszTObject);virtual; 
procedure PxTransfer(rayszTPxRaySet);virtual;abstract; 
procedure PxTrauisfract(rayszTPxRaySet);virtual; abstract ; 
function InsideAperture(rayzTRay)zboolean;virtual;abstract ; 
procedure PxRefract(rays z TPxRaySet); virtual ; abstract ; 
procedure reverse;virtual; 
procedure assign(szTSurface);virtual; 
procedure initglasses(gl,g2zTGlass);virtual; 
function property glass[jzinteger]zTGlass 

read GetGlass write SetGlass; 
property aperturezdouble read faperture write faperture;

end;



The abstract surface defined above is bounded by two refractive media, g la s s l  and 

g la ss2 . When a surface is implemented as a component, part of the initialisation pro­

cedure tha t is performed by the surface is the method in i tg la s s e s  tha t takes two glass 

references, g l and g2. The code for this procedure is shown below:

procedure T S urface . in i tg l a s s e s ( g l ,g 2 :T G lass); 

beg in

g la s s l  := g l ;  

g la ss2  := g2; 

end;

. . .  where it becomes apparent that the glasses tha t are passed as parameters are only 

references, and that the apparent assignments, such as g la s s l  := g l, are simply reference 

assignments. W hat this means is that the surface never creates its own TGlass object, but 

instead the g la s s l  and g la ss2  properties are simply employed as pointers to neighbouring 

media tha t are not of its own creation, and until the surface is initialised the glass pointers 

are left dangling with a value of n i l .  The following snippet of code is from the component 

i n i t i a l i s e  method of the TThkLens:

s u r f 1 .g l a s s [1] 

s u r f 1 .g l a s s [2] 

s u r f 2 .g l a s s [1] 

s u r f 2 .g l a s s [2]

= previous.m edium ; 

= g la s s ;

= g la s s ;

= next.medium;

The component i n i t i a l i s e  method is called prior to any sequence of raytracing, and is 

necessary so tha t all surfaces may set their interfaces correctly. In the above case of a thick 

lens, each of the two surfaces sets its own interface condition. Note tha t the medium of 

the thick lens, g la s s , is directly referenced by both surfaces, whereas the outer media of 

the lens are obtained through the call to p rev ious .medium or next.medium. The notation 

p rev io u s and nex t, introduced in the discussion of TLens methods and properties, comes 

into its own in this context.

The TSurface class also contains several methods tha t enable the processing of 

incident rays, the most important of these being R e frac t and T ran sfe r. Both of these 

methods accept ray s  as a parameter, but note that ray s  is of type TOb j  e c t. Recall from
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earlier discussions of object oriented programming in Object Pascal tha t TOb j  e c t is the 

ancestor of all defined classes, and it is used here because the underlying structure of 

ray s  comprises several diflFerent ray-sets, including paraxial and finite rays. The R efrac t 

and Tramsf e r  methods each interrogate the rays object, using run-time type information 

(RTTI), to determine the structure and entry points to each one of these ray-sets. When 

this has been accomplished the individual ray-sets are passed to other procedures tha t will 

correctly implement the method for that type of ray; this is the purpose of such methods 

as PxRef r a c t ,  which only refracts paraxial rays using the standard paraxial raytrace 

formulae.

Another method tha t we shall refer to in the next chapter is called Normal, and is 

supplied with a vector p o in t and a boolean f a i le d .  This is an abstract and virtual class 

which means tha t it may only be used in a descendant class th a t overrides the method. 

In operation, the descendant surface class will define the method in such a way tha t it 

will return a vector type tha t corresponds to the normal of the surface at the point given 

by p o in t, where the latter is normally supplied by the positional data  set of a finite ray 

(see Chapter 7.2). If p o in t is invalid and does not correspond to an actual point on the 

surface then the f a i l e d  parameter will be set to tru e , otherwise it will be set to f a ls e .

6 .2 .2  T h e  P la n e  Surface

Descended directly from TSurface, the plane surface implements, or overrides, those ab­

stract methods tha t were first introduced in the ancestor class, as the following extract of 

TP 1 erne illustrates.

TPlame = c la ss(T S u rface ) 

p r iv a te

f th e ta :d o u b le ;  { su rfa ce  t i l t }

fp h i:d o u b le ; { su rfa ce  ro ta t io n  -  s p h e r ic a l p o la r  coords} 

fw id th :d o u b le ;

{note : i f  fw id th  = 0 then  fa p e r tu re  corresponds to  th e  a p e rtu re }  

{ ra d iu s , o therw ise  th e  h a l f - h e ig h t , and fw id th  i s  th e  h a lf-w id th }  

p u b lic

c o n s tru c to r  c rea te (In so w n e r:T O b jec t);o v e rrid e ;
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destructor destroy;override;
procedure initangles(const theta_,phi_: double); 
function InsideApertureCray:TRay):boolean;override; 
procedure reverse;override; 
procedure RayTransfer(ray :TRay); override ; 
procedure RayTrauisfract(ray :TRay); override; 
procedure RayRefract(ray :TRay); override ; 
procedure PxTransfer(rays :TPxRaySet);override; 
procedure PxTrêinsfract(rays:TPxRaySet);override; 
procedure PxRefract(rays :TPxRaySet); override; 

end;

There are several points to notice in the above listing. Firstly, the perimeter of the plane 

surface may be defined as either circular or rectangular, depending upon the values of 

fwidth and fheight. Similarly, the plane surface may, in its default state, be considered 

as being orthogonal to the local z-axis, or alternatively may have a general tilt and rotation 

associated with the surface. The latter is implemented by a call to InitAngles with values 

of theta_ and phi_ passed as polar angles (^, </>) of the surface normal. Since TPlane has 

been allowed to have a surface perimeter that is not circular, it will be im portant to know 

when a ray falls outside the defined surface, or not. This requirement is handled by the 

method IsInsideAperture, which accepts a ray parameter of type TRay. The ray in 

question will have been transferred to the surface prior to the call, and the result will be 

of type boolean, indicating tha t the result is either true or false.

Secondly, the methods tha t relate to the processing of rays have been overridden. 

The ancestor class defined these methods as abstract since they could not realistically 

be considered for a general surface description, but TPlane is now able to implement its 

own specific routines. The following two sections of code show how the algorithms tha t 

relate to the transfer and refraction of finite rays are implemented:

Transfer...

procedure TPlane.RayTransfer(ray:TRay); 
var

delta:extended; 
cosi: extended;
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j : integer;
IgnoreAps:booleam ; 

begin
IgnoreAps := TLensFormCformowner).IgnoreAps;
with ray do
begin

if not RayCanProceed(ray) then exit; 
cosI := (norm.x*! + norm.y*m + norm.z*n); 
delta := -(norm.x * x + norm.y * y) / cosi;
X := X + 1 * delta;
y := y + m * delta;
z := n * delta;
fpoint.assign(ray.posn);
If not(IgnoreAps) amd not(InsideAperture(ray)) 
then failmode := failmode + [missed_aperture]; 

end; 
end;

and Refraction,..

procedure TPlane.RayRefract(ray :TRay); 
var

cosi,cosId:extended; 
ndxl,ndx2,q,k,c,s: extended; 
j: integer; 
inray :TRay; 
dev:extended; 
rotvec:TVectorS; 
rotmat:TMatrix3; 

begin
if not RayCanProceed(ray) then exit; 
inray := TRay.create; 
inray.assign(ray); 
try
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ndxl := glassl.index(ray.wvl); 
if reflect then ndx2 := -ndxl 
else ndx2 := glass2.index(ray.wvl); 
with ray do 
begin

q := ndxl/ndx2;
cosi := (norm.x*l + norm.y*m + norm.z*n); 
s := 1 - q*q*(l - cosI*cosI); 
if s <= 0.0 then 
begin

failmode := failmode + [internal_reflection]; 
exit; 

end;
cosid := sqrt(s); 
k := ndx2*cosId - ndxl*cosI; 
c := k / ndx2;
1 := (norm.x * c) + (1 * q);
m := (norm.y * c) + (m * q);

n := (norm.z * c) + (n * q);
{if the polarisation vector is not nil then}
if polvec <> nil then
begin

1 rotvec := TVectorS.create;
1 rotmat := TMatrixS.create;

{determine the ray deviation angle}
2 dev := vector.inclangle(inray.vector);

{assign the cross-product of in/out rays to rotvec}
3 rotvec.assign(vector.cross_(inray.vector));

{make rotmat a rotation matrix wrt rotvec and angle dev}
4 rotmat.rotvecmat(rotvec,dev) ;

{multiply polvec by rotmat}
5 rotmat.vecmult(polvec); 

rotvec.free;
rotmat.free;

93



end;

{ i f  t h i s  i s  a r e f le c t in g  su rfa c e  then  }

i f  r e f l e c t  then

begin

F orw ardR eflection ; 

i f  po lvec <> n i l  then  

beg in

p o lv e c .r e f le c t io n (x _ y ) ; 

end; 

end; 

end; 

f i n a l ly

in r a y . f r e e ;  

end; 

end;

The RayRefract method is complex in several ways, but most particularly because it 

demonstrates how polarised ray vectors^ are handled. The first action of the procedure is 

to set the local variables ndxl and ndx2 to the value of the refractive indices on both sides 

of the surface, making due account of whether the surface is a reflecting surface or not, 

where the usual convention in defining a reflecting surface is to set ndx2 to the negative 

value of ndxl. Subsequent lines of code initiate the raytrace algorithm for refraction at 

a tilted surface, whereupon the ray-vector ray  takes on the new value. The final part of 

the routine is involved in the processing of the polarisation vector, if one is present (see 

Chapter 7).

Note: one o f the early objectives of this research programme, before it adopted its 

current form, was to provide a means for tracing polarised rays through a general optical 

system. System throughput, particularly in diffractive optical systems such as an astro­

nomical spectrograph, is very much dependent upon the state o f polarisation of optical rays 

in every space o f the system. It was for this reason that polarisation vectors were originally

 ̂According to the electromagnetic theory of reidiation, a ray of light consists of an oscillating electric 

field and a magnetic field, mutually perpendicular to one other cind propagating along the ray direction. 

A polarised ray is a ray in which the electric vector is confined to a single pleine of vibration.
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included in the definition of TRay (see Chapter 9) and that some components, especially 

the plane surface, have been coded to correctly handle polarised rays.

The problem of how to handle polarised ray vectors has been much simplified by 

the development of the V ectors and the A rrays classes, both of which allow complex 

operations involving both vectors and matrices to be undertaken in a straightforward 

manner. The sequence of operations is as follows:

1. If the ray contains a valid polarisation vector then create a vector ro tv e c  and rota­

tion matrix rotm at

2. Determine the angle of ray deviation following refraction, and assign this to  dev

3. Determine the vector normal to the plane of incidence, and assign this to ro tv ec

4. Modify the value of ro tm at such that it corresponds to a rotation matrix equivalent 

to a rotation from the input ray-vector to the output ray-vector

5. Finally, multiply the polarisation vector po lvec by the rotation matrix ro tm at

6. As part of the tidying-up process, release or f r e e  the original ro tv ec  vector and 

ro tm at rotation matrix.

6 .2 .3  T h e  C on ic  Surface

The conic surface is extremely important in lens design and manufacture since it encom­

passes virtually all the non-planar surface types tha t the designer is likely to specify, the 

exception being the aspheric surface. Probably the most common conics in optics are 

the sphere, the parabola and the hyperbola. The general conic surface is defined by the 

following equation,

z =  (6.1)

...w here  z is the sagitta of the surface for the coordinate pair (x,y).  It is easily seen 

tha t this equation represents a quadric of revolution about the z-axis, passing through the 

origin and having curvature c at the same point, and where the coefficient e determines 

the conic form of the resulting surface, as follows:
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£ > 1, prolate ellipsoid,

£ = 1, sphere,

0 < e < 1, oblate ellipsoid,

£ =  0, paraboloid,

£ < 0, hyperboloid.

The raytrace formulae that apply to the general conic surface are very similar to those 

we would use for a spherical surface, but with a minor correction for the aspheric sagittal 

term. This observation proves useful when coding the ray transfer equation, since the code 

and underlying logic is much simplified. As a result, the early development version of the 

IRIS program did not explicitly support non-spherical conics, although the surface editor 

did indeed provide the user with a selection of available conical forms, but all calculations 

were based upon a default base sphere.

In many respects the TConic surface is very similar to TPlane, where the only signif­

icant differences are to be found in the actual implementations of the raytrace algorithms. 

In one other respect, though, the TConic differs quite radically in tha t it makes available 

to the designer a surface curvature that is variable, tha t may be specified either by the 

designer at design-time, or alternatively, during active raytracing (run-time) where the 

curvature is resolved by what is normally referred to as a solve. Solves are a mechanism 

employed by designers tha t simplify the structure of an optical system. For instance, one 

of the more common solves will adjust the final surface curvature of a lens system so 

tha t the marginal paraxial ray emerges with a specified convergence angle. This solve is 

employed when the final image NA (numerical aperture) needs to be set to  a predefined 

value. The normal procedure for achieving this result is to perform the paraxial raytrace 

and make the necessary adjustments to those surfaces tha t are involved in solves. Only 

when this process has been completed may real finite rays be propagated through the 

system.

In keeping with the philosophy underpinning much of this work, the implementation 

of the above scheme is both elegant and simple. We s ta rt with a shortened listing of the 

TConic class tha t highlights those properties pertinent to the above discussion.
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Type
AsphericCoeffs = (A4,A6,A8,A10);
AsphericArray = array[AsphericCoeffs] of double;
ConicTypes = (SPHERE,PARABOLA,OBL_ELLIPSE,PRO_ELLIPSE,HYPERBOLA);

TConic = class(TSurface) 
protected

coeffs:AsphericArray; {aspheric coefficients} 
fcv : double; {curvature} 
fee:double; {conic constant}
solvetypecbyte; {0-no solve; 1-PR solve; 2-Marg solve} 
solvevalue: double ; 

public
constructor create(Insowner:TObject);override; 
destructor destroy ; override;
constructor initcreate(Insowner:TObj ect;curv,conic: extended);virtual; 
function Normal(p:TVectorS; var failed:boolean):TVectorS;override; 
function Sagitta(h:double;var failed:boolean):double;override; 
procedure RayTransfer(ray:TRay); override; 
procedure RayTransfract(ray :TRay);override; 
procedure RayRefract(ray:TRay);override; 
procedure PxTransfer(rays:TPxRaySet);override; 
procedure PxTransfract(rays :TPxRaySet);override ; 
procedure PxRefract(rays:TPxRaySet);override; 
procedure Solve_U(ray:TPxRay); 

end;

The above listing commences with a description of the various surface types tha t will 

determine the general form of the surface. ConicTypes is a set of constants tha t rep­

resent the fundamental forms of the general conic surface, while AsphericCoeffs and 

AsphericArray are used to describe the precise aspheric departure from the chosen conic, 

where the departure is given by the following:

Az =  A4h^ -)- -|- Agh^ -T A\Qh}^ (6.2)
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. . .  where A z  is the sagittal departure from the conic surface at height h, and the coefficients 

are given by the constants A 4  to Aiq. Most optical aspheric surfaces are described by the 

above polynomial, although more precise descriptions will require higher order coefficients 

A12 , A i 4 , etc., although A 1 2  is usually the highest coefficient for most optical design 

tasks. The TConic class is then defined, and unexpectedly is shown to be a descendant of 

TSurface. Most or all of the methods inherited from TSurface have been overridden, but 

note particularly the p ro te c te d  section that includes several new fields which together 

describe the surface asphericity and the solve conditions, if any, th a t currently apply. The 

so lv e ty p e  variable may hold one of three values, which correspond to either no solve, 

a PR solve, or a Marg solve. The first is self explanatory, while the latter two refer to 

angle solves with either the principal ray or the marginal ray. If the so lv e ty p e  is non-zero 

then the so lv ev a lu e  field indicates the value required for the convergence angle of the 

particular ray. TConic implements the solve at the instant the appropriate paraxial ray 

is received by the surface for ray-processing, i. e. refraction. How the surface recognises 

a particular paraxial ray amongst all the other rays tha t it will receive is the subject of 

Chapter 7, “Optical Ray Implementation” .
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C h a p t e r  7

O p t i c a l  R a y  I m p l e m e n t a t i o n

It is true to say tha t without rays we would be none the wiser on the subject of lens 

design, for it is the ray itself tha t carries the information tha t we process and interpret in 

order to ascertain the state of optical correction of a lens system. Though of an essentially

complex nature^, in most situations light may be suitably approximated by a simple

vector. Whilst raytracing formulae are initially described in vector form, for example the 

refraction equation:

n '(r 'A  n) =  n(r A n), (7.1)

. . .  it is only when the formulae need to be coded tha t these vector forms are dispensed 

with in favour of a scalar description. Thus the above vector equation is usually reduced 

to the more common form shown below.

n’ L' — nL  =  ka  

n ' M ' - n M  = k/3 (7.2)

n 'N ' — n N  = k j

where k is called the generalised power and is a function of the angle of incidence at the 

surface,

k = n' cos I ' — n cos I .  (7.3)

Other scalar formulae have been devised[13] that provide maximum information output 

whilst minimising the number of mathematical operations required to  complete the calcu­

lation. Obviously such procedures were very specialised, as in the tracing of a marginal

^(see [12], Chapter 8)
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ray, but were considered necessary in that period prior to the development of the modern 

computer. One of the more important features of the early pioneering work into the design 

of ray trace algorithms was the need to maximise accuracy of calculation. This was consid­

ered an essential requirement in those times when most calculations were undertaken using 

9-figure, or thereabouts, logarithmic and trigonometric tables. Such care in the design of 

modern raytrace algorithms is probably absent now tha t we have regular numbers tha t 

may be represented by upto 19 significant digits (double precision).

