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Abstract
Stochastic gradient descent (SGD) is a promising numerical method for solving
large-scale inverse problems. However, its theoretical properties remain largely
underexplored in the lens of classical regularization theory. In this note, we
study the classical discrepancy principle, one of the most popular a posteriori
choice rules, as the stopping criterion for SGD, and prove the finite-iteration ter-
mination property and the convergence of the iterate in probability as the noise
level tends to zero. The theoretical results are complemented with extensive
numerical experiments.
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(Some figures may appear in colour only in the online journal)
1. Introduction

In this work, we study the following finite-dimensional linear inverse problem:
Ax = yT’ (11)

where x € R™ is the unknown signal of interest, yT € R" is the exact data and A € R is
the system matrix. In practice, we have access only to a corrupted version y of the exact data
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yI = AxT (with the reference solution x' being any exact solution)
Y=y

where £ € R” denotes the noise, with a noise level § = ||¢]|. In the literature, a large number
of numerical methods have been proposed for solving linear inverse problems accurately and
efficiently (see, e.g., [4, 9, 13]).
When the size of problem (1.1) is massive, one attractive method is a simple stochastic
gradient descent (SGD) [3, 19]. In its simplest form, it reads as follows: given an initial guess
o __ m
x] =x; € R", let

X =20 — @i, x) — Y)ai, k=1,2,..., (12)

where 7, > 0 is a decreasing stepsize, a; is the ith row of the matrix A (as a column vector),
(-, -) denotes Euclidean inner product on R™, and the row index i at the kth SGD iteration is
chosen uniformly (with replacement) from the set {1,...,n}. It can be derived by applying
stochastic gradient descent to the quadratic functional:

0= g A5 =P = S0 it i) = () <1

Distinctly, the method (1.2) operates only on one single data pair (a;,, y;, ) each time, and thus it
is directly scalable to the data size n of problem (1.1). This feature makes it especially attractive
in the context of massive data. In fact, SGD and its variants (e.g., minibatch and accelerated)
have been established as the workhorse behind many challenging training tasks in deep learning
[2, 3], and they are also popular for image reconstruction in computed tomography [6, 18].

Despite the apparent simplicity of the method, the mathematical theory in the lens of clas-
sical regularization theory is far from complete. In the work [10], the regularizing property
of SGD was proved for a polynomially decaying stepsize schedule, when the stopping index
k is determined a priori in relation with the noise level §. Further, a convergence rate in the
mean squared norm between the iterate x,‘i and the exact solution x" was derived, under suitable
source type condition on the ground truth x'. These results were recently extended to mildly
nonlinear inverse problems, further assisted with suitable nonlinearity conditions of the for-
ward map [11]. However, in these works, the convergence rate can only be achieved under
a knowledge of the smoothness parameter of x!, which is usually not directly accessible in
practice. Therefore, it is of enormous practical importance and theoretical interest to develop
a posteriori stopping rules that do not require such a knowledge.

For deterministic iterative methods [13], e.g., Landweber method and Gauss—Newton
method, one popular a posteriori stopping rule is the discrepancy principle, due to Moro-
zov [17]. Specifically, with x{ being the kth iterate constructed by an iterative regularization
method, the principle determines the stopping index k(J) by

k(8):= min {k € N: [|Ax} —y°|| < 76}, (1.3)

where the constant 7 > 1 is fixed. Note that for SGD, the stopping index k(J) depends on the
random iterate x,f, and thus it is also a random variable, which poses the main challenge in the
theoretical analysis. The use of the discrepancy principle to many deterministic iterative meth-
ods is well understood (see the monograph [13] and the references therein), but in the context
of stochastic iterative methods, it has not been explored so far, to the best of our knowledge.
The goal of this work is to study the basic properties of the discrepancy principle for SGD.
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It is worth noting that a direct computation of the residual |[Ax] — y°|| at every SGD itera-
tion is demanding. However, one may compute it not at every SGD iteration but only with a
given frequency (e.g., per epoch, see section 5), as done by the popular stochastic variance
reduced gradient [12], for which residual evaluation is a part of gradient computation. Also
there are efficient methods to compute the residual ||Ax] — y°|| using randomized SVD [14],
by exploiting the intrinsic low-rank nature of many practical inverse problems.

Now we specify the algorithmic parameters for SGD, and state the main results of the work.
Throughout, we make the following assumption on the stepsizes and the regularity condition
on the ground truth solution x', i.e., the minimum-norm solution defined by

x' =arg min |x|. (1.4)

xX:Ax=y!

The stepsize schedule in (i) is commonly known as the polynomially decaying stepsize sched-
ule, and (ii) is the classical power type source condition, where B = n~'(ATA) (with n being the
data size, i.e., the number of rows in A), imposing a type of smoothness on the solution x' (rel-
ative to the system matrix A and the initial guess x;). In the analysis and computation below,
x; is fixed at 0. Generally, in classical regularization theory for infinite-dimensional inverse
problems, the source element w plays the role of a Lagrangian multiplier of the constrained
problem in (1.4), whose existence is not ensured for an operator with a nonclosed range and
has to be assumed [4, 9]. In the finite-dimensional case, the existence of a source element w
for the case p < % is ensured, but the norm of the source element w can be arbitrarily large.

Assumption 1.1. The following conditions hold.

=1,...,

(ii) Thereisa p > 0 and a w € R” such that x — x; = BPw

The first theorem gives a finite-iteration termination property of the discrepancy principle,
where P is with respect to the filtration generated by the random index (ix)7Z ;. It can also be
viewed as a partial result on the optimality. It implies in particular that for p < %, the data
propagation error is of optimal order. The proof relies crucially on the observation that the
variance component of the mean squared residual contributes only marginally for sufficiently
large k.