The major reasons for adopting the above approach were twofold:

1. vectors could not be adequately represented by the computing machines available at 

the time,

2. scalar forms of the raytrace equations could be designed to be more efficient in terms 

of CPU time.

Though the first is no longer applicable, with the advent of parallel computers and array 

processors, the second is as valid now as it has always been. Be th a t as it may, the author 

has implemented a ray class that exhibits both the scalar and the vectorial nature of the 

optical ray, including a ray class that has the capability to resemble a polarised ray, i. e. 

the ray has an associated polarisation vector tha t is maintained perpendicular to the ray 

direction.

7.1 Paraxial Rays

The paraxial ray owes its existence to the study of Gaussian optics, tha t domain of a 

rotationally symmetrical optical system where all ray angles, with respect to the optical 

axis, are vanishingly small and which are able to be numerically represented by first order 

approximations; hence the alternative name of first order optics. Valid rays within the 

Gaussian domain may be specified by a single coordinate pair {h, u), where h is the height 

of the ray-surface intersection from the optical axis, and u is the convergence angle. The 

usefulness of paraxial rays and their own form of raytracing algorithm is diverse, and 

includes:
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• the determination of the Gaussian properties of an optical system, such as the posi­

tion of the nodes and principal planes, and quantities such as focal length;

• the calculation of third (Seidel) and higher order[14] aberration coefficients;

A complete Gaussian description of an optical system may be arrived at by the 

tracing of a single paraxial ray that connects a pair of axial conjugates. The technique 

depends upon a set of formulae developed by Ludwig Seidel in 1856, later referred to 

as the Seidel difference formulae. When paraxial raytracing is implemented in program 

code, the more usual approach to take is to use two paraxial rays, one referred to as the 

paraxial marginal ray, and the other as the paraxial principal ray. The former refers to 

a paraxial ray that starts at the axial postion of the object and which also intersects the 

pupil/stop(iris) at the periphery, while the latter describes a paraxial ray that starts at 

the extreme edge of the object and then proceeds to intersect the stop at its very centre;

see Figure 7.1. The class that encapsulates the paraxial ray is quite simple compared to

STOPPRINCIPAL RAY MARGINAL RAY

Figure 7.1: Paraxial Ray Types 

the finite ray, and a listing of the class methods and properties is given below:

TPxRay = c la ss  

p ro te c te d

h l ,u l ,w v l l  : double; 

p u b lic

co n s tru c to r  c r e a te ;v i r tu a l ;

co n s tru c to r  in i tc re a te (c o n s t  h i ,u l ,w v l lrd o u b le ) ;v i r t u a l ; 

procedure in i t ( c o n s t  h i ,u l ,w v l l : dou b le );v i r t u a l ;
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procedure assign (ray :T PxR ay);v i r t u a l ;  

fu n c tio n  d a t a s t r : s t r i n g ; v i r t u a l ;  

p ro p e rty  h :doub le  read  h i w rite  h i ;

p ro p e rty  u :doub le  read  u l w rite  u l ;

p ro p e rty  w vl:double read  wvll w rite  w vll; 

end;

.. .where the first constructor will create a paraxial ray having default intial values, while 

the second constructor will perform the same function and also allow the initial values 

to be set programmatically. The three data  fields h i ,u l ,w v l l  contain the paraxial ray 

height, the convergence angle and wavelength (/um), and are accessible through their own 

specific property definitions, i. e. a_ ray .h , an o th er_ ray .u .

7.2 F in ite Rays

In most optical analyses the finite ray is probably the most used. Whereas the paraxial 

ray is an artificial mathematical construct tha t is limited in scope, the finite ray is as good

a description of a real ray as we are ever going to get. Though it too is an artificial device,

the results obtained from a finite raytrace may, using specific mathematical procedures, 

be transformed to provide information on the optical wavefront itself as it propagates 

from one lens space to another. Considering the wealth of information tha t the finite ray 

provides, it will not be too surprising to learn that the class tha t encapsulates the finte 

ray is considerably richer, as the listing below shows.

TRayFailure = (m isse d _ a p e r tu re ,m is se d _ su rfa c e ,p a ra lle l,

I I R ,i l le g a l_ g r a t in g o r d e r ) ;

TRay = c la s s  

p ro te c te d

fposn  :TVector3;

f d i r n  :TVector3;

fp o lv ec  :TVector3;

procedure SetV ector(new val:TV ector3);

fu n c tio n  G etD irnC index :in teger):doub le ;

procedure S e tD irn ( in d e x :in te g e r ; new val:d o u b le ) ;
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function GetCoord(index:integer): double; 
procedure SetCoord(index:integer; newval:double); 
procedure SetPosn(newval:TVector3); 
procedure SetPolVec(newval:TVector3); 
function GetHeight: double; 

public
FailMode : set of TRayFailure; 
wvl : double;
constructor create;virtual; 
destructor destroy ; override; 
procedure initposn(a,b,c:double); 
procedure initdirn(a,b,c:double); 
procedure initpolvec(len,angle:double); 
function tangential(norm:TVector3): double; 
function sagittal(norm:TVector3): double; 
procedure RotateBy(mat :TMatrix3;pol:booleem); 
procedure MoveBy(x,y ,z:double); 
procedure LinearMove(inc:double); 
procedure reverse; 
procedure ForwardReflection; 
procedure assign(ray:TRay);virtual; 
function datastr: string;virtual;
property x:double index 1 read GetCoord write SetCoord;
property y : double index 2 read GetCoord write SetCoord;
property z:double index 3 read GetCoord write SetCoord;
property 1: double index 1 read GetDim write SetDim;
property m:double index 2 read GetDim write SetDirn;
property n:double index 3 read GetDirn write SetDirn;
property vector:TVector3 read fdirn write SetVector; 
property dirn:TVector3 read fdirn write SetVector; 
property posn:Tvector3 read fposn write fPosn; 
property polvec:TVector3 read fpolvec write SetPolVec; 
property height : double read GetHeight; 

end;
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The first two lines of the listing supply an enumerated type definition, called TRayFailure, 
which defines several constants that correspond to the various failure modes tha t an active 

finite ray is likely to experience. This is introduced in order to provide a finite ray with a 

FailMode tag, a field tha t enables the failmode history of a particular ray to be discerned. 

Naturally, a ray tha t successfully completes a raytrace will have an empty Failmode 
field, i. e. a null set equivalent to [ ], while a ray tha t intersects a surface beyond the 

physical aperture and which is subsequently internally reflected will have a FailMode of 

[missed.aperture, TIR].

In stark contrast to the paraxial ray, the finite ray requires much more data to

describe it. A finite ray is characterised, apart from the wavelength wvl, by two sets of

data; the positional coordinates {x,y, z)  and the directional cosines (/, m ,n). Both sets 

of quantities may be individually specified through the several property methods tha t are 

supplied with the class, i. e. a_ray.x and another_ray.m. The container class for both 

these sets of data is, unsurprisingly, a vector class: fposn for the positional coordinates, 

and fdirn for the directional coordinates. The distinct advantage tha t these containers 

provide is tha t both data  sets may be manipulated by vector methods supplied by the 

Vectors and Arrays classes that the author has implemented for just this purpose. For 

example, the vector tha t is perpendicular to the plane containing the incident ray and the 

surface normal at the point of ray incidence on a surface, perp, is given by the following 

procedural fragment:

var
failed : boolean; 
norm : TVectorS; 
perp : TVector3; 

begin
norm := a.snrface.normal(a_ray.posn, failed); 
if not failed then begin
perp := a_ray.vector.cross.(norm); 
etc. 
etc. 

end; 
end;
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The vector property of a finite ray, a_ray .v e c to r , enables the ray to be treated as a true 

vector quantity, so allowing it to be manipulated by those vector and matrix methods 

already developed by the author. This becomes particularly im portant when attem pting 

to devise new raytrace algorithms for unusual surface types. It is often the case th a t the 

reduction of an algorithm proceeds from a vectorial form to a scalar form, and in so doing 

it becomes highly susceptible to errors being propagated through to the final set of results. 

The possibility of such a mishap may be avoided if the raytrace is implemented by both 

forms of the transfer algorithm and the final results compared for equality.

The vector property of a finite ray, as implemented in the above definition of TRay, 

also enables several other transformations to be undertaken with ease. For instance, the 

IRIS program allows for several localised axes to be declared by the user during the system 

design phase, although only one is ever allowed in any optical space. The purpose of such 

a feature is to simplify the user’s task when complex non-axisymmetric systems are to be 

synthesised. For instance, a simple spectrometer having a prism tha t is preceeded by a 

collimator and then followed by a decollimator is difficult to model both at and following 

the prism itself, for the reason tha t the optical axis is forever changing. Not only that, 

but the optical axis within the prism needs to be calculated by the designer so th a t the 

following surfaces are correctly positioned. This seems like an unnecessary burden for 

the designer, and so the author has implemented a scheme (see Chapter 8.1 for a more 

detailed description) whereby each new optical axis may be specified as a real ray direction 

at a particular wavelength^, and the necessary transformations for each ordinary ray are 

undertaken in real-time during the raytrace. The principal procedure in this scheme is 

procedure RotateBy(mat :TM atrix3;p o l :b o o le a n ); 

mat is a rotation matrix tha t has been derived from the relative directions of the previous 

optical axis and the new axis. When implemented for each ray in the ray-bundle, the 

RotateBy method will realign all rays so tha t their directions and positions will conform 

to the new axis as given by the direction and position of the reference ray.

The TRay class is also the repository for a polarisation vector, which may be ini­

tialised after the finite ray has been created by employing the following method: 

procedure  in i tp o lv e c ( le n ,a n g le :d o u b le ) ;

. . .  where le n  is the length of the vector and is analogous to the intensity, and ang le  is the

'In the peirlance of the IRIS program, this ray is referred to eis a Reference Ray
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angle of the vector in degrees with repeat to the y-axis in the x-y plane. The initialisation 

procedure ensures tha t the polarisation vector is created orthogonal to the direction of 

the host ray, while subsequent ray transformations tha t may occur at surface boundaries 

during raytracing will always correctly maintain this relationship.

Before we move onto the next section, one other worthy feature of the TRay class is 

its ability to physically reverse direction. In Chapter 8.7 we shall have the opportunity to 

discuss at length the specialised component that permits us to have optical components 

tha t operate in double-pass mode, similar to the front surface of a mangin mirror. This 

mode makes extensive use of the TRay method called ForwardRef lection. When a re­

flective surface is followed by a double-pass component it will cause all rays to physically 

reverse direction, which is not ordinarily the case for surfaces tha t are not participat­

ing in a double-pass. The procedure, or method, once reduced to vector and positional 

transformations, is relatively simple:

procedure TRay.ForwardReflect ion; 
begin 

reverse;
posn.reflection(x_y); 
dim. ref lect ion(x_y) ; 

end;

Again, note how the use of the vector properties of both position and direction of the ray 

are used to full effect. The reflection method applied to both of these vectors requires 

a constant parameter to be passed which specifies the plane about which the reflection is 

to be undertaken, in this case the x-y plane.

7.3 Ray Containers

In general, raytracing an optical system usually involves atleast two paraxial rays, and 

more often also includes several finite rays. Probably the most im portant reason for 

including paraxial rays is to provide the designer with the means to undertake various 

solves. A solve is an artificial construct that may be applied to a surface or space, and when 

applied will modify either the surface curvature or space separation in order to satisfy some
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predetermined condition as required by the designer (see the following section for a more 

detailed explanation of what solves are and how they are implemented). Another reason 

for including a paraxial raytrace is that it also provides valuable data  tha t is required 

to initialise the finite rays prior to launching. These data  will be used to determine 

the paraxial positions of both the entrance pupil and image plane, which are absolutely 

essential for firstly, initialising the finite rays at the begining of the raytrace, and secondly, 

for determing at what point (or plane) the raytrace will be concluded.

Though seemingly similar in nature, the actual data  items tha t comprise both a 

paraxial ray and a finite rays are too dissimilar to warrant any form of inheritance be­

tween the two ray types, and so they must be treated separately. Accordingly, two ray-set 

types are defined, the first encapsulating both the principal and marginal paraxial rays, 

TPxRaySet, while the second encapsulates an array structure of finite rays, TRaySet, with 

the added bonus of also being able to refer to the finite rays in terms of spectral line sets,

i. e, those rays tha t originate from a line source as opposed to a point source, and which 

are of the same wavelength. Thus, the two paraxial rays are referenced by: 

a_pxray[PR]
and,

a_pxray[MARG]
. . .  while the finite rays are referenced by: 

a_rayset[ j]

. . .  for the ray. If the source has been created to have a spectral line structure, then 

the middle ray of the the line (assuming tha t a line is made up from three ray points) 

is referred to by:

a_rayset.1ine[j].middle.

7.4 T he Com ponent-R ay Interface

The component-ray interface, to be described further in this section, is a common interface 

for all components. The procedure tha t implements the interface is called ProcessRays 
and accepts a parameter tha t accommodates both paraxial and finite ray-sets. Each 

newly created component class tha t derives from TLens will override this method and
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implement its own code that will be pertinent to tha t particular class. Components may 

not just be optical subassemblies, but may also undertake to be any valid form of ray 

processor. One such component, the TRef Align component, concerns itself only with the 

task of redirecting a ray bundle in a direction specified by a reference ray. This facility 

is especially useful when a component such as a prism causes finite rays to be deviated 

far from the original optical axis. The TRef Align component will create a new optical 

axis th a t conforms to the path of a particular ray (reference ray) defined in the source 

component by the user prior to the raytrace. More commonly, though, components and 

their associated ProcessRays method will actively transfer and refract rays from the 

source to the image plane, as is the case in other raytrace programs, although there will 

always be subtle differences that reflect the varying nature of each.

One of the most useful of all properties tha t some components provide is the ability 

to undertake solves. As mentioned in the previous section, solves are required to be 

undertaken prior to a finite raytrace if the results of the latter are to be valid. A solve is 

a technique tha t a designer may opt to use if it is required tha t a particular paraxial ray 

satisfy a certain condition. There are, in total, four types of solve tha t may be applied, 

but only one per surface or space:

1. Angle Solves

(a) Paraxial Principal Ray - the curvature of the specified surface is adjusted 

so tha t the convergence angle of the ray is equal to a predetermined value;

(b) Paraxial M arginal Ray - as above;

2. Separation Solves

(a) Paraxial Principal Ray - the separation between the current surface and the 

following surface is adjusted so that the subsequent ray intersection height is 

equal to a predetermined value;

(b) Paraxial M arginal R ay - as above;

The most usual circumstances in which these solves are employed are either to set the 

back focal length to tha t of the paraxial image plane, or to set the power/efl^ of the 

total system. In either case, any subsequent raytrace th a t utilises finite rays will correctly

*efl =  equivéïlent focal length
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reflect the state of the optical system as defined by the paraxial solves. If the order of the 

raytrace is reversed, and the finite rays are traced before the paraxial rays, then the final 

state of the optical system will not conform to the state as given by the finite ray analysis, 

since it is the data appertaining to the latter which provides an exact description of the 

aberrational correction of a lens system.

It is important tha t solves are applied before finite rays are passed through the 

system, otherwise the results of the finite raytrace could become invalid, which leads us 

to conclude tha t the paraxial raytrace must always precede the finite raytrace.