Theorem 1.1.  Let assumption 1.1 be fulfilled, and k(0) be determined by the discrepancy

principle (1.3). Then for all 0 < r < land T > 7" > 1, with c = (?/*i;
there holds

P (k(é) < c5‘7<1—m<mi3<2w>+1>) 51 as §—0%

(p+5H1-a) )p+% l[w].

with the constant ¢, = (coe(zlﬂul)

The second contribution of this work is on the convergence in probability of the SGD iterate
x,‘i«;) with the stopping index k(§) determined by (1.3). This result has one drawback. In the
proof, we have to assume that the stopping index k(d) is independent of the iterates xi((g). In

practice, this can be achieved by running SGD twice with the same data (y?, §): the first round
is for the determination of k(6), then the second (independent) round is stopped using k(J).
This increases the computational expense by a factor of 2. However, the numerical results
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in section 5 show that one can use the iterate from the first run without compromising the
accuracy.

Theorem 1.2. Let assumption 1.1 be fulfilled, and k() be determined by the discrepancy
principle (1.3). Then for all € > 0 there holds

P (||xi(6) = e) >0 as 6—0%,

where (xi)keN are SGD iterates independent of k(9), with the same data (y‘s, ).

In sum, theorems 1.1 and 1.2 confirm that the discrepancy principle is a valid a posteriori
stopping rule for SGD. However, they do not give a rate of convergence, which remains an
open problem. Numerically, we observe that the convergence rate obtained by the discrepancy
principle is nearly order-optimal for low-regularity solutions, as the a priori rule in the regime
in [10], and the performance is competitive with the standard Landweber method. Thus, the
method is especially attractive for finding a low-accuracy solution. However, for very smooth
solutions (i.e., large p), it manifested an undesirable saturation phenomenon, due to the pres-
ence of the significant variance component (when compared with the approximation error),
under the setting of assumption 1.1. The rest of the paper is organized as follows. In sections 2
and 3, we prove theorems 1.1 and 1.2, respectively. Several auxiliary results needed for the
proof of theorem 1.1 are given in section 4. Finally, several numerical experiments are pre-
sented in section 5 to complement the theoretical analysis. We conclude with some useful
notation. We denote the SGD iterate for exact data y' by x;, and that for noisy data y° by
x?. The expectation E[-] is with respect to the filtration F, generated by the random indices

(it ic).

2. The proof of theorem 1.1

In this section, we give the proof of theorem 1.1. First, we give several preliminary facts. By

the construction in (1.2), since xi is measurable with respect to F;_,

ELx) [ Fer] = ) —men ™ (@i, x) — y)ai

i=1

= x) — i (A'AX) — AYY).
Thus, by the law of total expectation, the sequence (lE[x,‘f])keN satisfies the following recursion:
Elx} ] = E[x}] — m(A'AE[x]] — A'S") @.1)

with A = n~2A and y5 —n y‘5. This is exactly the classical Landweber method [16] (but
with diminishing stepsizes) applied to the rescaled linear system Ax = 3°. For the Landweber
method, the discrepancy principle (1.3), e.g., regularizing property and optimal convergence
rates, has been thoroughly studied for both linear and nonlinear inverse problems (see, e.g.,
[4, chapter 6] and [13]). The key insight for the analysis below is the following empirical
observation: for a suitably large k, typically the variance component E[||A(x{ — E[x])[|*] <
2, as confirmed by the numerical experiments in section 5.2. This fact allows us to transfer
the results for the Landweber method to SGD.

The proof of theorem 1.1 employs two preliminary results, whose lengthy proofs are
deferred to section 4. The first result gives an upper bound of the following stopping index

4



Inverse Problems 36 (2020) 095009 T Jahn and B Jin

k*(9), for any 7* > 1, defined by
k*(6):== min{k € N : [|[AE[x]] —y°|| < 70} (2.2)

Clearly, k*(9) is the stopping index by the classical discrepancy principle, when applied to the
sequence (E[x,‘f])keN, which is exactly the Landweber method, in view of the relation (2.1).

Proposition 2.1. Let assumption 1.1 be fulfilled. Then for k*(0) defined in (2.2), there holds

roy< (T =15 S 2 2.3
()\<\/ﬁc,,> +2, (2.3)

(P+H1—a) | i L
Pyt |

with ¢, = (

The second result gives an upper bound on the variance component E[||A(xi(5) —
E[x) ;DI of the mean squared residual E[[|Ax; —y°||*]. It indicates that the variance
IE~[||A(x,‘f( 5 — Elx}; D[*] contributes only marginally to the mean squared residual E[[|Ax) s —
¥°||*1, and consequently the squared residual [|Axy;, — y°||* of individual realizations of SGD
may be used instead for determining an appropriate stopping index.

Proposition 2.2. Under assumption 1.1 with k() > 57“*0)(“3@1’#)“) and 0 < r < 1, there
holds

E[||A(xi(5) - E[Xi((s)])nz] =0(8%), as 6—0".
Now we can present the proof of theorem 1.1.
Proof. Set 1 <7 < 7 and k(§) = [cé_“*“)(mis@ﬂv’H”] + 2 ([-] denotes taking the integral
I
part of a real number), with ¢ = (?/*EZ,I,) (meXmaCr¥D By the definition of k(5) in (1.3), the
event & = {k(5) < k(0)} is given by

E={3ie{l,....k(6)} suchthat [|Ax} —y°|| < 76}.

Thus, £ O {||Ax}; —»°|| < 76}. Consequently,

P(k(0) < k(8)) = P(||Ax];) — ¥'|| < 76)
>P (||A(x£(5) —El DI < (r— 73, [AEL, ] - < 7*5) .