Since a paraxial raytrace appears to be a prerequisite for raytracing, and considering 

tha t it is much faster to undertake than a finite raytrace, there seems little reason not to 

include it on every occasion. Thus we must consider the mechanism of how the program 

is to handle a ray-set tha t comprises ray-types that are so dissimilar, since it was pointed 

out in the preceding section that TFiniteRay is not descended from TParaxialRay for 

just this very reason. There are several solutions to this problem, all apparently as valid 

as the other.

1. Commence the raytrace with a procedure that accepts paraxial rays, and then an­

other procedure tha t accepts finite rays,

2. create a new class tha t contains both paraxial and finite rays and use this class as a 

parameter for a general raytrace procedure,

3. provide a procedure that accepts both paraxial and finite rays, which then passes 

each parameter to separate procedures as above.

The method opted for is Item 3, where the interface for a typical lens component, say of 

of type TThkLens, would look similar to:

TThkLens.ProcessRays(rays:array of TObject);
var

j,k:integer; 
etc. ;

begin
inherited ProcessRays(rays);
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for j := 0 to high(rays) do begin 
if raysEj] is TPxRaySet then begin 
{trace the paraxial rays} 

end
else if raysCj] is TRaySet then begin 
{trace the finite rays} 

end; 
end; 

end;

. , ,  where a call to this method would look like

a_thklens.ProcessRays( [a_rayset, a.pxrayset]);
The structure [ . . . ]  is the Object Pascal syntax for creating an open array, which allows 

for arrays of varying sizes to be passed to the same procedure or function. In this case 

the array is of type TObject, which will permit an array of any descendant of TObject 
to be passed. Naturally, this includes both the paraxial and finite ray-sets: TPxRaySet 
and TRaySet. Inside the procedure the elements of the open array are interrogated using 

Run-Time Type Information, or RTTI, in order to determine the correct action tha t needs 

to be taken for each of the array elements. This process is dependent upon the order of 

the ray-sets within the open array, i. e. for the paraxial raytrace to be accomplished before 

the finite raytrace, the paraxial ray-set must be the first element of the open array. It does 

not preclude either the paraxial ray-set nor the finite ray-set from being the sole member 

of the open array if this is exactly what is required by the programmer.

The implementation of solves is best illustrated by referring to  the paraxial refraction 

method of the TConic surface type:

Procedure TConic.PxRefract(rays:TPxRaySet); 
var

j: integer;
ndxl,ndx2,hcv: extended; 
px:TPxRay; 

begin
ndxl := glassl.index(rays[PR] .wvl) ; 
if reflect then ndx2 := -ndxl
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else ndx2 := glass2.index(rays[PR].wvl); 
q ;= ndxl/ndx2; 
px := nil;
if not TLensform(formowner).doublepass then 
case solvetype of
ubar : px := rays[PR];
uMarg: px := rays[Marg];

end;
if px <> nil then Solve_u(px); 
for j := PR to Marg do begin 
px := rays[j];
if (solvetype = j) then break; 
hcv := px.h * cv; 
px.u := q * (px.u + hcv) - hcv; 
if reflect then px.u := -px.u; 

end; 
end;

The interesting and relevant part of this code starts with the line case solvetype of; it 
is at this point tha t the solvetype property of the TConic surface is queried. If it has a 

value of either ubar or uMarg (both predefined constants) then this signifies tha t a solve

is required and the appropriate paraxial ray is passed to the Solve_u procedure. This

procedure is a method of TConic, and when initiated with a paraxial ray it will alter the 

value of the base surface curvature to a value that causes the convergence angle of the 

paraxial ray to be equal to the required value, as given by the solvevalue property of 

the surface. Only when this has been accomplished will the remaining paraxial ray be 

processed in the normal manner.

We have shown in this section that the component-ray interface can be relatively 

simple to implement in principle, and yet be capable of reflecting very sophisticated ideas. 

The application of solves is just one illustration of this, but in the next section we will 

have the opportunity to discuss other more specialised components tha t process rays in 

very different ways.
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C h a p t e r  8

D e t a i l e d  C o m p o n e n t  D e s c r i p t i o n s

So far in this thesis, we have had the opportunity to review the minor players and sup­

porting CcLst in what could be described as a very complex stage production. We started 

with the basic ideas tha t underpin most of todays optical analysis models and showed that 

the data  structures underlying the user interface are relatively primitive and unconnected 

with the essential model tha t users are familiar with. A more realistic model was then de­

veloped which used the laboratory optical workbench as its operational metaphor. There 

then followed a necessarily brief description of the modern object oriented programming 

technology tha t has impacted the current and future designs of major software application 

suites. It was shown tha t the model employed by these techniques could be adapted to 

simulate many physical processes, and in particular the simulation and analysis of complex 

optical systems, which is the main subject of this thesis.

The stage and props were then introduced. The toolbar was shown to be the repos­

itory for the main components of our system, providing everything from the light source 

to the lens elements and image plane; the so-called optical bag. In keeping with the need 

to keep everything on the users desktop as simple and clear as possible, the lens form 

was introduced. In conjunction with the toolbar, optical elements of varying descriptions 

may be dropped onto the lens form to create virtually any combination of optical system 

desired, and employing current drag and drop techniques so prevalent in modern GUI ap­

plications these same components may be moved and copied in order to modify the same 

system.

But these components are not just ‘pretty’ representations of the real thing, indeed
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they are also containers for the d a ta  th a t makes each com ponent so unique. The provision 

of a lens editor allows the  user to  edit every property  of a com ponent, from the  selection of 

glass type for a thick lens to  the num ber and wavelength of all rays provided by the  source. 

Any num ber of active editors a t one m om ent are supported , while the  simple action of 

dragging a com ponent from the lens form and dropping onto a lens editor is all th a t  is 

required to  in itiate a view or commence editing of any visible com ponent.

T he last two chapters concerned them selves with the  basic elem ents th a t  all com ­

ponents are derived from. Glasses were straigh tforw ard ly  dispatched while the general 

surface class was developed in such a way as to  show how the  various surface types (plane, 

spherical, ellipsoidal, etc) could be accom m odated in any com ponent supporting  one or 

more surfaces. Simpler in essence and yet much more sophisticated in operation , the 

various ray types and their corresponding containers were then highlighted. The am alga­

m ation of optical rays with the m athem atical subtlety  of vector and m atrix  properties was 

shown to  provide a powerful tool in the arm oury of general purpose ray tracing  algorithm s.

In th is chapter the reader will be introduced to  some of th e  principal players of this 

cast. Though all are derived from the TLens class, which is a  property  of the TLensButton 
com ponent, they each im plem ent the inherited m ethod of ProcessRays very differently.

8.1 The Source

Traditional ray trace program s have always considered the  source to  be a com pletely sepa­

ra te  en tity  from the  rest of the system , and so requiring an editing facility th a t  is radically 

different to  the surface editor. This approach is consistent with the  surface based model 

adopted by virtually  all commercial program s to-date . In co n tras t, the com ponent based 

model does not have such a restriction and the  editor employed by IRIS is equally a t home 

supplying an editing facility to  a source com ponent as it is to  a thick lens com ponent. This 

is the legacy of m odern developm ent environm ents such as Visual Basic and Delphi, where
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only a single editor is required to  set the properties of windows com ponents as diverse as a 

drop-down combo box (a visual com ponent) and a system  tim er (a non-visual com ponent).

The source, like all com ponents within IRIS, is located in the toolbar and a copy 

may be placed in any system form by normal drag-and-drop techniques. A system  form 

will only ever require a single source, and the possibility of m ore than  one source being 

placed on a system  form is precluded during run tim e by actively searching the  curren t 

form for o ther sources and refusing the  drag-and-drop operation if one is found.

S Y 5 T L M 1  L I N L S O U H Œ  #1

Figure 8.1: Source in Lens E ditor

W hen a source com ponent is dropped onto a lens editor the user is presented with 

several properties (see Figure 8.1) th a t  may be configured to  m atch the system  require­

m ents. These properties are described in more detail below.

D is ta n c e  The distance in mm from the source to  the next com ponent in the  system  form;

M in  W V L l  This is the shortest wavelength, in Angstroms^ of the spectral band in 

which the system is to operate;

P r m  W V L  This corresponds to  the centre or prim ary wavelength of the  system s oper­

ating  band;

M a x  W V L  As in M in W VL  above, this is the maximum wavelength, in Angstroms, of 

the operating waveband;

^The Angstrom (lOA =  Inm) is an accepted unit of wavelength in spectroscopic work, and is used 

alongside the nm throughout this thesis.
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R e f W V L n  where n =  1 ..  ,4. Reference wavelengths are a new concept introduced into 

IRIS to facilitate the design of non-axisymmetric systems such as spectrographs. 

Specifying a non-null value^ in either or all of the Ref WVL edit boxes will result in 

a finite axial ray of the specified wavelength being created, and which will be traced 

along with all other paraxial and finite rays at the commencement of a system 

raytrace. A special component called TRef A lign may be placed anywhere in the 

system form following the aperture stop, and will realign all finite rays such th a t the 

reference ray to which the component is ‘tuned’ now appears to  be the new axis for 

the next component. A more complete description of the TRef A lign component is 

given later in this chapter;

L en g th  IRIS was originally designed for the pu pose of spectrograph analysis, and in 

keeping with this goal the type of source th a t has beem implemented is a line- 

source. Length is the total length of the line-source or slit in mm for a source at a 

finite distance (Distance < 10 '̂*), or the total angular length of the slit in arc-seconds 

for a source at an infinite distance (Distance > 10^“*);

A ngle This is the azimuthal angle of the slit with respect to the -|-y-axis;

L ines Again, in keeping with the spectrographic theme, this property is used to set 

the number of specific wavelengths tha t are to  be traced through the system. Each 

spectral line will comprise three finite rays emanating fom the top, bottom and 

middle of the slit, where each ray is a finite principal ray, i. e. each ray passes 

through the centre of the aperture stop. A single spectral line will be interpreted 

as a line of wavelength equal to the primary wavelength, while two lines will have 

the wavengths corresponding to either end of the spectral waveband; subsequently 

higher numbers of lines will have equally spaced wavelengths.

The activating method of the source is the ProcessRays procedure, and this is the 

case for all components derived from TLensButton. The listing for the source implemen­

tation of this method is given below.

p rocedure  T S ource .P rocessR ays(rays:array  of T O bject); 

var

j , k : i n t e g e r  ;

*The value of the reference wavelength must lie within the operating wavebeind.
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PxRays:TPxRaySet;
RefRays, FiniteRays: TRaySet; 

begin
inherited ProcessRays(rays); 
try

PxRays := GetPxRays(rays);
if (PxRays <> nil) then aspace.transfer(PxRays);
RefRays := GetRefRays(rays); 
if (RefRays <> nil) then begin
for k := 1 to RefRays.raycount do begin 

aspace.transfer(RefRays[k]); 
end; 

end;
FiniteRays := GetFiniteRays(rays); 
if (FiniteRays <> nil) then begin
for k := 1 to FiniteRays.raycount do begin 

aspace.transfer(FiniteRays[k]); 
end; 

end;
except on E:Exception do 
begin

E.message := E.Message +
#13#10’Source Unit: Raytrace failure at component #’ + 
IntToStr(self.ndx); 
raise; 

end; 
end; 

end;

The three principal actions of this routine are to:

1. initiate the paraxial raytrace;

2. initiate the raytrace of reference rays, if any;

3. and finally, initiate the finite ray raytrace.
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The end product of each step  is the transfer of rays from the  source to  the  vertex plane 

of the following com ponent. This is achieved through the  implied presence of a spacer 

com ponent (see next section) th a t  accom m odates th e  Distance property  of the  source, 

and is refered to  in the above listing as aspace. T he initialisation of rays, both paraxial 

and finite, is undertaken by a few utility routines th a t will be described in the  next chapter.

8.2 The Spacer

This com ponent is probably one of the simplest com ponents available. Its function is to 

provide the necessary separation between the more tangible com ponents and is, in effect, 

much like the medium of air th a t  surrounds all optical com ponents. A t a deeper level of 

understanding, the spacer also allows other com ponents to  have an existence independent 

of o thers within the lens form. One of the prim ary aim s of the lens com ponent is th a t  it 

should, as much as possible, have an existence th a t  does not depend in any way upon the  

existence, or not, of o ther com ponents th a t may have been assembled within the  lens form 

system . We have already seen in a previous chapter how the  surface based model depends 

upon a linkage between a surface characterisation and knowledge of its position relative to 

its neighbours. Surfaces cannot be moved or copied from one location to  ano ther because 

of th is linkage. In developing the com ponent based model, of param ount im portance was 

the capability  to  do ju s t this, and if this could not be achieved then the  optical bench 

m etaphor th a t  underpinned this work would have been sacrificed. T he spacer com ponent 

is central to  realising this goal.

The space com ponent is much more flexible th an  the  simple analogy with the air 

medium th a t was alluded to  in the previous paragraph; air is ju s t one of th e  m any media 

th a t may be selected to  occupy the space between any two com ponents. In common 

with the thick lens th a t we shall encounter in the next section, the spacer also provides 

a  property  editor th a t  allows the user to  select any type of glass from the  glass lists

117



provided. Thus, with this facility it is possible to  create  more complex lens-types such as 

lens doublets and trip lets. For example, th e  trip le t lens is constructed  by simply inserting 

a glass spacer between two thick lens singlets.

Additionally, whilst the  user may specify a fixed thickness for the spacer m edium , 

it is also possible to  ac tivate a thickness-solve. This operates in a sim ilar m anner to  the 

angle-solve discussed in C hap ter 6, but instead of causing the  surface curvature to  be 

modified during a raytrace, the  action is upon the  spacer thickness to  be modified to 

accord w ith the type and value of the selected solve. T here are two solves available:

1. A parax ia l p rincipal ray-height solve - the  thickness of the spacer is ad justed  to 

a value th a t  results in the intersection height of the  principal ray with the following

surface being equal to  the user specified value;

2. A parax ia l m arg inal ray-height solve - sim ilar to  the  above, bu t the thickness

solve applies to  a paraxial m arginal ray.

The form er may be used, for example, to  correctly  position the apertu re  stop  when it is 

not possible to  undertake design changes in the preceeding com ponents (solve value =  

0), and the la tte r  solve is often used to position the  final image plane a t the  paraxial, or 

gaussian, image plane (solve value =  0, also).

8.3 The Thick Lens

mm;

Probably the m ost prevalent and im portan t of all powered optical elem ents, the  thick lens 

may be considered to  be the baais for o ther complex lens com ponents, as shown in the 

previous section. It consists of two conical surfaces th a t bound th e  enclosed glass m edium , 

all of which are properties introduced into the  new class TThkLens th a t  is derived from 

TLens. In com ponent form, the thick lens provides property  editors th a t  allow the  user
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to  select the type and thickness of glass, and the various param eters th a t  both  identify 

and quantify the conical surfaces (see Figure 8.2), and which are originally supplied by 

the respective surface and glass classes.

SPHERE

Figure 8.2: Thick Lens in Lens E ditor

The ProcessRays m ethod im plem ented by the  TThkLens class is relatively simple, 

since m ost of the  processing actually occurs within the ray trace m ethods of the surface 

and glass types. A short section of the code is shown below:

for j := 0 to high(rays) do 
begin

if raysfj] is TPxRaySet then begin 
{now trace the rays}
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if diagnostics then begin
OutputAddStrC’Lens ’ + IntToStr(ndx));
TPxRaySet(rays[j]).outputrays; 

end;
surf1.transfer(rays[j]); 
surf1.refract(rays[j]); 
aspace.transfer(rays[j]); 
surf2.transfract(rays[j]); 

end
else if raysCj] is TRaySet then with TRaySet(rays[j]) do 
begin

for k := 1 to raycount do 
begin

{now trace the rays} 
surf1.transfer(ray[k]);
{call coating emalysis here} 
surf1.refract(ray[k]); 
aspace.transfer(ray[k] ); 
surf2.transfract(ray[k]); 

end; 
end; 

end;

There are three features of this code block tha t are worth highlighting:

1. The first of the two for... loops undertakes the raytrace of the paraxial rays^. This 

loop must be undertaken before any other in order to complete any necessary solve 

computations;

2. The second f o r . . .loop completes the raytrace by tracing all the finite rays;

3. the simplicity and efficiency afforded by the adopted lens model may be discerned

 ̂In order for a surface to support solves it is essentied that péiraxial rays precede finite rays during a 

raytrace. Thus, while the above procedure appears to treat both types of ray simultcineously, in actuality 

the procedure is entered for the first time with paraxial rays alone, éind later only finite rays wiU be passed 

to the procedure.
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by the com paratively few lines required by the ProcessRays m ethod. The core of 

each of the  above loops consists of only four lines th a t  include: the transfer of rays 

to  surface 1, followed by the refraction a t the sam e surface, transfer of rays across 

the aspace property, and finally the transfer and refraction of rays a t surface2.

8.4 The RefAlign

The source com ponent was introduced in the first section of th is chapter, and reference was 

m ade to  the  ra th er specialised finite rays called Reference Rays. T he RefAlign com ponent, 

th a t  we introduce here, is the only com ponent to properly utilise these rays. TRef Align is 

derived from TLensButton, but unlike previous com ponents its purpose is to  transform  all 

finite rays in such a way as to  realign the optical axis. This is best understood by referring 

to  Fig. 8.3 where an a rb itra ry  set of rays is shown on th e  left along with a designated

Original Rayset 

^  j^ R e f

z-axis Ref

Transformed Rayset

Figure 8.3: The action of TRefAlign upon Reference Rays and Ray-Sets

reference ray, R. W hen these rays encounter a RefAlign com ponent th a t  is tuned  to  a 

designated reference ray, the following actions will occur:
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1. RefAlign will determine the displacement vector of the reference ray, which is given

by

dispvec.assign(refray.posn.negative.);
i, e. the displacement vector dispvec is assigned the negative value of the ray 

position vector;

2. a matrix rotmat is assigned the value of a rotation matrix tha t corresponds to 

realignment of the refray with the z-axis, and then inverted, or

rotmat.VecAlignMatrix(refray.dim, z.vector); rotmat.transpose
where the transpose is equivalent to a matrix inversion when the original matrix is

orthogonal;

3. finally, all the rays in the ray-set are transformed, as in the code snippet below,

with rayset[k] do 
begin
posn.plus(dispvec); 
vector.matmult(rotmat);
if polvec <> nil then polvec.matmult(rotmat); 

end;

where each ray is displaced and then rotated. The resulting action leads to the 

reference ray having a directional vector of (0,0,1) and a positional vector of (0, 0,0), 

equivalent to a ray travelling along the z-axis. All other rays in the ray-set will 

maintain their exact positions and directions relative to the reference ray.

One other feature th a t is not shown is a Locked property. The RefAlign component, 

in common with other components, is capable of being used within a double-pass sequence 

(see final section of this chapter) where light may not only traverse the component in the 

normal direction, but it may also pass through the same component in reverse direction, as 

in when reflected by another component further along the sequence. In this circumstance 

the RefAlign component will save the transform matrix and vector until the rays return 

in double-pass mode. In this way the spatial realtionship between this component and the 

next is preserved, as it should be. Naturally, all components, including RefAlign are able 

to determine if rays are in double-pass, and so take suitable measures to compensate or 

modify their behaviour when in the ProcessRays method.
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Figure 8.4: A Simple Spectrograph

Consider the  case of a spectrograph based upon a simple prism (see Figure 8.4), 

where the optical axis is strictly  no longer defined after the  first prism surface. In such a 

situation  we may decide th a t  the de-collim ating lens (D) should sensibly be centred upon 

the original axial ray, and a t a wavelength corresponding to  the middle of the  waveband 

and in the  space following the prism, as shown in the  figure. This scenario may be easily 

created by the adoption of the following com ponent scheme, as shown in Figure 8.5, 

below. The source has been modified to  have a single reference ray with a  wavelength

SYSTEM 1

Figure 8.5: The Spectrograph Form

in the middle of the  specified waveband, while the  RefAlign com ponent has been tuned 

to  the  sam e reference ray. Axial rays th a t  commence a t th e  source may be shown to  pass 

through the system  and leave the RefAlign com ponent still travelling along the  z-axis, 

exactly as required (see C hap ter 10 for a m ore detailed analysis of a spectrograph).
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8.5 The Prism

In com m on with TThkLens, the prism class (TPrism) has two surface types and a  spacer, 

bu t unlike the  former the surfaces are of type TPleme. The TPlane surface offers two 

im p o rtan t properties th a t  makes it em inently suitable for inclusion within the  TPrism 
class:

•  the plane surface may be tilted , or ro tated  abou t the  z-axis;

•  it may also undergo an azim uthal ro tation abou t the  z-axis.

These properties are hidden from the user bu t are developed fu rth er internally in the  su r­

facing of several o ther properties th a t  have a more d irect relevance to  ones understanding 

of how a prism operates. These are:

1. Angle -  the apex angle of the prism;

2. T ilt -  the ro tation  angle of the first surface of the  prism with respect to  the  z-axis;

3. R otation  -  the  azim uthal ro tation  angle of the whole prism with respect to  the  z-axis;

4. Solve type -  usually, the designer has it in mind th a t the prism should o perate  in a 

particu lar m anner th a t  often makes it difficult to  construc t from single surfaces. In 

order to  remove this obstacle, the two most common operational m odes are offered 

to  the designer as com plete configurations:

(a) Exit Norm -  the inclination angle (tilt) of the first surface and the  prism apex 

angle are autom atically  set a t those values which will result in the  specified 

reference ray leaving the second surface perpendicularly;

(b) Min Dev -  the inclination angle of the first surface is au tom atically  set a t  th a t  

value which results in the reference ray entering and leaving the prism a t the 

minim um  deviation condition for the user specified apex angle;
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(c) None -  the  prism configuration is defined solely by the  user specified param eters 

of Angle and T i l t .

The prism properties th a t  the designer has to  select from are shown in Fig. 8.6, below.

Min D e v

Exit Norm  
Min D e v  
N o n e

Figure 8.6: Prism  in Lens Editor

8.6 The Double-Pass Components

r. *■ * »#' '

One of the  driving principles behind much of th is thesis is th a t  reality usually embodies 

within it a model th a t  is both simple and efficient, if only som etim es we could see it, 

and in a ttem p tin g  to model reality we should em brace those ideas th a t harbour germs 

of the  underlying tru th . T he double-pass com ponent is a necessarily artificial construc t 

th a t  a ttem p ts  to simplify w hat has, upto the  present tim e, been a complex m ethod for 

handling the  problem of light re-traversing optical com ponents.

The ‘unintelligent’ surface based model provides a singularly linear sequence of su r­

faces, where light appears to  be travelling in only one direction alone. If we are to  cause 

light to  reverse direction and pass more than  once th rough the sam e elem ent, then we m ust
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recreate tha t element futher downstream in suitably reversed form. This is burden enough 

for the designer, but if the element is not axially symmetric then the task of reversing the 

element becomes even greater. The approach taken by the component based model is far 

more intelligent, where the model is designed from the ground up to accommodate such a 

scenario.

The TLens class has two very important features tha t make possible the notion 

of having light re-traversing components in reverse sequence. Firstly, all descendants of 

TLens possess a method called reverse, which allows each component to undergo a mirror 

reversal of itself. Secondly, prior to tracing rays (ProcessRays) each component will check 

with the lens form to determine whether light is travelling in reverse direction, and will 

undertake to reverse itself if true. The Ref Align component, as we have already seen 

in a previous section of this chapter, also undertakes special procedures to ensure correct 

and proper behaviour when positioned within a double-pass sequence.

There are two components tha t define a double-pass sequence, both of which have 

no published properties and so cannot usefully be viewed in the lens editor. More cor­

rectly, these components are used as flags, one to indicate the beginning of a double-pass 

sequence and another to indicate the end, although they both have an identity tha t is 

individually unique. The best way to illustrate how these components operate is by way 

of example. Consider a sequence of characters, as shown below, 

. .A,B,X, (C,D,E) ,Y,F,G. .  

where each character represents an optical component, but the letters X and Y represent 

the start and end points of the double-pass sequence, which in this case contains the 

sub-sequence (C,D,E).  A ray of light that were to traverse this sequence would ‘see’ the 

components in the following order:

. .A,B,X,(C,D,E,Y,D,C),X,F,G. .

i. e. the sub-sequence is reflected about the component, E. Figure 8.7 shows a rather con­

trived lens system tha t illustrates more clearly the power of the double-pass components.

The components A,C,D,G are single lenses, B is an optical axis displacement compo­

nent (for brevity, this component has not been included in this thesis), and F i s a  Ref Align 
component. It is quite clear that the two singlet lenses (C,D) are in double-pass mode as 

defined by the presence of the double-pass components X and Y, and initiated by the ac­

tion of the mirror surface E. In fact, the component sequence given above is an accurate
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Figure 8.7: A Double-Pass Sequence of Lenses

representation of the com ponent description within the  figure, ignoring the absence of 

air-spaces. The sequence of events th a t  the ray encounters as it passes through the  system  

is as follows:

•  an axial ray passes through lens A,

•  the com ponent B laterally transla tes the optical axis in preparation for the decentred 

lenses C and D,

•  the D oupleP ass com ponent X signifies the beginning of the  double-pass sequence,

•  the  ray progresses through lenses C and D and is then reflected by m irror E,

•  the presence of the  EndDouble (Y) com ponent causes the  ray to  reverse direction 

and reverse the  sequence,

•  lenses D and C are encountered next, each one detecting th a t  the ray is in double-pass 

mode and accordingly reversing its shape,

•  the  D oubleP ass com ponent (X ')is encounterd once again, indicating th a t  the  reverse 

sequence is now concluded. The sequence now continues a t  the com ponent following 

EndDouble,

•  a Ref A lig n  com ponent (F) is introduced here so th a t  a new optical axis is created 

along the sam e ray th a t in itiated  the ray trace,
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•  finally, the ray traverses the lens G, and concludes our ray journey.

How does all this take place, and who or what is waving the baton? This is the subject 

of the next chapter.
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C h a p t e r  9

O p t i c a l  S y s t e m  P r o c e s s e s

In this chapter we shall be reviewing those processes tha t exist at a level higher than 

those tha t might otherwise take place within the realm of the components described in 

the previous chapters. The system-level processes are what is required to breathe life 

and activity into otherwise static and directionless components. For instance, while we 

should now understand how all lens components are constructed and how they manage 

to uniquely define their own particular behaviour in respect of raytracing (ProcessRays), 
there still remains several questions that have direct bearing upon the final orchestration 

of all these processes, i. e.

•  Is the system, or sequence of components as defined by the designer, a physically 

valid one?

•  As described in the previous chapter, a lens sequence may not necessarily be a 

linear sequence, in which case how is the sequence coordinated, i. e. what is it that 

determines the sequence throughout the raytracing process?

•  How are the rays to know their initial positions and directions, and what is it tha t 

launches them on their way?

•  Finally, however the raytrace might be concluded, how is the image information to 

be obtained?

The answers to these questions are to be found in the following sections of this chapter, 

but before we embark upon this final leg of our journey it is probably opportune to review
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the  various stru c tu res and classes th a t  have been the  so-called stepping stones th a t  have 

brought us to this point.

F igure 9.1 shows a hierarchical s tru c tu re  th a t  depicts TApplication (the m ain ap­

plication as seen on the com puter m onitor) a t the  head and several o ther recognisable 

classes th a t  cascade down to  ever lower, or m ore prim itive structu res. The LensForm is

Visible Visible

Invisible Invisible
TLens

TGIass

TToolBar

TSurface

TLensEditorTLensForm

TApplication

TLensButton

Figure 9.1: Hierarchical s tru c tu re  of the  IRIS program

the visible m anifestation of the  lens system  (see Section 5.2), while the  various com ponents 

of the  lens system , (including all lenses, source, stop, image plane, etc. ) are represented 

by the  TLensButton speed-buttons (see Section 5.3), th a t  populate the LensForm when 

selected from the ToolBar, according to  user requirem ents. The heart of each lens com po­

nent is the TLens class, which is also the repository of the fundam ental prim itive s tru c tu res  

th a t all com ponents are derived from. It is in the TSurface and TGIass classes th a t  the 

real number-crunching  takes place, where rays are transform ed from one optical space to 

another, and where the imaging process becomes m anifest.
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But what is the ultimate driving force behind these processes? As in the age old 

question of what it is tha t drives a human being to his or her ultimate destiny, do we assign 

such a force to the whimsical (or not) notion of fate, or do we attribute it to our unique 

quality tha t we call ‘freedom of choice’? And if it is the former, do we presuppose, as the 

early Greeks did, tha t the Fates spun the destiny of mankind into an elaborate tapestry, 

or if this seems too complicated and contrived then do we create a God in Whom we place 

our destiny but Whose purpose is not available to us for scrutiny? These philosophical 

ideas also have their place when we try to consider what is the motivating force behind a 

simple raytrace. There are two possible solutions:

1. There is no external force beyond tha t of the lens component, as represented by 

TLensButton and its subordinate classes. Instead, each lens component is imbued 

with a self awareness (if tha t doesn’t appear too pretentious) tha t enables it to 

provide the correct response in any given circumstance;

2. The lens component is allowed to process rays, as tha t is its speciality, but the 

interpretation of the correct sequence, amongst other matters, is the prerogative of 

some external agent.

Both solutions have been considered in depth by the author, but not even the reality of the 

situation offers any clue as to which should be the final choice. Initially, the lens component 

was designed to be a complete and separate entity, complete in tha t all methods or modes 

of operation were self-contained, and separate in tha t it could not be considered to be an 

active part of a greater whole, except by association. In this way, according to the author, 

the lens component was as near to a true lens as it could possibly be. If this model was 

to be further extended to encompass the idea of a free-running system then an alternative 

approach was required.

In the same way tha t each lens class implements its own unique set of instructions 

within the ProcessRays method, it was decided tha t the Source component should also 

have some behaviour tha t would uniquely identify it as the instigator of such system-wide 

events as raytrace initiation. The source was chosen over other lens components because, 

quite naturally, this is where we expect rays to originate from. Rather than use a form- 

based menu structure to display the options, a selective pop-up menu is designed to appear 

when the source component is right-clicked, which is the currently accepted practice for
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Windows 95 applications; see Figure 9.2. As the figure shows, the pop-up menu invites

SYSTEM2

Trace Un 
SpotD

■ ■■

<

Figure 9.2: The Source Pop-U p menu 

the  user to  select one of the five available options:

•  print com ponent d a ta  to  the  ‘Textual O u tp u t’ window. This menu item  is also

available to  all o ther lens com ponents;

•  check if the sequence of com ponents is a valid sequence;

•  as above, bu t also initialise and trace the  m arginal and principal paraxial rays;

•  as above, bu t also trace all the finite rays as defined by the  user;

•  displays spot diagram s in the ‘Spot D iagram ’ window (see Figure 10.5).

T hough it appears th a t  all of these routines are actioned by the  source com ponent alone, in 

fact the  source com ponent will call routines th a t  are really located w ith in  the  LensForm, 

since the  LensForm is the  parent of the  source and so will have access to  all com ponents 

th a t  reside w ithin the  form. The following sections will describe in detail how some of 

these menu options are im plemented.

9.1 Validating the System

D espite the  designer having com plete freedom to arrange the  lens com ponents in any

particu lar m anner, it is not necessarily the  case th a t the sequence will be a valid one.
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During the initial development period of the IRIS program it became necessary to decide 

whether the program should actively encourage the user to construct only valid sequences, 

or not. Active encouragement would take the form of the program vetting each component 

as it was dropped onto the form, or moved from one location to another, and allowing 

at each stage only a valid sequence to exist, i. e. refusing to accept an editing operation 

tha t would result in an invalid system. Ultimately this form of ‘censorship’ proved too 

restrictive and did not allow for an interim invalid sequence as a prelude to a final valid 

sequence, and accordingly this routine was dropped. The preferred solution proved to be 

much simpler and more forgiving, and is summarised by the following points:

1. a sequence, in the initial stages (prior to raytracing) could be formed from any 

number of lens components in any order;

2. a valid sequence must start with a source-component and end with a detector- 

component;

3. a valid sequence may exist within an invalid sequence

So, what is a valid system or sequence? Probably the most im portant feature of a valid 

sequence is tha t all the interface conditions for every component are unambiguously re­

solved, and this implies tha t each component must be aware of an external medium, and 

its corresponding refractive index, whether it ‘looks’ to the left or to the right of itself. 

Recall tha t in order for the component-based model to be successful it was necessary that 

each component should have an existence tha t would be independent of any other compo­

nent. For instance, if we were to remove a single lens from a series of lenses, where each is 

separated from the other by an air-space, then we would expect th a t what remained would 

still be a valid system, even if its characteristics had changed. In other words, where the 

lens had once been we would not now expect there to be a volume of space tha t had no 

definable properties. In order to correctly resolve this possible incongruity, and yet retain 

the guasz-intelligent approach that we have come to expect from an object-oriented stance, 

it became necessary to instill within each component the ability to query its neighbours 

for a proper understanding of how the refractive interface is comprised. Consider the fol­

lowing scenario; a sub-sequence is defined by the following components, (see Figure 9.3): 

a spacer (air), an aperture stop, a lens, and another (air) spacer. While it is obvious 

tha t the lens ‘sees’ a glass/air boundary to the right of itself, how does does it manage to
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Figure 9.3: An Exam ple of C om ponent Interfacing

resolve the refractive boundary to the left, where its im m ediate neighbour is a s top  th a t  

has no associated medium? In very simple term s, the  lens undertakes a  conversation along 

the following lines:

L en s: (Question) To the com ponent to the left of me, w hat is your medium?