By the choice of k(J), proposition 2.1 implies
IAELG 5] =l < 7°6.
Consequently,
P(k(8) < k(6)) = P(|A(x), — Elxy s DI < (7 — 7)0)
= 1 = P(||ACxy;, — Bl DIl > (7 = 796).
Meanwhile, by Chebyshev’s inequality [5, p 233], we have

E[|A(x};, — Elx), DI

P(|AG ) — ELx, DIl > (7 = 79)8) < —_r>

5
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Therefore,

P(k(9) < k(6)) > 1 ZIRpPT R

which together with proposition 2.2 directly implies
Pk(8) < k(5)) -1 as §—0T .
This completes the proof of the theorem. (]

Remark 2.1. The condition r < 1 is related to an apparent saturation phenomenon with
SGD: for any p > %, the SGD iterate x{ with a priori stopping can only achieve a conver-
gence rate comparable with that for p = % in the setting of assumption 1.1, at least for the
current analysis [10]. It remains unclear whether this is an intrinsic drawback of SGD or due

to limitations of the proof technique.

Remark 2.2. In practice, we prefer computing the residual with a frequency wn € N:

ko(0) = min{wnk : k€ N, ||Ax’,, — Y| < 76}

wnk

2 _ 2 .
Since one of the numbers [¢§~ T-0mnZpNFD] + 2, ... [¢d T-omnCnFD] + wn + 1 is of the
form wnk, with k € N, there holds

P(kw(é) < ¢§ AR 4 wn + 1) 51 as 60T

That is, the upper bound on the stopping index remains largely valid for a variant of the
discrepancy principle (1.3) evaluated with a given frequency.

Remark 2.3. The finite-iteration termination property in theorem 1.1 relies heavily on the
assumption o < 1 in the definition of the stepsize schedule. Without this condition, theorem
1.1 (and thus also the convergence in probability) generally do not hold. Indeed, if rank(A) > 2,
y' # 0 and o > 1, then there holds

liminf P(k(d) = oc0) > 0. 2.4)
50+
To prove this assertion, let k* € N be such that n[|A||* < § for all k > k*. Since rank(A4) > 2

and y' # 0, there exists an index j € {1,...,n} such that y' ¢ span(Aa;). In view of the fact
AXiX(i\=..—i,._,—j} € span(Aa;), fork € {1,...,k"}, there exists an 7 > 0 with

P(|Axk =yl =0, Vk<K)=P(i=...=ip_1=j)>0.
Meanwhile for k > k*, similar to (3.2) below, there holds

|Axe — Y| = [|Axi—1 — Y| = m1 |(Axiey — ¥, e, )| |AA e, ||

k—1

> 2 lAxe =y TT @ = nllalP.
i=k*

Using the elementary inequalities 1 +x <e* forall x ¢ R and 1 +x > e for all x €
[—1.0] and the estimate (3.2) below, we deduce
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A2 = Y1l = [[Axi =yl = JAGx — xp) — 6T =)

k-1 k-1
> JAxe =y ITT @ = AlP0) — 6T T @ + 1A4]*n)
i=k* i=1
k-1 k-1
> [[Axe = ' exp (—COIIAIZZi“ —allAl*y i2‘“>
i=k i=k*

k—1
— 5 exp <c0||A|2Z i“) > || Axe — yl|| = "6,

i=1
with

¢ = e AP TGS T 5 0 and ¢ = elMIPEE T < o,
So for small enough § > 0, there holds

|Ax] — y6||X{HAx,-_yT”>,,, vicky = € — "6 > 6.
Consequently,

lim inf P(k(3) = 00) > P ([l Ax; = || > . Vi <k') >0,
>

This shows the assertion (2.4).

3. The proof of theorem 1.2

In this section, we prove theorem 1.2. It employs the following proposition, which states that
potential early stopping actually does not cause any problem.

Proposition 3.1.  For all € > 0, there is a sequence (ks ); with k; — oo for 6 — 0%, such
that

Hxi(& - xT”X{k(J)gkd’} <e¢
for 6 > 0 small enough.
Proof. It suffices to show that forall K € N
2 — x| X<xy =0 as 5 — 0T, (3.1

In order to show this, we need the following two estimates for the iterated noise:

k—1

IAG = x0 — 67 = yDI < ST A +millAlP, 32)
Jj=1
k—1 j—1

I = xell < SlAN> T[4+ millAlP), (3.3)

j=1 =1
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with the conventions Z?:l =0 and H3:1 = 1. We prove the estimates (3.2) and (3.3) by
mathematical induction. Note that a; = A’e;. For the estimate (3.2), by the triangle inequality
and the defining relation (1.2) of SGD iteration,

JAGY — xee) — 6° —yD)|
<AGS — x0) — 67 — YOI+ ml| (A — x0) — 6° — ¥, e;,) AA'e ||
< NAGE = x0) = 67 = (1 + mllAl?) .
and since x; = x, [|A(x} — x1) — (¢ — yD|| = [y’ — y'[| < 4. For the estimate (3.3), we have
|x — x| = 0 and
s — i | < Mg — x| + AN AGE = x0 — 6 = ¥Dl,

so the claim follows using the estimate (3.2). Now, for each fixed K, since there are only finitely
many different realizations of the first K SGD iterates, there is a (deterministic) 7 > 0, which
depends on K, such that

min ([ Ax — Y= 1) X{jaxe—st =05 = O 34

where without loss of generality, we have assumed y # 0. Therefore, using estimates (3.2)
and (3.4),
1Ax] = 3 11X g ax 0}
> [lAxe = Y X jants0) — IAGK = x0) — OF = )X (ar, vt >0}

k—1

zZ|n- 5H(1 F AN | Xjar st [50) > TOX{jaxpst >0}
=1

forany § < . Then by the definition of the discrepancy principle in (1.3), this

o
T+ AlAl?)
implies

{k(®) < K} € {[|Axi5) — '] = 0}
for § > 0 small enough. Meanwhile, since by construction x5 € R(A") = N(A)*L, ||Axs) —
y'|| = 0 implies x;;) = x', the minimum norm solution. The proof of (3.1) is concluded by
¥t — * x o<y = ¥ — 2o X o<

K-1 j-1

<A [T +mllAl®» =0

j=1 =1

for § — 07, where we have used estimate (3.3). This completes the proof of the
proposition. (]

Now we can state the proof of theorem 1.2.