S to p : 1 do n ’t have a medium, bu t I’ll ask the com ponent to  the left of me the sam e 

question;

S p a c e r :  My medium is air;

S to p : (Answer) My medium is air.

In such an apparently  trivial fashion the lens m anages to obtain  a knowledge of the  refrac­

tive boundary, thanks to  the  cooperative natu re  exhibited by its neighbouring com ponents. 

B ut it doesn’t stop  there, since there is also ano ther am biguity th a t  requires resolution, 

and th a t  is in the  surface interface between th e  stop  and the  lens. If the  stop  is considered 

to  be a  plane surface with a central apertu re  (the default case), then a ray proceeding 

from the edge of the  ap ertu re  tow ards the lens m ust apparently  traverse a  space th a t  we 

would assum e to  be air. If it is the case, then th is exam ple would be equivalent to  having 

an air-space com ponent of zero thickness interposed between the  stop and the lens. Is this 

equivalence to  be allowed, or should some o ther in terp re ta tion  be adopted? T he solution 

to  th is problem lies in an often quoted draw back associated with some of the sim pler 

ray trace program s, th a t  is, w hether it is possible to  have a stop  th a t  is coincident w ith a
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lens surface, i. e. can the stop be ‘painted’ on the lens surface? Such a stop is allowed by 

the IRIS program according to the following circumstances:

•  if the previous component has an associated surface then the stop-surface will be 

identical, else

•  if the next component has an associated surface then the stop-surfaoe will be iden­

tical, else

•  the stop is a plane surface.

Applying this reasoning to the case cited above, it becomes clear tha t the stop is actually 

located at the first surface of the lens.

Thus, by employing the above two techniques for both surface and interfacial media 

allocation, it is possible for all components to initialise themselves prior to raytracing. In 

this light, system validation is simply a call to each component in the sequence to initialise 

itself, in the following manner;

if not lens[j].initialise(Msg) then begin 
Msg := Msg + ’ : Initialisation error at

component #’ + IntToStr(j); 
MessageDlg(msg,mtError,[mbOK],0); 
exit; 

end;

The initialise function accepts a message-string parameter and returns a boolean value 

(true/false). If it returns false then Msg contains an error string from the offending 

component, which is then concatenated with the Initialisation error... string and 

placed within a Windows style dialogue box.

It was stated earlier tha t the major factor in achieving a valid sequence was that 

all components should be capable of successful initialisation, but there is also one other 

more obvious factor tha t relates directly to the allowable configurations imposed by certain 

components. In locating a sequence, the program searches for the first available source and 

detector, and these two components will mark the begining and ending of the sequence.
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W hat then follows is a series of ‘interrogations’, the aim of which is to locate those more 

obvious errors, such as:

•  Is there more than one source? (not allowed)

•  Is there a stop? (necessary)

•  Is there more than one stop? (not allowed)

• Is there a dispersing element before the stop? (not allowed)

• Are there any coordinate transform components before the stop? (not allowed)

•  Are the double-pass components correctly configured?

...and finally, as already discussed above:

•  Do all components initialise successfully?

The above interrogation is signalled by a call to the IsSystemValid function, a method 

provided by the LensForm which, naturally, returns a boolean value.

9.2 The Lens Sequencing Algorithm

The sequencing algorithm is at the heart of all raytrace operations, whether it is paraxial 

rays, finite rays, or both types of rays being traced. The purpose of the sequencing 

algorithm is to ensure tha t the ProcessRays method of each component within a valid 

sequence is triggered in the correct sequence. Recall tha t ProcessRays is implemented 

differently from one component to another, and tha t while it triggers a source component 

to generate the appropriate paraxial and finite rays, a lens component will interpret it to 

mean tha t it should transfer the rays from the first surface to the second surface using the 

specified transfer and refraction methods supplied with the lens component.

The final section of the previous chapter discussed the double-pass components and 

illustrated how a physical sequence in the lens form could be transformed into a very dif­

ferent logical sequence when double-pass components were involved. The presence of the 

double-pass components within a valid sequence results in a non-sequential flow of rays
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along the component chain, and some means to  control this flow is required. Two possibil­

ities presented themselves during the initial stages of the IRIS development programme:

1. The data-flow could be controlled at the component level, where each component 

is capable of deciding whether optical rays are to be passed forwards or backwards 

within the sequence.

2. The LensForm, as the parent of all components within the form, could take external 

control of the sequencing, much in the same way as a musical composer determines 

what instrument is played, and when, within an orchestral framework.

Both solutions were considered to be equally complex in their application, but ultimately 

the second proved to be more adaptable and manageable, for the same reason tha t a 

conductor stands outside the orchestral assemblage: complexity is much easier to manage 

when it is viewed from an external vantage point (although it must be said tha t the 

idea of an autonomous lens component is much more appealing). The LensForm is just 

such a vantage point and so the principal routine tha t drives the sequencing operation, 

ProcessSequence, is located within the LensForm code module. The relevant portions of 

this procedure are shown below.

procedure TLensform.ProcessSequence(endndx:integer); 
var

srcndx,stpndx,detndx,ndoublendx: integer;
Ins,tmplns,tmplns2,tmplns3:TLens; 
doublepass:boolean;
Msg:string; 

begin
if not IsValidSystem then exit;
{Get positions of source, detector and stop} 
srcndx := GetALens(TSource,l,MaxLenses).ndx; 
detndx := GetALens(TDetector,srcndx+l,MaxLenses).ndx; 
stpndx := GetALens(TStop,srcndx+1,detndx-1).ndx;
{if necessary, assign predefined components to endndx} 
if (endndx = 0) then endndx := detndx 
else begin
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case endndx of
THESTOP : endndx := stpndx;
THEDETECTOR : endndx := detndx; 

end; 
end;
{check if endndx lies within the sequence} 
if (endndx <= srcndx) or (endndx > detndx) then 
begin

Msg := ’Terminating component (#* + IntToStr(endndx)
+ ’) is outside sequence’;
NessageDlg(msg,mtError,[mbOK], 0 ) ; 
exit; 

end;
doublepass := false;
Ins := lens[srcndx];
ActiveSource := Ins; 
try
{this is the RayTracing loop} 

repeat
Application.ProcessMessages; 
tmplns := Ins ;
Ins.ProcèssRays([mPxRays.mRefRays,mRays]);
if (Ins is TDetector) or (Ins.ndx = endndx) then break
else begin

if (Ins is TEndDouble) and doublepass then 
begin

end
else if (Ins is TDouble) and not(doublepass) then 
begin

end
else
begin
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if not doublepass then Ins := Ins.next 
else Ins := Ins.previous; 

end; 
end;

until (Ins = nil); 
except on E:Exception do 
begin

E.Message := E.Message + #13 +
’ProcessSequence failure at component #’
+ IntToStr(tmplns.ndx); 
raise; 

end; 
end; 

end;

The ProcessSequence procedure accepts a single param eter:(endndx:integer), where 

endndx denotes tha t component index at which raytracing is to be terminated. The first 

few lines of the procedure cover purely axdministrative tasks, such as checking whether the 

system contains a valid sequence, and assigning an appropriate value to endndx in the 

case where endndx refers to predefined constants: THESTOP = -1 and THEDETECTOR = -2; 
endndx may also refer to any other component index within the valid sequence.

The main body of the routine lies within the repeat...until block of code. Prior to 

entering this block, the Ins variable is set to the first component of the sequence, which 

is always a source component, and so the first the loop executes the line Ins.Process­
Rays ( [ . . . ] ) ,  resulting in the generation of optical rays tha t are then directed towards 

the next component in the sequence. If there were no double-pass components within the 

sequence, then the loop would continue to return to this line until the end of the sequence 

was reached, i. e.

repeat
Ins.ProcessRays([mPxRays,mRefRays,mRays] ); 
if (Ins is TDetector) or (Ins.ndx = endndx) then break 
else Ins := Ins.next; 

until (Ins = nil);
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Execution will exit the loop when either the detector component or the component with 

index of endndx is reached; while in other unforeseen circumstances, the loop will terminate 

when no other valid lens is available. The presence of double-pass components inside 

the sequence introduces considerable complexity within the main loop, where the prime 

purpose of the extra code is to update book-keeping chores and determine whether rays 

are to be transferred to the next or previous component.

9.3 Pupil Location

Virtually all conventional optical systems possess an aperture stop (iris) whose function 

it is to limit the size of the bundle of rays as it traverses the optical components that 

comprise the lens system. In some cases, such as binoculars or even holographic viewers, 

the entrance pupil is defined by the pupil of the eye that is viewing the scene. Alternatively, 

where normal Gaussian imaging becomes unnecessary, as in solar concentrators (see [15]), 

then the elements themselves will ultimately act as the final limiter for the incoming bundle 

of rays.

To the uninitiated, the positioning of an aperure stop within an optical system (or 

even within close proximity to an optical system) may seem arbitrary, or at best not well 

understood. In fact, the aperture stop performs two very im portant functions:

1. It provides an extra degree of freedom when designing a lens system. The position 

of a stop within an optical system determines the incident ray height and angle of 

the principal ray at every optical surface within the system, and since the principal 

ray is at the centre of the ray-bundle^ then all other rays disposed about it must 

also be affected. The movement of the stop in one direction or another will usually 

result in minor changes to the Seidel aberrations which, in conjunction with other 

system variables, might be sufficient to improve the correction of an optical system^.

2. In some instances it allows the optical designer to indirectly ‘control’ those aberra-

 ̂In real optical systems that operate at leu*ge Aeld-angles the principad ray is not usuaiUy coincident with

the centre of the ray-bundle, and in such cases the term centre ray is often employed to denote the actual

ray at the centre of the ray-bundle.
set of formulate have been devised, generally known as the atop-shift form ulae, that predict the

vairiation of the Seidel aberrations with change in stop position; see Ref. [11], Ch. 7.5 for a detatiled

derivation of these formulae.
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tions at the margin of the ray bundle. In general, the optical designer’s goal is to 

ensure tha t all rays converge as near as possible to a single image point, ignoring 

for the moment those aberrations tha t are related to field curvature or distortion. 

This task is comparatively simpler for those rays at the centre of the ray bundle 

than it is for rays at the periphery. In addition, as the image (or object) moves away 

from the optical axis then these aberrations will also increase, and more so for the 

peripheral rays. The usual approach to controlling these ‘rogue’ rays is to remove 

them altogether, and this is accomplished by allowing one or more optical elements 

to vignette these rays. Since lens elements are of finite size, then as the field-angle 

increases the ray bundle will be seen to traverse the extent of the lens aperture until 

the periphery is reached and at which point rays will become increasingly vignetted 

as the field-angle increases further. Thus, by correctly placing a stop relative to 

some other lens element(s) it becomes possible to reduce the otherwise deleterious 

effects of the peripheral rays.

There is nothing mysterious about how a raytrace is initiated. If we were to mimic 

the real world then we would choose to send a great many real rays in the general direction 

of the lens and hope tha t a sufficiently large number would be transm itted through to the 

final image plane. Naturally, all these rays would have ideally originated from a single point 

on the object plane, and the only really useful rays would be those tha t successfully passed 

within the clear apertures of the various optical elements. This approach is somewhat hit- 

and-miss. A better approach is to determine the position and size of the entrance pupil^ 

by tracing two paraxial rays; a paraxial principal ray will determine the position of the 

pupil, while a paraxial marginal ray will determine the extent (in angular terms) of the 

pupil.

Once this information has been obtained, real rays may then be constructed tha t 

will originate from the chosen object point and be directed in some manner that will 

almost guarantee their successful passage through the optical system, whilst also ensuring 

tha t they pass within the periphery of the iris, A typical ray generation scheme attem pts 

to send rays towards the pupil in such a direction as to intersect the pupil in a regular 

rectilinear grid, or alternatively two ray-fans may be constructed tha t intersect the pupil

^The entrance pupil is the image of the iris c is  seen from the object-side of the lens; conversely, the exit 

pupil is the image of the iris as seen from the image-side of the lens.
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along the local x and y coordinate axes^. These ray-fans are referred to as the sagittal and 

tangential planes. The tangential plane remains constant from surface to surface, but the 

sagittal plane almost invariably is not.

The implementation of the pupil location algorithm is comparatively trivial, as it 

employs a simple one dimensional search based upon the Newton-Raphson method (see 

Ref. [16], Ch. 9.4). For the special case of an object at infinity, the initial starting condi­

tions of the paraxial ray are a convergence angle equal to the field angle, and an arbitrary 

intersection height at the first surface of zero. A programmatic loop is then entered that 

traces the ray through to the stop or iris plane, and this is then repeated within the 

loop for another starting ray height that is incremented by a very small amount. The 

difference in ray height at the stop plane is then used to obtain a derivative from which 

an improved starting height is calculated. The loop is continuously repeated until the 

paraxial principal ray intersects the stop plane at a value approaching zero. The routine 

as shown below is fairly robust, i.e. it will converge in virtually all cases, since the paraxial 

raytrace equations represent simple monotonie functions. When the position of the pupil 

is finally ascertained it is a simple matter to construct real rays tha t are directed towards 

this plane, employing one of the ray generation schemes described above.

procedure pxInfinityInit(rayl,ray2:TPxRay; src,stp:TLens); 
const
dh = le-9; 

var
count,stpndx: integer; 
n,u,h,dy,y,MidWvl: ext ended;
Ins :TLens;
If rTLensform; 

begin
{obtain the form that owns the lens components}
If := TLensformCsrc.owner); 
stpndx := TStop(stp).ndx;
{get the mid-wavelength}
MidWvl := TSource(src).MidWvl;
^The y-axis of a surface is orthogonal to the axis of symmetry (z-axis) eoid lies in the pl«uie that contains 

the z-axis and the object point.
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{get the field angle in radians} 
u := -ArcSecToRad(TSource(src).ObjHt);
{initialise the two paraxial rays} 
rayl.init(l,u,MidWvl); 
ray2.init(TStop(stp).epr,0,MidWvl); 
h := rayl.h;
If.ProcessSequence(stpndx); 
y := rayl.h; 
count := 0;

{repeat until the ray height at the stop is < dh} 
while not(Equal(rayl.h,0,dh)) do begin 
h := h + dh; 
rayl.init(h,u,MidWvl);
If.ProcessSequence(stpndx); 
dy := rayl.h - y ; 
n := y/dy;
h := (h - dh) - n * dh; 
rayl.init(h,u,MidWvl);
If.ProcessSequence(stpndx); 
y := rayl.h; 
inc(count); 
if count > 100 then
raise Exception.create(’InitPxRays - convergence error!’); 

end;
{set Stop aperture}
TStop(stp).surface.aperture := ray2.h;
{set paraxial rays to their new initial values} 
rayl.init(h,u,MidWvl); 
ray2.init(TStop(stp).epr,0,MidWvl); 

end;

143



9.4 Other System  Processes

The principal system processes have been described above, and though they are funda­

mental to all forms of optical system analysis, there are also several other less im portant 

routines tha t have significant rôles to play. These are not described in detail here, but the 

singular case of ray aiming will be briefly discussed below.

There are two distinct cases tha t need to be considered when designing a ray aiming 

routine: i) Infinite Source, and ii) Finite Source. The first case is relatively simple to 

handle since the directional vectors of each ray are equal prior to the first surface, while 

the spatial coordinates of the rays are set to some coordinates at the pupil plane: either a 

rectilinear grid if a spot diagram is the final outcome of the raytrace, or to various points 

along the local x and y axes if a ray fan analysis is required. The case of the finite source 

differs in tha t the directional coordinates of each individual ray will need to be determined, 

since each ray vector will have a unique value.
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C h a p t e r  10

E v a l u a t i o n  o f  M o d e l

The previous chapters may be considered as a narrative, setting the scene, so to speak, 

for the real expression of those ideas and architectures tha t have underpinned the basic 

premise of this thesis: that current software models in the field of optics are comparatively 

simple, and tha t they may be much improved by the harnessing of modern concepts 

of modelling (OOP) tha t are becoming increasingly prevalent in current state-of-the-art 

software development tools.

The purpose of this chapter is to provide proof-of-concept for the model described 

within these pages. This will take the form of several tests, where each will provide results 

tha t either may be compared against theoretically obtained data  for the system under 

test, or against similar results obtained from a commercial lens design program, which 

in this case will be Zemax v6.0. The subject of these tests will naturally be the IRIS 

program, developed by the author over a period of two years, initially in Visual Basic but 

latterly converted to the Object Pascal language. All of the modules and components that 

have been described are included in this program, although several other components were 

developed but not considered complete or stable enough to warrant inclusion.

The simple spectrograph, as depicted in Figure 8.4, presents several major hurdles 

tha t IRIS must successfully negotiate:

1. Raytracing through simple lenses: the first lens of Figure 8.4 is required to collimate 

the light from the source for the subsequent prism to operate correctly. This will 

test the solve capabilities built into the lens component;
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2. Configuring the prism: the normal configuration of a spectrograph requires th a t the 

prism operate at minimum deviation, or tha t the incidence angles of the input and 

output beams (at a particular wavelength) at their respective prism fcices are equal 

to one another. Such a disposition results in the image of the source slit being free 

from astigmatism. Unfortunately, at the time of writing this facility had not been 

successfully implemented on the prism component, and so the prism will need to be 

configured manually;

3. Retrieving the new optical axis following passage through the prism: the task of 

positioning the decollimating lens is maxie far simpler if the specifying coordinates 

are referenced to the deviated optical axis. This will be a test of the Ref A lign 

component;

4. Decollimating and focussing the output beam: the final imaging lens is required to 

bring the dispersed and collimated beam to a focus. As in 1), this facility will be 

provided by the solve capability of the lens component. The positioning of this lens 

is much simplified with the introduction of the Ref A lign component. Finally, the 

air space between the decollimating lens and the detector will need to be adjusted 

such tha t the detector is accurately placed at the focus. The Spacer component 

provides a solve that will ensure that this is the case.

The final test for IRIS is probably the most rigorous and concerns the modelling 

of a simple spectrograph conforming to the Littrow design. This system particularly will 

test the capabilities of the Double-Pass components in an environment where the optical 

axis is deviated by the presence of a refractive prism (see Figure 10.5).

The verification of the model, and the program code tha t supports it, will be un­

dertaken in stages, each one corresponding to those items listed above. D ata from the 

raytrace is made available on-screen within a text window th a t has been designed solely 

for this purpose. The screen-shot in Figure 10.1 shows this window with the caption ‘Tex­

tual O utput’. The data  in this window, created directly from the raytrace routines, will 

be compared to the results obtained from direct calculation. The final test will provide 

a set of results in spot-diagram form (also shown in the above figure), and these will be 

compared to the spot-diagram analysis performed by Zemax on an identical system.

Since the primary impetus for this work had its origins in spectrograph analysis,
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both finite rays and principal rays have been im plem ented. It is the  la tte r rays th a t  

will provide spectral inform ation when they are created a t  differing wavelengths. Thus, 

when the source com ponent is edited to  provide several spectral lines, in actuality  several 

sets of principal finite rays (each set com prising of three individual rays) will be created 

a t the  required wavelength interval, and where each principal ray in a chrom atic set 

will correspond to  the two ends and the  centre of each spectral line. A lternatively, the 

main purpose of the finite rays is to  provide a set of rays (approxim ately 100) th a t  are 

constructed  to  fill  the entrance pupil. These pupil-rays are created for each of the principal 

rays m entioned above, i.e. a  set of pupils-rays for each wavelength and point on the object 

slit. Pupils-rays are employed in the  creation of the  trad itional spot-diagram  analysis, a 

feature th a t  will be exploited in the final test.

10.1 Raytracing Through Simple Lenses

#

Figure 10.2: A rrangem ent of C om ponents for Test # 1

T he first test involves those com ponents shown in Fig. 10.2, com prising a line source, an 

air space, an iris (stop), a  spacer, a  lens, ano ther spacer and a detecto r (image plane) 

com ponent. The source and lens com ponents are configured as follows:

SOURCE (Component #1)

Distance
Minimum Wavelength

99.0mm
486.132 nm (F line)
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Primary Wavelength 
Maximum Wavelength 
Reference Wavelengthl 
Slit Length 
Slit Angle 
Number of Lines

= 587.561 nm (d line) 
= 656.272 nm (C line) 
= 587.561 nm (d line) 
= 2.00mm 
= SO.OOdegs 
=  1

LENS (Component #5)

Thickness = 0.0mm
Diameter = 10.00mm
Glass = BK7
Radius #1 = 1E99 (piano)
Radius #2 = 1E99 (piano)
Solve Type = u_marg
Solve Value = 0.00

while the remaining components are set-up as below:

Component #2, Air Space, Thickness 
Component #3, Stop, Aperture Radius 
Component #4, Air Space, Thickness 
Component #6, Air Space, Thickness 
Component #8, Detector, Radius

= 1.00mm 
= 5.00mm 
= 0.00mm 
= 20.00mm 
= 9E99mm (piano)

The salient points of the above system may be summarised in the following way:

1. the source is positioned 100mm from the lens stop;

2. the slit is 2mm in length and is orientated to be coincident with the local r-axis;

3. the entrance pupil radius is 5mm;

4. the stop is coincident with the first surface of the lens, which is a plane surface;

5. the second surface of the lens has a solve placed on it; this solve will alter the radius 

of curvature of this surface to provide a marginal paraxial ray with a convergence
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angle of w =  0, i. e. the diverging beam tha t originates from the source is collimated 

(made parallel);

6. the lens has zero thickness, which for the purpose of a paraxial raytrace is referred 

to as a thin-lens.

The raytrace is initiated by right-clicking the source component and selecting ‘Trace 

Lines’ from the pop-up menu. Automatic generation of output results by each component 

as the rays progress from one component to another is available to the user by ensuring 

tha t the menu item ‘Options — Diagnostics’ is checked; when this is so, each component 

will report the state of both paraxial and finite rays to the Textual O utput form tha t is 

supplied by IRIS as default.

The first result of interest concerns the solve placed on the second surface of the 

lens. Raytracing of any component with a solve will automatically cause the appropriate 

parameter to be re-calculated so as to satisfy the solve criterion, and in this case the 

surface is adjusted to provide a collimated beam as the rays leave the lens. The new 

radius of this surface is obtained by dropping the lens onto the Lens Editor, which shows 

a value of -51.68mm, where prior to the raytrace it was 9E99mm. That this is the correct 

value may be shown by using the following thin-lens formula (see Ref. [11], p35, Eq. 3.56):

i  = („ _ 1) (1 _ 1) (10.1)

. . .  where 1 / f  is the inverse of the focal length (equivalent to the lens power, K ), 1 /r  is 

the inverse of the surface radius (or curvature, c) and n is the refractive index of the lens 

at the wavelength at which the rays are traced. In the test configuration used above, 

/  =  100mm, 1 /r i =  0 and n =  1.51680. Substituting these values into the above equation 

results in T2 =  —51.680, in exact agreement with IRIS.

The paraxial raytrace results at the detector (component #7 ) are also given below:

Ray Type Height(mm) Angle(rad)
Principal -0.20 -0.01
Marginal 5.00 0.0

We may glean several im portant facts from this data: firstly, the principal ray angle is 0.01 

radians, which corresponds to the subtense of half the slit length at the lens, i. e. 1/100;
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secondly, the principal ray height at the detector is -0.20mm, equivalent to the product of 

the final air-space thickness and the principal ray angle, 20 X  —0.01 =  —0.2; and thirdly, 

the marginal ray height is 5.0mm, the same value as the entrance pupil radius, as it should 

be if the beam is collimated. Collimation of the beam is also indicated by the value of the 

marginal ray angle (= 0).

In addition to paraxial raytrace results, IRIS also provides finite raytrace data  at 

the detector for those finite rays generated by the source. Since the source was configured 

to provide just one spectral line, then only three finite principal rays are traced. The finite 

raytrace data  from the previous run is shown below.

Ray X Y Z L M N
Top 0.2 0.0 0.0 0.01 0.0 0.999950
Middle 0.0 0.0 0.0 0.0 0.0 1.0
Bottom -0.2 0.0 0.0 -0.01 0.0 0.999950

The above data corresponds very closely with the paraxial data  presented in the previous 

paragraph. Again, the principal ray heights for the top and bottom of the slit are identical 

to the paraxial case (X =  ±0.2mm), while the L-direction cosine is also identical {L = 

iO .Olrads). In general, ray data from equivalent paraxial and finite rays do not agree 

with one another, but in this case the finite principal ray angle with the optical axis is so 

small (0.01 rads) tha t it may indeed be considered as a paraxial ray.

10.2 Configuring the Prism

Having established tha t the beam exiting the lens is collimated and tha t the principal 

rays emanating from the slit are in accord with our expectations, the next step will be to 

introduce a dispersing prism. This time, instead of tracing a monochromatic set of slit 

rays, a chromatic set will be employed. This set will comprise of three rays at the minimum 

wavelength, as specified by the source component, and three rays a t the maximum and 

mid- wavelengths. Since we are concerned only with the mean deviation and the chromatic 

dispersion of the beam, only ray data for the (slit) centre rays will be presented.

The layout of the new scheme is shown in Fig. 10.3 while the prism specification is
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Figure 10.3: A rrangem ent of C om ponents for Test # 2  

described by the following:

PRISM (Component #7)

Angle
Thickness
Tilt
Rotation
Glass
Reference Wavelength

= 45degs 
= 20.0mm 
= 22.5degs 
= Odegs 
= BK7 
= 1

The initiation of a ray trace produces the  following results:

Ray X Y Z L M N
MinWvl 0 -12.931 0 0 -0.469048 0.883173
PrmWvl 0 -12.761 0 0 -0.463406 0.886146
MaxWvl 0 -12.686 0 0 -0.460907 0.887449

The angular deviation of the  axial ray a t the  m id-wavelength is given by arccos(0.886146) =  

27.60712°, while the  angular dispersion is given by arccos(0.883173) — arccos(0.887449) =

0.52689°. These sam e values may be derived theoretically  from the  following equation 

([17]) th a t  predicts the  angular deviation of a ray (D ), given the incidence angle on the 

first face (0), the prism apex angle (o-) and the  refractive index of the  prism (n).

D  = 9 arcsin sin — sin^ 9) — sin 9 cos a -  O f ( 10.2)
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Substituting the following values: a  =  45°, 0 =  22.5° and n =  1.51680, the mean angular 

deviation is calculated as Z) =  27.60711°, virtually identical to the result obtained from 

the raytrace data. Using the same equation again, but this time calculating the value of 

^>^min ~ ^>̂ max l^ads US to a value for the chromatic dispersion, SD\:

6 D x  = 27.97235 -  27.44548 =  0.52687°

. . .  essentially identical to the raytrace obtained value of 0.52689°, allowing for six-figure 

round-off errors in the above calculations.

10.3 D ecollim ating and Focussing o f the O utput Beam

The collimated beam that is leaving the prism is now required to be focussed onto the 

detector. This poses two problems:

1. the beam has been deviated by the prism and makes an angle of approximately 27° 

with respect to the original optical axis. The placement of a lens in this beam is 

complicated by the fact that the positional component becomes a function of both 

y and z, and we also have to consider the generalised directional vector of the lens 

surfaces. IRIS was never conceived to handle such a problem directly, but rather 

it was designed to circumvent these difficulties by the introduction of the Ref A lign 

component (see Ch.8, Section 4). Introducing this component directly after the 

prism will create a new optical axis tha t is coincident with the original axial ray at 

the ‘tuned’ reference wavelength;

2. the focussing of the beam necessitates that the beam convergence angle is set to the 

required value and tha t the detector is accurately positioned at the lens focus. The 

convergence angle will be controlled by a solve on the second surface of the lens, 

while the lens-detector spacing will be adjusted by another solve on the intervening 

spacer component.

The final layout of the system is shown in Figure 10.4 where the additional components 

commence after the prism. Notice the RefAlign component following the prism and the 

decollimating lens. The lens has been configured almost identically to the collimating lens,
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Figure 10.4: A rrangem ent of C om ponents for Test # 3

bu t instead a solve has been placed on the final surface to  give a convergence angle of -0.05, 

while the following air-space has a thickness solve to  ensure th a t the paraxial m arginal 

ray will intersect the next com ponent w ith a  ray height of 0.0. These com ponents are 

specified thus:

REFALIGN (component #8)

RefWVL = 1

LENS (Component #13)

Thickness = 0.0mm
Diameter = 10.00mm
Glass = BK7
Radius #1 = 55.68
Radius #2 = 1E99 (piano)
Solve Type = u.marg
Solve Value = -0.05
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AIR SPACE (Component #14)

Solve Type = h_marg
Solve Value = 0.0

A raytrace of this system produces the following results:

PARAXIAL RAYTRACE
hbar = -1, ubar = -0.00468 h = 0, u = -0.05

FINITE RAYTRACE
X Y Z L M N

RefWVL1 (=PrmWVL)
1 0.000000  0.000000  0.000000  0.000000  0.000000  1.000000

MinWVL
2 0.994026 -0.640987 0.000000 0.004533 -0.004904 0.999978
3 0.000000 -0.636090 0.000000 0.000000 -0.004867 0.999988
4 -0.994026 -0.640987 0.000000 -0.004533 -0.004904 0.999978
MaxWVL
5 1.002466 0.277282 0.000000 0.004610 0.002122 0.999987
6 0.000000 0.282161 0.000000 0.000000 0.002160 0.999998
7 -1.002466 0.277282 0.000000 -0.004610 0.002122 0.999987

At the paraxial level the system may be viewed as a simple unit magnification system 

(magnification =  -1), and so the paraxial raytrace results at the detector are not completely 

unexpected. The original slit height (referred to the optical axis) has a value of 1.0, 

and so at the image plane (detector) of a unit magnification system (magn. =  -1) the 

corresponding image height will be -1 (hbar = -1). Similarly, the image height of the 

marginal ray will be 0.0 (h = 0), since it is at the focus, and the convergence of the same 

ray will be equal and opposite to the value at the start of the raytrace (u = -0.05). These 

results confirm the paraxial expectations of this system.
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Of greater interest are the data for the finite raytrace. The first ray (#1) is an axial 

ray at a wavelength equal to the Primary or Mid-Wavelength, while the remaining two 

sets correspond to the ray-sets at the minimum (2,3,4) and maximum (5,6,7) wavelengths 

specified by the source component. The first and last ray of each set originates from either 

end of the slit, and the middle ray originates from the centre of the slit and initially travels 

along the optical axis. The points to note are:

1. ray # 1  shows an intersection at the origin of coordinates of the detector, and a 

direction vector equal to the 4-z-axis. In other words, though ray was deviated 

by the prism through an angle of 27° the RefAlign component has successfully 

managed to establish a new optical axis that is coincident with the reference ray, as 

required;

2. the rays tha t originate from the ends of the slit (2,4 and 5,7) have an z-coordinate 

value of approximately ±1, indicating that the finite raytrace results are very similar 

to the paraxial result for hbar;

3. it is noticeable tha t the image of the slit is slightly smaller at the short wavelength end 

of the waveband (0.994) than at the longer wavelength (1.002). This is attributable 

to an effect known as transverse chromatic aberration and originates from the absence 

of achromatism^ provided by the two lenses;

4. a phenomenon tha t is common to spectrographs is known as slit curvature. This 

effect is evident in the above results if we compare the t/-values a t the end and 

centre of each slit image. For a 2mm slit (±1) the difference between the centre 

and end of the slit (sagitta) is 0.004897mm, but if we perform the same raytrace 

with a 20mm slit then the difference becomes 0.484mm. The parabolic relationship 

between slit-length and sagitta (sagitta oc slit-length^) is clear and consistent.

10.4 Raytracing a Lit trow Spectrograph

This final test includes all the above features but with the added complexity of simulating 

a double-pass over two components. The general form of the system under test is known 

as the Littrow Mount, and comprises a doublet lens and prism in close proximity to one

^Achromatism -  the ability to bring rays of more than one wavelength to the same focus
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Figure 10.5: The Zemax Program , showing analysis of Littrow  M ount

157



another followed by a retro-reflecting mirror, as shown in the ‘3D Layout’ window of 

Figure 10.5. A line-source is placed at the focus of the doublet, where subsequently the 

rays leave the doublet as a collimated beam. The rays then pass through a 30 degree 

prism which, for ease of laying out, is positioned such tha t the first surface is normal to 

the beam. A reflecting surface is then placed normal to the deviated beam which causes 

the rays to re-traverse the same paths back to the source. The normal form of Littrow 

spectrograph deviates from that shown in tha t it is the second prism surface, and not the 

first, tha t is normal to the beam, and it is usually this surface which supports the reflective 

coating tha t provides the means for auto-collimation.