Proof of Theorem 1.2. Fix ¢ > 0. Proposition 3.1 and theorem 1.1 guarantee the existence
2
of two sequences (kj )s, (ki )5, with ky < ki < ¢ T-0@m@n+0, k- — oo for § — 0" and

Hx,f(é) - xT||X{k(5)<kg} < e ford small enough

8
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and
P (k(6) <kj)—1 for 6—0T.
Consequently, for § > 0 small enough, there holds
P(|[ s — ']l > €)
= P(||x}4) — x'[| > €, k(0) < ky) + P(|[x}5) — xT[| > €, k(8) > k5)
= P(|lxe) — x'|| > &, k(6) > ky)
= P(||xie) — x| > &.k; < k(8) < k) + P(||xxe) — x| > €,k(8) > k)
< P(||xxs) — x| > &, k5 < k() < k) + P(k(5) > k).
In view of theorem 1.1, it remains to show that
P(||xke) — x'|| > e,k; <k(0) <kj)—0 for §—07.

To this end, let ;5 := {k; < k(0) < k;“} and we split the error into three parts in a custom-
ary way: approximation error, data propagation error and stochastic error. Specifically, by the
triangle inequality, there are constants ¢; and ¢, such that
Ky
s = xTlxa; = Y 148 = x X ko=
k=ky
K
<Y (B = x| + [ELed = B + [l — BD) X e
k=ky

ol
l—a
<> (cl(k — D L itk = 1)+ |xg - E[xi]ll) X {k()=k}

k=k

l—a

K
<ci(ky — 1)_(1_”)1) +eb(kf —1)7 + Z 1%} — Bl X (ko=

k=k;

where we have used [10, theorem 3.2] and lemma 4.1 belc?w’in the third line. The first two terms
clearly tend to 0 for § — 07 (since ks — oo, and 5(k;r)%“ — 0, in view of theorem 1.1). By
Markov’s inequality [5, p 242] and the independence assumption between k(&) and x,f( 5>

Kt
k' > E [||xi - E[XZ]HX{k((S):k}]
5 5 / k=k
P> I — Bl e > €' | < =
k=k;
K 5 5

> Bl = BLg1] P k(d) = k)

pu ) E/ .



Inverse Problems 36 (2020) 095009 T Jahn and B Jin

Now Jensen’s inequality and proposition 4.1 below (with s = 0, v < min(a, 1 — «) and 5 <
1 — ) give
K
P Z 12} — ELx] | X keoy=ty > €’
k=ky

> VE (I3 = BRI P ) = )
o Tk k k

X

6/
.
Vel + 826 PE®) = b
E/

V) + 8065) )P ()
—0

5J

~

as & — 0. Thus it follows that
P (||lxi(®) — x'|| > e.ky < k(8) <kj) —0
as § — 0T. This completes the proof of the theorem. O

Remark 3.1.  Clearly, with k,,(6) given as in remark 2.2, there holds P (|| x¢, ) — x'|| > €) —
0for§ — 0. Thatis, the convergence remains valid for the variant of the discrepancy principle
(1.3) evaluated with a frequency.

4. The proofs of propositions 2.1 and 2.2

In this part, we prove propositions 2.1 and 2.2, which are used in the proof of the theorems
1.1 and 1.2. We shall use the following result from [10, theorem 3.1] frequently. Note that

182 (= 21| = llAxe 1/ /.
Lemma 4.1. Let assumption 1.1 be fulfilled, then for se€{0,1} and

pts
— ( pr90-a)
Cps = (coe(zlfafl)) |lwl|, there holds

1B (i1 — xD)|| < ek @HI0-),

4.1. The proof of proposition 2.1

Proof. We may assume k" > 2. By the definition of k*(d) and the triangle inequality
76 < || AR[x._, 1 — |
< JAE[xp—1] = ¥ + [JAE[x_; — xpe—1] + OF = ).
By lemma 4.1, the term ||AE[x;-_;] — y'|| is bounded by
IAELxe_ 1] — || < cpk —2)"PH0-0 with ¢, = Ve, 1. (4.1)

10
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Next we claim
JAE[xg._; — xe 11+ OF =y < 6. (4.2)

Combining (4.1) with (4.2) immediately implies the desired assertion. It remains to show the
claim (4.2). To this end, we employ the filter of the Landweber method. The relation (2.1)
implies that E[xi] satisfies the following recursion

AE[x2+1] -y = (1 - %AAI) (AlE[xi] - y5) :

Using this yields
k-1 A
AE[X] — ( 27—’AA’)(Axl—y‘S), (4.3)
=1 "
and consequently, by the choice of ¢y,

k—1
JAEL] - xd+ 07 =30 = [T (1= 2aa) o' =5) | <5 @4

j=1
This completes the proof of the proposition. (]

4.2. Proof of proposition 2.2
The proof of proposition 2.2 employs several technical estimates [10].

Lemma 4.2. For any j < k, and any symmetric and positive semidefinite operator S and
stepsizes n; € (0, ||S|| "' 1 and p > 0, there holds

: P
|| =SS <
H (i )"
Next we recall two useful estimates taken from [10].