The implementation of such a system within the Zemax framework is shown in 

the ‘Lens D ata Editor’ window of Figure 10.5. In keeping with a surface based model 

and in order to incorporate the various surface tilts and axial décentrations Zemax, in 

common with other similar programs, introduces a new surface type which Zemax refers 

to as a ‘Coord Break’. Unlike a regular optical surface, the Coord Break only utilises 

the following six parameters: three décentrations and three tilt angles. The first Coord 
Break is shown as Surface and corresponds to  the tilt of the second prism surface, 

while the Coord Break of Surface ^ 7  implements a new optical axis, which in this case 

corresponds to the deviated axial ray. Following the reflection from Surface ^ 8 , Zemax 

requires tha t those prior surfaces that are in double-pass mode be entered in reverse 

order, where all surface radii, tilts and thicknesses have the negative value of their former 

value. This procedure for handling surfaces in double-pass mode is common to all lens 

design programs tha t are based upon the surface model. Naturally, the need for negative 

thicknesses in the Littrow design is determined by the necessity or not of requiring tha t 

the drawing of the system correspond to the actual physical layout, which in this case is 

true.

In contrast, the IRIS program is able to represent the construction of the Littrow 

system in purely pictorial form, as a sequence of icons (Lens Buttons) laid out upon the 

Lens Form, as shown in Figure 10.6. Three points worth noting in this scheme are: 1) 

due to the absence of a distinct doublet component, the doublet lens is represented by 

the combination of a singlet lens, a spacer having the appropriate glass as the medium, 

and a surface; 2) the double-pass sequence commences with the singlet lens (Lens #6 ) 

and culminates with the mirror surface (Lens #15), i.e. tha t lens sequence within the 

limits defined by the double-pass components at Lens # 5  and Lens #15; 3) a RefAlign
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Figure 10.6: The L ittrow  system as represented by IRIS

com ponent is shown a t Lens # 1 2 , performing the task  of re-aligning the optical axis with 

the deviated axial ray following deviation by the prism (Lens # 1 1 ) . Unlike the  Zemax 

approach, a double pass sequence such as required by the  L ittrow  m ount is im plem ented 

alm ost autom atically  by the simple expedient of introducing th e  double-pass com ponents 

a t the appropriate places within the system. It is com pletely unnecessary to  repeat the 

double-pass sequence in reverse order nor, as in this case, is it necessary to  m anually 

configure a coordinate change arising from the deviated axial ray following refraction by 

the prism.

The raytrace results for the Littrow m ount as modelled by Zemax and IRIS are 

presented in Figure 10.7. Source specification is: line height (y-dirn) =  ± 0 .1 2 5 mm, three 

equally spaced points per line, and wavelengths of 500nm, GOOnm and 700nm. Note th a t  

the  prism dispersion is parallel to  the  line source, a t variance with the norm al approach 

where the line (slit) is perpendicular to  the dispersion. T he square fram e surrounding each 

set of spot diagram s has side-lengths in the image plane of 2.0 mm. In order to  present 

the  spo t diagram s with some internal strucure it was necessary to  defocus the  image plane 

by 0.50 mm tow ards the  collim ating lens. The sim ilarity between the two sets of spot 

diagram s is very m arked, although very slight discrepancies are more th an  likely due to 

the  differing num ber of rays traced in each case and the differing ray d istribu tions a t  the 

pupil plane. Despite this it is quite clear th a t IRIS does indeed produce results th a t  are 

in agreem ent with those obtained by Zemax.
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Figure 10.7: Full-field spot diagrams of the Littrow Mount as obtained by Zemax (LHS) 

and IRIS (RHS).

10.5 Conclusion

The purpose of this chapter was two-fold: firstly, to establish tha t the component based 

model could be made to function in a cooperative manner, and secondly, to determine 

if the numerical procedures embedded within these components did actually provide the 

correct results. Though both have been successfully demonstrated, it is quite clear that, 

independent of the verity of the numerical results, the outstanding feature is that, as far 

as optical design is concerned, a component based model is a reality. The very simple 

spectrograph tha t was explored at the beginning of this chapter provided ample verifica­

tion tha t each component successfully played its rôle as part of a team, although some 

executed their parts more purposefully than others. The RefAlign component was par­

ticularly im portant in removing one of the major obstacles tha t dog most conventional 

design programs, namely the construction of non-axisymmetric optical systems. W hat 

unfortunately the reader cannot properly appreciate is the ease with which this system 

was synthesised, and only made possible through the axivanced user interface provided by 

the IRIS program. W hat applies to a simple spectrograph can also be made to apply to 

much more complex optical systems, as was ably demonstrated in the previous section. 

Ordinarily, whereas the modelling of a non-axisymmetric system with double-pass sections 

would pose considerable difficulty, IRIS has been able to show tha t the component based
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model offers unique opportunities in the way that strategies may be devised to rationalise 

otherwise complex configurational issues.
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C h a p t e r  11

F u t u r e  T r e n d s

Lens analysis, in its modern interpretation, has been with us for almost 50 years, and 

although classical optics has remained relatively unchanged during this period, the means 

of analysis has undergone one revolution after another. The modern day computer shares 

little with its ancestors other than the same common purpose. In other respects the 

modern desk-top computer utilises resources and power tha t formerly would have been 

unthinkable. Current trends in systems integration include multimedia (sound and vision, 

static and dynamic) and virtual reality (VR). It is probably the latter tha t promises the 

most since it offers a model of abstraction tha t closely approaches tha t which we, at a 

conscious level anyway, are aware of. Unfortunately, bridging the gap between our sense 

of sight and our other senses remains an obstacle, and is only practicable in certain spe­

cialised activities such as molecular modelling, architectural design and games playing, for 

example. Similarly, of equal interest during the past decade is the work being undertaken 

in the area of artificial intelligence, or AI. Such curiosities as neural networks and genetic 

algorithms are now making deep inroads into those problem areas once considered to be 

mathematically intractable. Is it possible, or even plausible, tha t our lens components 

could be imbued with a degree of intelligence? Another area tha t may offer further pos­

sibilities is tha t of optimisation. Not only does the new system model offer an enhanced 

and improved way of constructing complex optical assembles, but it might also provide us 

with new features tha t current optimisation programs could profitably employ.
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11.1 The O bject M odel

One of the aspects of object modelling tha t has not been overly discussed up until this 

point is tha t of events or messages. The event is a necessary feature in software systems 

such as the Windows operating system, where many components exist in virtual isolation 

from one another except for the ability to send, or post messages to each other. The 

operating system handles these messages and ensures tha t they are sent to the correct 

window or application. When received by a component, the message is interpreted and 

acted upon in a manner dictated by the software instructions already embedded within 

the procedure handler. Events are generally numerous and prolific in any application tha t 

provides a graphical user interface in which elements are in various states of flux. Some 

typical events include MouseDown, Click and Paint, where the first two events obviously 

relate to  mouse events, and Paint is a message directed at a component th a t will result in 

the component redrawing itself upon the graphical display unit.

While most events tha t occur in a GUI-based operating system relate to visual 

events, there is no real reason why they cannot also be generated in a non-visual situation. 

Consider the case of a ray of light traversing several lens elements and then encountering 

an obstruction such as an aperture stop. This loss of a ray through total absorption would 

ordinarily be signalled to the user as a reduction of throughput which is only realised 

when all rays have been traced and counted. A different approach would be to generate 

an event, such as ‘wm_RayObstructed’, which would be handled by some procedure tha t 

could, for instance, display the number of obstructed rays as and when they occured.

The advantage of this approach is tha t the program code of the raytrace procedure 

does not have to be interrupted by a call to another procedure, with all the ensuing 

changes at the machine code level, but instead, the raytrace code proceeds normally and 

the message will only be handled (in the case of a post) when the program allows. This 

will occur when either the program has stopped executing and is awaiting some input 

from the user, or when the program allows Windows to dispatch its messages through a 

specific call to an application-specific method called ProcessMessages as in Delphi. If the 

lens system object is provided with a default message handler for this particular message, 

then the program developer has the option of either ignoring the message and letting the 

default handler handle it, or alternatively, the default handler may be overridden with a 

handler tha t will undertake some other more useful action when activated, as in updating a
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display component, as discussed above. In actuality, messages and events are far easier to 

implement than the above description would seem to indicate, since most of the hard work 

is undertaken by Windows and the methods tha t have been inherited from the base-class 

window.

We have also seen in earlier chapters how the lens object is designed to be a client 

of the container class, or form, and through this relationship the lens is able to query 

its host as to its own position relative to other lenses. This feature was exploited by 

the lens sequencing algorithm so tha t rays may be passed from one lens to another in 

the correct sequence. The same feature may also be employed in much more complex 

processes, for instance, in determining whether one lens will mechanically interfere with 

another, possibly as a result of a surface change. Consider the scenario where a lens is 

required to undergo a bend that, if allowed, may result in a mechanical collision with a 

neighbouring lens. Prior to this operation the lens will undertake a function call to  both 

bounding spaces tha t a bend is to be undertaken, of the form:

function CanSurfaceChamgeCnewsurfaceiTSurface)iboolean;

The response to this query is obtained by interrogating each neighbouring lens compo­

nent in turn, and the change is allowed only when both neighbours report no mechanical 

interference.

11.2 Im proving the P icture

How can virtual reality carve in-roads into such fields as physics and mathematics when in 

most cases there is no phenomenological equivalent in a world tha t is so dependent upon 

our senses? This problem is one tha t faces all developers of models tha t are essentially non- 

experiential in nature, but success, or even partial success brings with it the opportunity to 

extend our frontiers of knowledge, notwithstanding the much hoped for financial rewards 

tha t occasionally accompany an evolutionary or innovative product. Inevitably we must 

initially look towards the object model tha t describes the system or application, with a 

view to encapsulating within it the behaviour and characteristics tha t are to be ascribed 

to the end-product. It is these latter two features which will largely shape the final 

experience of the end-user. It has long been the case tha t the user’s interaction with a
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software application, as executed on a modem computer, is largely a visual one. There 

are historical reasons why this should be the case, and also very good logistical reasons. 

The fact is that, as the saying goes, ‘a picture is worth a thousand words’, and in trying to 

describe the state of any particular system it is much more efficient in terms of computing 

power if a graphical representation is employed. This argument holds not only for the 

silicon processor at the heart of every computer, but also for the organic processor th a t we 

call the human brain. In terms of complexity and information content, a perceived image 

may convey large amounts of both qualitative and quantitative data, and which may be 

realised by the perceiver in the time it takes for one heartbeat to be executed.

While such techniques as 3-D rendering and virtual reality may be appealing to the 

less technically inclined, it is dubious whether they offer any real benefit for the purpose 

of interactive editing and design in an environment such as optics, where the precise 

configuration of a system is of more importance than a simpler generalised configuration. 

In such a situation it may be more expeditious to seek an alternative graphical model that 

will map onto the problem domain in a more efficient and constructive manner. We have 

already seen how an iconic representation of lens elements aids the user in constructing a 

lens system where the individual elements markedly differ from one another in size and 

shape, but is it possible to extend the model to include a more realistic graphical interface? 

One possibility is to accept that, for quantitative work anyway, VR cannot offer more than 

we already have, but for the semi-quantitative work undertaken by a mechanical engineer, 

for example, who is interested in such m atters as the mechanical construction and fit of 

the optical assemblies, then the presentation of a VR image which may be manipulated 

(zoom, pan, magnify, etc.) would be of great benefit.^

11.3 Intelligence and O ptim isation

The lens model tha t has been discussed at great length so far will also allow for further 

and more complex forms of computation to be undertaken. In particular, one of the 

more often used forms of numerical calculation tha t is targeted at a lens system concerns 

optimisation, tha t is the automatic design of a system of lens elements according to some 

predefined search criterion, where the end goal is specified as a set of desired performance

 ̂Drawing options such as rendering and VR are becoming increasingly common in the more up-market 

opticcd ancdysis programs, e. g. OPTICAD by Focus Softweire, Inc.
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parameters. In previous chapters we have discussed the various properties and behaviours 

tha t our lens object has been imparted with, and so at this point we may continue in 

the same vein by considering the manner in which a lens object might actively contribute 

towards the more general task of system optimisation. In addition, we may also ponder 

upon the possibility of there being a scheme whereby lens objects will actively cooperate 

with one another in order to achieve this same goal.

One of the more maturing technologies that offers great hope for the future is the 

field of artificial intelligence, of which the derived benefits have only become tangible 

through the ever increasing power and sophistication of computer hardware and the anal­

ysis techniques tha t have blossomed in the wake of the computer revolution. The term 

‘Artificial intelligence’ or AI, is to some extent a misnomer, since in all its guises it is 

essentially an attem pt at simulating certain processes tha t either occur in nature or that 

we, as intelligent organisms, undertake as a prelude to decision making. There are three 

fundamental technologies tha t fall under the umbrella of artificial intelligence:

1. K now ledge Based System s (K BS) -  sometimes referred to as Expert Systems. 

This form of simulated AI attem pts to develop solutions to problems by employing 

some kind of reasoning, rather than simple mathematical functions. Usually, this 

is done in the form of IF condition THEN conclusion rules, but other techniques 

are also employed. Typically, Knowledge Based Systems consist of two parts: the 

knowledge base (with the IF-THEN rules) and the inference engine (the algorithm 

to reason with these rules);

2. N eural N etw orks -  Artificial neural networks are biologically inspired forms of 

computation tha t represent a departure from conventional forms of computing, in 

tha t many discrete artificial neurons are highly connected and operate in parallel. 

Based upon emerging knowledge on the operation of the brain belonging to the higher 

animals, the neural network takes its inspiration from the neurons, dendrites and 

axons that form the basis of the brain. In doing so, it is hoped tha t the neural network 

will exhibit those useful characteristics that we associate with the human brain: 

learning, generalisation and redundancy. The first two characteristics have been 

demonstrated, but the third is still awaiting further research prior to  exploitation;

3. G enetic A lgorithm s (G A s) -  While Charles Darwin[18] postulated upon the 

origin and survival of the (carbon based) species, similar theories are currently be­
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ing employed to develop a system based upon purely algorithmic entities. Genetic 

algorithms are general heuristic global optimisation methods tha t operate upon a 

population of individuals tha t are the representations of solutions in the search space. 

Each solution is represented by a series of genes within the individual. Pairs of indi­

vidual solutions bear children inheriting their features (sometimes with mutation). 

Weak individuals die, while strong individuals live for a longer period. The closer a 

solution represented in the genes to the desired optimum, the stronger tha t individ­

ual is considered to be. The GA has been particularly successfull in solving those 

normally intractable problems such as the ‘Travelling Salesman Problem’.

All of the above AI technologies have demonstrated successful application in one or more 

fields of endeavour. In particular, KBS is usefully employed in those areas requiring high 

levels of logical reasoning and deduction, notably in current computer programs tha t aim to 

suplement and possibly enhance medical diagnoses. On the other hand, the application of 

neural networks favours those problem areas tha t are difficult to model in a mathematical 

sense, and yet would benefit from the ability of the network to be trained to a level of 

proficiency in tha t same area. Thus we see neural nets being developed tha t might, for 

instance, control industrial processes with a view to maximising efficiency, authenticate 

signatures or retinal maps during real-time financial transactions, or even provide economic 

and trade models tha t might be used by world governments to anticipate and react to 

change. GAs have similar applicability to neural nets, and in some areas such as financial 

modelling^ the GA approach is supplanting the neural net, due to its ability to modify 

itself to changing conditions.

Lens optimisation has been a major area of research for almost half a century[19], 

where the principal techniques have been based upon either least squares[20] or ortho- 

normalisation[21]. More recently, in a move to expand the search space to wider (global) 

areas, mathematical techniques tha t enable global optimisation (cf. simulated annealing, 

[16], p366 ) have been utilised. The problem of applying global optimisation methods to 

lens design is complicated by the very convoluted solution space of even the simplest of 

lens systems but, never-the-less, several commercial concerns (Optical Research Associates, 

Sinclair Optics Inc., etc.) have managed to integrate a global search algorithm into their 

current offerings.

^PAPAGENA -  Program ming Environm ent fo r  A pplications o f Parallel G enetic Algorithm s, European 

Community Esprit III -  Project 6857
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It is possible, though highly speculative, to consider a scenario where the TLens 

object is “blessed” with a certain amount of intelligence, possibly originating from an 

embedded neural net or genetic algorithm. The purpose of such a leap in functionality is 

to provide the lens with a self optimising capability. This faculty alone is not sufficient to 

enable the lens system as a whole to achieve an optimised state of correction, since each 

lens element will only be aware of the localised state of correction, and will be indifferent 

to the global picture. W hat is required is a lens tha t is able to cooperate with other 

lenses of the system during optimisation, in a manner th a t benefits the system and not 

the individual. How this might be accomplished could very well be the subject of another 

research paper!

Another area tha t might prove amenable to the AI approach is the initial selec­

tion and the later modification of systems during optimisation. It is well known among 

lens designers that some lens configurations are better suited to a particular task than 

others. For instance, we may consider a group of camera lenses, the standard F2/50mm 

for example, to share the same operating characteristics and performance, and though 

many companies are engaged in the manufacture of such lenses, the design adopted is 

predominantly of the double-Gauss variety. The same applies to many other similar ex­

amples, where various unique problems areas have been solved in similar ways. W hat a 

lens designer looks for when trying to identify a particular lens scheme (assuming th a t it 

is optimally corrected for the task at hand) is i) the general power configuration, ii) the 

bend of certain key lenses, and iii) the general glass configuration. In effect, this amounts 

to pattern recognition, a task tha t is most suited to the neural network. It is conceivable 

to imagine that a suitably trained neural network might be allowed to arbitrate over the 

varied and numerous configurational changes that an optical system will undertake during 

routine optimisation. For example, the network might realise tha t a given system is ap­

proaching tha t of a known and desirable configuration, and may provide extra weighting 

toward such a direction where the optimisation might indicate otherwise.

11.4 Classical O ptim isation

One other interesting possibility tha t arises from the component model is the opportunity 

it allows us to modify the normal variable set that we ascribe to a lens. During the process
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of optimisation, the most common design variable is curvature, but this variable will also 

alter the two principal parameters that we associate with aberration control: power (K) 

and bend (B). For example, the thin-lens equations tha t define these two quantities are 

given below:

K  = ( n - l ) ( c i - C 2) (11.1)

B  = ^ 1 + -^  (11.2)
Cl -  C2

. . .  and it is obvious that a change in either ci or C2 will result in corresponding changes 

to both K  and B. In some systems, e. g. the zoom lens, the power and possibly the glass

configuration may already have been determined and all tha t is required is to optimise the

system based upon lens bendings alone whilst retaining the original power distribution. 

This procedure will be difficult to achieve in the majority of design programs and usually 

requires tha t the designer implements a solve after each lens, setting the solve value to 

the original convergence angle of the paraxial marginal ray as it leaves the final surface. 

Though not a very satisfactory solution, it is perhaps the only method available for im­

plementing bend changes. On the other hand, a lens component could be easily modified 

to include a bend property which would allow the following syntax:

ALens.Bend ALens.Bend * 1.01;

.. .where the intention is to increase the current bend by one percent whilst maintaining 

the lens power. The converse is also possible:

ALens.Power := ALens.Power * 1.01;

. . .  where the power of the lens is to increase by one percent while preserving the value of 

the lens bending. With these new properties in place it is now possible to undertake design 

modifications or even optimisation based upon a more intuitive and natural understanding 

of aberration control; instead of specifying simple curvatures as our design variables, we 

may directly employ lens bending and power to be part of the variable set. As an example 

of what benefits are to be derived from this approach, we shall take the case of the Cooke 

triplet photographic lens and consider the design approach we might take based upon 

these new variables. The Cooke triplet comprises three air-spaced lenses, two positive 

power singlets surrounding a negative singlet, where the stop is usually located close to
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the latter lens. This combination provides a total of eight variables: two separations, three 

lens bendings and three lens powers; precisely enough to enable all primary aberrations to 

be controlled, provided the glass types are suitably chosen. The variable parameters may 

be divided into two groups, first the three powers and the two separations and secondly 

the three bendings. Four parameters of the first group control the overall power, the two 

chromatic aberrations and the Petzval sum; the remaining parameter of the first group (the 

choice is not critical) and the three bendings together control spherical aberration, coma, 

astigmatism and distortion. The two procedures defined above are applied iteratively until 

the lens system meets the specified requirements. These procedures are, in principle, all 

tha t is required to design the Cooke triplet (and with slight modification, many other 

systems) but in practice are largely ignored, for the reason tha t the power and bending 

parameters are not easily accessible or manipulated by the designer and are not supported 

by current analysis and optimisation programs. Until this situation is reversed, optical 

designers will continue to discuss aberration control with respect to bend and power, 

but will be unable to directly put such ideas into practice due to the limitations of the 

surface based model. On the other hand, a wider acceptance of the component model 

will, in principle, allow both the theory and the practice of optical design to merge into 

one another, and so offer the designer a closer and more intuitive relationship with the 

software tools tha t form part of the armoury of every optical specialist.

It is impossible to say what the future holds for lens design programs in general, 

or even if there is room for improvement, and if so, what form it will take. The ideas 

mentioned above will almost inevitably be incorporated into tomorrow’s design programs, 

if not at the time of writing. One thing is certain though, the massive explosion in 

computing power and its ready accessibility will enable all people with open and enquiring 

minds to explore their own ideas in as much detail or sophistication as is deemed necessary. 

The Internet is one such vehicle whereby people may explore possibilities, and computer 

programming is another. Both are ultimately limited by our own imaginations and our 

ability to carry them through to fruition.
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C h a p t e r  12

C o n c lu  s io n

This thesis is built upon three pillars tha t are crucial to a correct understanding of the 

work undertaken, and tha t are fundamental to the design of the IRIS program. The first 

of these concerns the nature and importance of models in general, and of the optical 

model in particular. Models determine the way we think about things, but occasionally 

they also prevent us from developing a better understanding. The belief tha t the world 

was flat probably originated thousands of years ago, and yet it has persisted up until 

the Renaissance period. Though it seems ridiculous today, this rudimentary world model 

was mostly successful because people then had a very localised and limited knowledge 

of the world tha t they lived in. It was only when the great explorers of the fourteenth 

and fifteenth centuries began to expand our horizons, both geographically, culturally and 

scientifically, tha t the world began to change for all time.

The optical model has, to some extent, shared a similar history to the flat world 

model. Ask any optical designer what he or she considers to  be the internal model employed 

by lens design programs, and the answer will be, if forthcoming: “I don’t  know. Is there 

one?” . The tru th  is tha t the model has always been subservient to the algorithm. It has 

always been the case that the mathematics and program code tha t enables raytracing to 

be undertaken is of central importance. In contrast, this thesis has largely ignored the 

mathematics of raytracing, although it is omni-present throughout the IRIS program, and 

instead it has highlighted a more fundamental and basic aspect of computer-based lens 

analysis: the identification and implementation of a suitable model.

The second pillar upon which this thesis has been built concerns the ideas and man­
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ner of implementation associated with object oriented programming languages. While it 

is true to say tha t virtually any computer language may be used in the development of 

a sophisticated system model, it is only since the advent of true OOP languages that 

language constructs have been available to actively support this same process. Section 4.2 

was devoted entirely to a review of three mainstream OOP languages. Visual Basic was 

shown to be an admirable developmemt environment for prototyping and interface design, 

but was ultimately let down by a poor turn of speed and a dearth of true object oriented 

features. On the other hand, C + +  (in the guise of Microsoft’s Visual C + + ) provided both 

a high run-time speed and a wealth of OOP and other language features; it truly deserves 

to be the leading language for critical and complex development programmes. Notwith­

standing the above, the author, in common with some leading computer magazines, has 

instead cast his vote for Borland’s Delphi, generally recognised as the most productive of 

all rapid application development tools without sacrificing run-time speed or ease-of-use. 

The true worth of using such a tool as Delphi can only be fully appreciated when one 

moves up from a much simpler language.

The final pillar is the visual interface, which in scientific programs in general is 

probably not as well developed as it ought to be. In the author’s opinion, such programs 

have suffered from excessive emphasis on the algorithm at the expense of the interface. 

This is particularly evident in the majority of lens design programs tha t still employ the 

spreadsheet data  entry method, although one company at least (OptikWerks) has now 

adopted a component-based interface that is in keeping with current trends, and that 

hopefully is also a reflection of an underlying component based model. It is worth noting 

tha t all the major application programs (MS Word, Excel, Visual Basic, Delphi, etc. ) 

and operating systems (Windows 95, NeXT, XWindows) are advanced from one version 

to the next by not only providing more features and enhancing existing ones, but by im­

proving the functionality of the user interface. For instance, the evolution of the Windows 

OS has been most obvious in the changes made to the desktop. The early versions of 

Windows (v3.XX) were dominated by the Program Manager, whereas the current version 

of Windows 95 provides the user with the option of applications being selectable from the 

desktop (as applets), Windows Explorer and a drop-down menu (obviating the need for a 

Program Manager). The next version will be Windows 98 (codename ‘Memphis’) which 

will herald a new form of interface based upon Web browser technology. If lens design 

programs are to embrace those new ideas and concepts tha t are found in the man-machine
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interface then they could do worse than emulate Microsoft’s current offerings.

IRIS has attempted to redress the balance by showing the reader just what is possi­

ble. Through the use of rapid application development tools, interface design is no longer 

as onerous a task as it used to be. But in reality, companies tha t have been developing 

lens design programs over many years are unlikely to make the transition overnight, even 

if they wanted to. The tru th  is tha t in changing from a procedural/spreadsheet program 

to a full component based equivalent, only the numerical algorithms are likely to survive 

the conversion. In addition, scientists can be rather conservative when it comes to ‘tam ­

pering’ with their favourite program, and may not appreciate any ‘unnecessary’ changes. 

It is probably for these reasons that the only component based design program to come 

onto the market during the last five years is still OptikWerks, a product tha t has been 

developed from scratch.

In concluding this thesis, it is probably worthwhile to reconsider the major points 

and claims tha t the author has made:

1. Most design programs employ a simple surface based model that, in itself, limits the 

complexity and richness which we intuitively associate with an optical system.

2. If we wish to improve on this state of affairs then it becomes necessary to develop 

a new model which encapsulates within itself those features and properties th a t we 

would consider necessary.

3. Computer models are best described in terms of a language tha t actively supports the 

notion and manipulation of those entities tha t comprise the model. Object oriented 

languages, such as C+-|- and Delphi, are identified as such languages.

4. A real world model is developed tha t attem pts to describe an optical system in terms 

of its major components and assemblies (lenses, mirrors, prisms, etc.); it uses the 

optical toolbox and lens workbench as its rôle model. This is called the component 

based model.

5. The structure of a generalised lens component is developed whilst also examining 

how more complex components are arrived at. Supporting structures such as the lens 

system are also described, and it is shown how these objects are simply integrated 

into standard GUI objects such as buttons and forms.
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6. Rays are also treated thoroughly. Rather than being the poor relation in this tightly 

knit team, rays are extended to support vector and matrix operations tha t are shown 

to greatly enhance their performance and usefulness.

7. All models and systems must function according to a consistent set of rules, and the 

component based model is no exception. Rules are developed tha t determine the 

validity, or not, of an optical system configuration. These are extended to the notion 

of a lens sequence, or the order in which each component comes into play during a 

raytrace procedure. These ideas are then used to describe some of the fundamental 

system processes, such as pupil location.

8. All of the above elements are then combined together to produce a computer program 

called IRIS, which is then used to test the model in the simple case of a spectrographic 

camera. Raytrace results provided by IRIS show that, in all respects, the output 

data corresponds exactly to what is expected.

IRIS is not yet complete, and is unlikely to be further developed in its present 

form. On the other hand, IRIS has proved to be an excellent platform for obtaining 

a thorough understanding of the problems th a t need to be circumvented if it is to be 

successful at all in the future. As learning experiences go, the last three years have been 

truly worthwhile, for it is only through tackling real-world problems tha t any substantial 

learning takes place. Though object oriented programming is not, in itself, especially 

difficult to comprehend, the true art of any skill is in knowing how to use it in a concise 

and efficient manner. As a technology matures with time, the capabilities and potential 

of tha t technology become ever more apparent. So it with OOP, and Delphi. Since the 

time of the first release of Delphi, numerous articles, books and specialised magazines 

have appeared tha t have provided new insights into the various software features that 

were either poorly documented up until tha t time, or tha t were considered to be worthy 

of further elucidation. Much of the information acquired through these sources has direct 

relevance to any future redevelopment tha t IRIS may undergo, but while implementation 

details may change, for the better, the actual model will remain largely untouched.

Commercial lens design programs are usually the culmination of many years of 

devotion to the subject itself, and require the equivalent of many man-years of software 

development effort. As such, change is generally a very slow and incremental process. 

The ideas presented in this thesis are so fundamentally different to many existing program
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codes tha t their adoption is unlikely without extensive ‘root and branch’ pruning of the 

original. Since this is unlikely, and probably not economic, then the more acceptable 

solution is to start anew. It is for this reason that I do not expect to see the adoption 

of the component based model in many commercial offerings, at least for a few years yet. 

This extended model is so new that we can expect a period of maturation to occur as 

developers begin to discover new possibilities and opportunities. At present, only one 

company is producing a lens design program tha t uses a similar model: OptikWerks. In 

my view, the visual interface is far from optimum, but with time and experience this 

situation may improve.

On a final note, I should add tha t the object based model is also applicable to many 

other types of problem. Science in particular is well endowed with models tha t attem pt 

to describe a plethora of processes, in fields as diverse as physics, biology, chemistry and 

cosmology. If a physical model is well enough understood then it can also be successfully 

described in an object oriented software code. The only problem tha t remains is the design 

of the user interface, or how to transport the problem domain to a two-dimensional screen.
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A p p e n d i x  A

G lo  s s a  r y

A bstract Referring to a class: a class that is used only as a basis for deriving other 

classes; referring to a method: a method declared as abstract cannot be used in an 

instance of tha t class, but must be overridden in a descendant of the same class.

A chrom atic The ability of a lens to bring rays of more than one colour to the same 

focus.

A stigm atism  An imaging defect (aberration) of a lens system tha t results in tangential 

rays being focussed at a different plane to sagittal rays.

A ncestor An object from which another object is descended. Ancestor objects may have 

any number of descendents, but a descendent object may have only one immediate 

ancestor, a concept known as single inheritance. Some OOP languages, such as 

C + +  but not Object Pascal, allow multiple inheritance, where descendent objects 

may have more than one immediate ancestor.

Class A synonym for an ‘object type’. A class defines the data  fields and method headers 

of a single object, which might be descended from another object class.

C onstructor A special object method that is called in order to create an instance of the 

class. A constructor allocates the necessary memory and initialises all properties. A 

class has atleast one constructor, and may have more.

D escendant Inherits all the data fields and methods from its immediate ancestor, which 

may have inherited properties from its own ancestor.
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D estructor An object method that is called to destroy the object, releasing or deallo­

cating the memory tha t the object occupied. A class may only have one destructor.

Encapsulation Refers to the manner in which object types are able to combine both 

data  fields and methods.

G aussian Optics That domain of an axially symmetric optical system in which all ray 

angles are very small and located close to the optical axis.

Inheritance Objects can inherit the properties (data fields and methods) of other objects. 

See also Ancestor.

Instance A variable of an object type, similar to the way an integer variable is an ‘in­

stance’ of type Integer.

Instantiate verb -  to create an instance of an object.

M ethod A function/procedure definition in a class. Methods describe the operations 

tha t objects know how to perform.

M ethod Im plem entation Contains the actual statements tha t flesh out an object type’s 

definition The implementation of a method is shared by all object instances of the 

object type.

O bject A variable belonging to a class or object type.

OOP Object Oriented Programming, a classification of computer languages tha t allows 

for complex class definitions that may ecapsulate both data and procedural types; 

also supports inheritance and polymorphism.

O bject typ e  An object type defines an object’s data  fields and methods. An object type 

is a definition for an object, not the object itself. See also Class.

Paradigm  In programming, a paradigm is a conceptual model for building computer 

programs. An im portant paradigm in computer science history is the concept of 

structured programming.

Paraxial See Gaussian.

P olym orpohism  Refers to the ability of objects to have different forms/behaviour but 

still be type-compatible with existing code.
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S a g itta l Any plane tha t is not coincident with a tangential plane.

S ta tic  m e th o d  Class methods declared as static (default in Object Pascal) are not vir­

tual methods and so may not be overridden by descendant classes.

T an g en tia l Any bilateral plane of symmetry associated with an axially symmetrical op­

tical system.

T y p e  A declaration; informs the compiler of new data types.

V ir tu a l m e th o d  Class methods tha t are declared as virtual may be overridden, or rede­

fined, in descendant classes. It is through the virtual directive that polymorphism 

and polymorphic objects come about.
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