Lemma4.3. Forn, =nyj “witha € (0,1), 8 € [0, 1] and r > 0, there hold

(41 )
T 77] rj_{)) < Caﬂ,rk—r(l—(y)—&-max((),l—2(1—;’3),
=1 (21:j+1 ne)
k—
Z —5’ < c;ﬁ’rk—((2—)‘)(y+;5’)+max(0,1—r),
[ (Z/ Jj+1 77/))
where we slightly abuse the notation k- ™% for Ink, and c, 3, and ¢y, 5. are given by
200+
—_— 2+ 8 > 1,
20+ -1 b
Ca,Br = Zrn(Z)—r 2, 200 + ﬁ = 1, and
22(y+5—1
20+ B < 1,

1 -2a—-p5

1
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r
, r>1,
r—1
2048, 2— _
c;,ﬁ,r —2 04+L3,,70 r 22,r71 r=1,
, r<l
1—r

The next result gives an important recursion between the variance estimate.

Lemma 4.4. Let assumption 1.1 be fulfilled. Then for the SGD iterate x{, with oy

HB%”H’;H(B)H, there holds

E[||B*(x),, — Elx), D]

k
—2(1—a)(p+-5
<T@ (csE[IIB‘ (x5 = EL) |21+ 2¢,j 20 -20F2) 4 252) :

=1
with s € {0, %} and cy, ¢, given below.

Proof.
is bounded by

k
LHS < ) (¢ E [[|Ax) —y°|?
j=1

k
= > @) (BI|A (x) — ELx)1) X1+ |AE[x]] — y°|?) .
=1

=
Now by the triangle inequality and (4.4),

k
LHS < ) n}(¢})

j=1

(IE[IIA (< — EL¥']) 71 + (JAELx;] — ]

2
+ )14 (EIx3] - ELx;) — (0 =) ) )
Since [JAE[x,] — y'|| = [|y]|, and
JABL ] =y < Ve, (G — D700 < e, 2020
2
. 1 l -
for j > 2 by lemma 4.1. Thus, with ¢, == (maX{H)’TH, \/ﬁcp,%z(pﬂ)(l )}) ,

k
s s 1 S
LHS < 3" n@))? (w4 B8 (+] ~ BL¥)) |P)

=1
+2c,j 20D 4 262)

which completes the proof of the lemma with ¢, = n||A[[*2 ).
The next result gives a sharp estimate on E[||B*(x{ — E[x{])||].

12

By [10, theorem 3.3] and the bias variance decomposition, the left-hand side (LHS)
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Proposition 4.1. Let assumption 1.1 be fulfilled. Then for the SGD iterate x?, the mean
squared error E[||B*(x] — E[x{])||*] with s € {0, 1} satisfies

E[||B*(x] — ELD)|*] < cla, p,n,s, B, )k + 6%k7)

for B < min ((1 4+ 2s)(1 — a),(1 +2p)(1 — @) + ) and v < min(a, 1 — ).

Proof. Lemma 4.4 implies that the weighted mean squares error d$ = E[||B*(x} — x)||’]
satisfies the following recursion

k
d/i+1 < Z nj2(¢;)2 (C;d; + chj—z(l—(k)(P-i-S) 4 252) (45)
j=1
Now we prove the desired assertion by mathematical induction (with § = 2p + 1)(1 — «)):
di < etk + 8%k,

where the constant ¢ > 1 is to be determined. This assertion holds trivially for all finite k, up
to k*, provided that c is sufficiently large. Now suppose the assertion holds for k > k*, and
we prove the assertion for k + 1. Indeed, it follows from the recursion (4.5), the induction
hypothesis and since 8 < 2(1 — a)(p + 3), that

k
iy, <D @ e+ 07 4 26,00 4267

J
J=1

k k
< e 7+ (e + 207D ()
=1 /

J=1

k

(11— 1

+ 2,y (@O
j=1

k k
< (e +26)Y @D + (eie + 287 ni (e
=1 =1

with 8’ = min(3, (1 + 2p)(1 — «)). Without loss of generality, we may assume that 3’ > 1 —
2a. By lemmas 4.2 and 4.3, the first sum is bounded by

k

20 15\2 3 -2 —(142s)(1— J1—2a—p3
an(¢;) J < e capitask (14-25)(1—a)+max(0,1-2a— ")
=1

+ e 'cl gy Bl In k+ c|| B2kt (4.6)

Since 8 + o > 3 and max(0, 1 — 2o — ') = 0, thus,
k

anzqgj—u < (67200,3/,1+2sk7(1+zs)(lfa)+5 In k
=1

et IBIE Ik B K

13
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Meanwhile, with —(1 + 25)(1 — ) + max(0, I — 2a) = —min((1 4 2s)(1 — o), o + 25(1 —
«)), we obtain

k
Z 77]2((251)2 < 6726'”,0’2](7 min((14+2s)(1—a),a+2s(1—a))
J=1

+ e 'choy|IBIk™ In k+ cj||B||*k >
< (€7 2¢n 0,1 4o,k M-+
+ e ' o 1Bk In k+ cG||B|Pk ) k7
Combining the preceding estimates yields
di1 < (ccs + 2c¢p) (e—zcw,’l +2sk—(l+2s)(l—(y)+8 n k
+ e_lc;,s/,l||B\|k_(“+‘8/)+‘3 In k+c3\|B||2k—“) -
F (e5¢ + 2)8% (€ 2eq a0k M-+

+ e ' o [IBIK T In k+ cf||B|Pk2 ) kO

Since by assumption, 8 < (1 +2s)(1 — ), B < o + ' and v < min(a, 1 — ), there exists
k* such that for all k£ > k*

(cs+2¢p) (e’zcaﬂ/,1+2Sk’(1+23)(1’“)+5 In k—&—e’lc'aﬂn\|B||k’(“+5/)+5 In k—i—céHBsz’za) <%,
(cs + 2)5° (e_zca,o,l-s-zsk_ min((1—a).a)+y 4 e_lc;m |B||k~ " In k+ C(Z)HBsz_z“'*'“’) < %
Thus, with this choice of £* and k > k¥,
di1 < 2 (k7 + %) < cw (k+ 1)+ 6 *k+1)7)
<c(k+1)7+8*k+1)77)
and we obtain the desired assertion. (|

Remark 4.1. The n factor in the estimate is due to the variance inflation of using stochastic
gradients in place of gradient in SGD. This factor can be reduced by suitable variance reduc-
tion techniques, e.g., mini-batching and stochastic variance reduced gradient [12]. Note that
with [10, theorems 3.1 and 3.2] and s = 0, proposition 4.1 gives an improved (regarding the
exponents) a priori bound for the mean squared error E[ [|x{ — xf||?].

Last, using lemma 4.4 and proposition 4.1, we can prove proposition 2.2.

Proof of Proposition 2.2. Using lemma 4.4 and proposition 4.1 with s =} and ¢ =
c(a, p,n,s, 3,7), we deduce

E[JAG s — Elxds DII*T < ne (k(8) 7 + 626(8) 7).

We choose v > 0. If p < % and r > 2p, then we can choose 8 > (1 — a)(2p + 1), so with the

— 2 . . .
choice k(0) = 6 T-@@FD, the claim follows. Otherwise, if p > %, then we can choose § >

14
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(1 — a)(r + 1), so with the choice xk(§) = § =5 the claim again follows. This completes

the proof of the proposition. (]

5. Numerical experiments and discussions

Now we provide numerical experiments to complement the theoretical analysis. Three
model examples, i.e., phillips (mildly ill-posed, smooth), gravity (severely ill-posed,
medium smooth) and shaw (severely ill-posed, nonsmooth), are taken from the open source
MATLAB package Regutools [7], available at http://people.compute.dtu.dk/pcha/Regutools/
(last accessed on April 14, 2020). The problems cover a variety of setting, e.g., different
solution smoothness and degree of ill-posedness. These examples are discretizations of Fred-
holm/Volterra integral equations of the first kind, by means of either the Galerkin approx-
imation with piecewise constant basis functions or quadrature rules. All the examples are
discretized into a linear system of size n = m = 1000. In addition, we generate a synthetic
example, termed smoothed-phillips, whose exact solution x' is first generated by
x' = A’AA'S" and then normalized to have unit maximum, i.e., x' = X' /||x'||;~, where A is
the system matrix and y' the exact data from phil1lips, and the corresponding exact data is
formed by y© = Ax'. By its very construction, the solution x' satisfies assumption 1.1(ii) with
an exponent p > 2, and thus it is very smooth in some sense. Throughout, the noisy data y° is
generated according to

yf ::y,T + 46 m?x(\yﬂ)f,-, i=1,...,n,

where the i.i.d. random variables &; follow the standard Gaussian distribution (with zero mean
and unit variance), and 0 > O denotes the relative noise level (by slightly abusing the nota-
tion). The parameter c, in the stepsize schedule in assumption 1.1(i) is set to (max;|a;||*)~",
the exponent « is taken from the set {0.1,0.3,0.5}, and unless otherwise stated, the stopping
criterion is tested every 100 SGD iterations (see remarks 2.2 and 3.1). SGD is always initial-
ized with x; = 0, and the maximum number of epochs is fixed at 5000, where one epoch refers
to n SGD iterations. The parameter 7 in the discrepancy principle (1.3) is fixed at 7 = 1.2. All
the statistical quantities presented below are computed from 100 independent runs.

5.1 Optimality

First, we verify the optimality of the discrepancy principle (1.3), against an order optimal reg-
ularization method. There are many possible choices, e.g., Landweber method and conjugate
gradient method [4, chapters 6 and 7]. In this work, we employ the Landweber method as
the benchmark. The Landweber method generally converges steadily although often slowly.
However, it is known to be an order optimal regularization method with infinite qualification
[4, theorem 6.5, p 159], when terminated by the discrepancy principle (2.2), and further, it is
the population version of SGD [the expected iterates (E[xi]) reny are exactly the Landweber
iterates; see (2.1)], and thus it serves a good benchmark for performance comparison in terms
of the convergence rate. For the comparison, the Landweber method is initialized with x; = 0,
with a constant stepsize 1/||A||?, and it is terminated with the discrepancy principle (2.2) with
7" = 1.2 (i.e., the same as for SGD) with the maximum number of iterations being fixed at
5000. The numerical results for the examples are summarized in tables 1-4. In the tables, egeq
and std(esgq) denote the (sample) mean and the (sample) standard deviation of the (squared)
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Figure 1. Box plots for the error ||x,f§ — x1||? and the stopping index ks by SGD. The

first two columns are obtained by SGD with o = 0.3, whereas the last two columns are
for the noise level 6 = 1 x 1072, The rows from top to bottom refer to phillips,
gravity, shaw and smoothed-phillips, respectively.

error [|x} — xT[|?, respectively, i.e.,

. s 1
ega = B[|[x}, — xTI”] and  std(esa) = E[(||x}s — xT[|* — esa)’]17,

and ksq = E[ks] is the mean stopping index for SGD, in terms of the number of epochs. Like-
wise e, and kjy, denote the squared reconstruction error and stopping index, respectively, of
the Landweber method, terminated according to the discrepancy principle (2.2).

The numerical results allow drawing a number of interesting observations. First, the expo-
nent « in the stepsize schedule exerts a strong influence on the (expected) stopping index kgq.
At low noise levels (i.e., small §), ksgq increases dramatically with the value of a. Meanwhile,
for any fixed «, the error eyyq increases steadily with the noise level 9, exhibiting the con-
vergence behavior indicated in theorem 1.2. Further, for each fixed 0, the error ey is largely
comparable for all different v values, although k.q increases with .. This behavior is qualita-

2
tively in good agreement with theorem 1.1: the upper bound scales as O(§ ~ T-0mnpnF1 ). Thus,
in practice, in order to obtain relatively efficient SGD, one prefers small « values. Second, in

16
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Table 1. Comparison between SGD and LM for phillips.

a=0.1 a=0.3 a=0.5 LM
0 €sed Std(esgd) ksgd €sod Std(esgd) ksgd €sed Std(esgd) ksgd €Im klm
1x1073 860x 1073 453x103 1424 853 x 1073 442x 1073 4189 834 x 103 4.60x 103 5229 572x107% 361
5x 103 170 x 1072 841 x 1073 0458 231 x 1072 881 x 103 0975 248x 102 738 x 103 6.032 226x 102 128
1x102 282x102 1.62x102 0281 472x1072 207x102 0433 578x 1072 204 x102 1647 576x10°% 51
5102 141 x107" 970x 1072 0.157 149x 10" 901 x 1072 0.116 211 x10"" 969 x 1072 0.173 2.19x10°! 15

600560 (0202) 9€ Swa|qold 8sIeAu|

uIP g pue uyer 1
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Table 2. Comparison between SGD and LM for gravity.

a=0.1 a=0.3 a=0.5 LM
0 €sed Std(esgd) ksgd €sod Std(esgd) ksgd €sed Std(esgd) ksgd €Im klm
1x1073 671 x107" 261 x107" 1960 7.46x 107" 273 x 107" 9316 7.78 x 107! 249 x 107" 1985 725x 107" 640
5% 1073 2.00 x 10 891 x 10°! 0451 253 x 10 1.12 x 10 0.880 2.76 x 10 1.14 x 10 6217 244 x 10 95
1x1072 3.12x 10 1.57 x 10 0.250 4.33 x 10 1.92 x 10 0.361  4.74 x 10 2.07 x 10 1.366  4.02 x 10 50
5% 1072 9.07 x 10 5.31 x 10 0.143  1.15 x 10! 6.61 x 10 0.107 1.52 x 10! 7.46 x 10 0.135  1.66 x 10! 9

600560 (0202) 9€ Swa|qold 8sIeAu|

uIP g pue uyer 1
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Table 3. Comparison between SGD and LM for shaw.
a=0.1 a=03 a=0.5 LM
0 €sed Std(esgd) ksgd €sed Std(esgd) ksgd €sed Std(esgd) ksgd €Im klm
Ix1073 820x10 935x107%2 5773 847x10 559 x 1072 8913 201 x 10" 564 x10°" 5000 1.28 x 10" 5000
5x 1073 277 x 10" 124 x 10 0.948 2.80 x 10" 1.16 x 10 3.811 2.82x 10" 1.02x 10 51.69 2.81 x 10' 189
1x 1072 296 x 10"  1.65x 10 0.597 3.10 x 10" 1.14 x 10 1.938 3.12 x 10"  1.08 x 10 19.71  3.11 x 10" 117
5x 1072 5.02x 10" 1.08 x 10! 0.155 6.07 x 10"  8.08 x 10 0.250 6.70 x 10" 7.41 x 10 0.818 6.85 x 10" 22

600560 (0202) 9€ Swa|qold 8sIeAu|

uir g pue uyer |
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Table 4. Comparison between SGD and LM for smoothed-phillips.

a=0.1 a=03 a=0.5 LM
0 €sed Std(esgd) ksgd €sod Std(esgd) ksgd €sed Std(esgd) ksgd €Im klm
Ix1073 1.63x 107" 687 x 1072 1348 159 x 107" 588 x 1072 4.030 1.55x 107" 6.09 x 1072 48.02 151 x1073 29
5x 1073 392x 10! 208 x 107" 0367 5.06x 10" 2.05x 107" 0591 4.92x 107! 1.99 x 107" 2.683 138 x 102 18
1x1072 595x 107" 264 x 107" 0242 857 x 107! 373 x 107" 0303 946x 107" 393 x 107! 0774 4.06 x 1072 15
5% 1072 298 x 10 1.44 x 10 0.163 3.20 x 10 1.51 x 10 0.107 4.35 x 10 2.13 x 10 0.130 7.19x 107" 9

600560 (0202) 9€ Swa|qold 8sIeAu|

uIP g pue uyer 1
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terms of accuracy (measured by the mean squared error), SGD is competitive with the classical
Landweber method for phillips, gravity and shaw: egq and ey, are fairly close to each
other in most cases, and e,q can be smaller than ej,,, which fully confirms the order-optimality
of the discrepancy principle (1.3) for SGD for low regularity solutions, and also confirming
the convergence in theorem 1.2. In fact, empirically, the error seems to converge not only in
probability, but also in L2. A close inspection on the stopping index ksga 1s very telling: when
the noise level ¢ is medium to large, the stopping index kgeq of SGD, determined by (1.3), is
ten-fold smaller than that for the Landweber method in terms of epoch count. In particular,
when the noise level § is relatively high, SGD can actually deliver an accurate solution within
less than one epoch, i.e., going through only a fraction of all the available data points. Thus,
in this regime, SGD is much more efficient than the Landweber method. These observations
are valid for all the examples, despite their dramatic difference in degree of ill-posedness and
solution smoothness. However, for smoothed-phillips, the achieved accuracy by SGD
is far below than that by the Landweber method for all three exponents .. This suboptimality in
convergence rate is attributed to the saturation phenomenon for SGD, due to the dominance of
the computational variance, when the true solution xis very smooth. The effect of the variance
component will be examined more closely below in section 5.2.

The example shaw is challenging for numerical recovery, since the solution is far less
smooth, and at low noise level § = 1 x 1073, the discrepancy principle (2.2) cannot be reached
even after 5000 Landweber iterations, see table 3. A similar behavior is also observed for SGD
with & = 0.3 and o = 0.5. Nonetheless, with o = 0.1, the discrepancy principle (1.3) can be
reached by SGD after a few hundred epochs, clearly showing the surprisingly beneficial effect
of SGD noise for low-regularity solutions.

Next we examine more closely the performance of individual samples. The boxplots are
shown in figure 1 for the examples at two different scenarios, i.e., fixed « and fixed §. On each
box, the central mark indicates the median, and the bottom and top edges of the box indicate the
25th and 75th percentiles, respectively; The whiskers extend to the most extreme data points
not considered outliers, and the outliers are plotted individually using the ‘4’ symbol. It is
observed that for a fixed c, on average the error ||x} 5 — x'||? increases with the noise level
¢ samplewise, and also its distribution broadens. However, the required number of iterations
to fulfill the discrepancy principle (1.3) decreases dramatically, as the noise level § increases,
concurring with the preceding observation that SGD is especially efficient for data with high
noise levels. Meanwhile, with the noise level ¢ fixed, the value of « does not change the results
much overall. However, a larger a can potentially make the percentile box larger and also
more outliers, as shown by the results for gravity in figure 1, and thus give less accurate
results. This observation is counter-intuitive in that smaller variance does not immediately lead
to better accuracy. This might be related to the delicate interplay between the total error and
various problem / algorithmic parameters, e.g., o and p. Further, the outliers in the boxplots
mostly lie above the box. These observations are typical for all the examples.

5.2. How influential is the variance?

Now we examine more closely the dynamics of the SGD iteration via the bias-variance
decomposition of the error E[||x{ — x'||*] and residual E[||Ax{ — y°||?]:

Ef||x} — x'[]°1 = |ELx)] — x"[|* + Efflxy — ELx1 )1,
E[||Ax) — y° "] = [AE[x]] — y°||* + E[|A(x) — E[x{])]*].
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Figure 2. The decay of the mean squared error E[[|x{ — xT||?] and residual E[||Ax] —
°||?] and their variance components E[||x{ — E[x?]|*] and E[||A(x) — E[x{])||?] versus
the SGD iteration number k. The solid and dashed curves denote the mean squared quan-
tity and the variance component, respectively, and the black curve indicates the discrep-
ancy 6> = ||y’ — y'||2. The first two columns are for the noise level § = 5 x 107> and
the last two columns are for the noise level § = 5 x 102, The rows from top to bottom
refer tophillips, gravity, shaw and smoothed-phillips, respectively.

In figure 2, we display the dynamics of mean squared error E[||x — x'||?] and the mean squared
residual E[||[Ax — y°||?] together with their variance components for the examples at two dif-
ferent relative noise levels, i.e.,d =5 x 1073 and § = 5 x 10~2. At each time, SGD is run for
100 epochs (i.e., 1 x 10° SGD iterations), and the results are recorded every 50 SGD iterations,
starting from the 50th SGD iterations.

In the plots, we have indicated the true noise ||y’ — y'||2, also denoted by 2. It is observed
that both E[||x{ — x'||?] and E[||Ax] — y°||*] decay steadily at an algebraic rate up to a value
comparable to the stopping index k*(§) for the Landweber method (by the discrepancy principle
(2.2)). Beyond the critical threshold k*(9), the error E[||x} — xT||?] exhibits a semiconvergence
behavior in that it starts to increase, whereas the residual E[||Ax} — y°||*] nearly levels off at a
value comparable with the noise level 62 (actually it oscillates slightly, since the SGD iterate
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Figure 3. The decay of the squared error ||x} — xf||?> and residual ||Ax] — y*||> and
their variance components E[||x{ — E[x}]||*] and E[||A(x{ — E[x]])||*] versus the SGD
iteration number k. The solid and dashed curves denote the squared quantity and the
variance components, respectively, and the black curve indicates the discrepancy 6> =
Iy’ — yT||?. The first two columns are for the noise level § = 5 x 103 and the last two
columns are for the noise level 6 = 5 x 1072, The rows from top to bottom refer to
phillips, gravity, shaw and smoothed-phillips, respectively.

is only descent for the residual on average). This is typical for iterative regularization meth-
ods for inverse problems, since for the later iterates, the noise becomes the dominating driving
force. Proposition 4.1 with s = % indicates that a similar behavior holds also for their variance
components (up to slightly beyond k*(9)). Actually, the residual variance E[||A(x] — E[xJ])/|*]
first decays as O(k21=%) (upon ignoring the ¢ term), which matches well the empirical rate
in the plot. For the later iterates, as suggested by the § term in proposition 4.1, the decay
is roughly O(k™ ). Likewise, the error variance E[||x) — E[x{]||*] decays slower at a rate
O(k~""~). Interestingly, the decay rates of E[||A(x] — E[x])||*] and E[||x] — E[x{]|*] in the
first and last columns are largely comparable, despite their drastic difference in the smooth-
ness of the exact solution x'. Thus, the decay estimate in proposition 4.1 is actually quite sharp,
partially explaining the saturation phenomenon observed earlier. This behavior is consistently
observed for all three «v values. It is worth noting that for smoothed-phillips, the curves
for E[||x — E[x{]]|*] and E[||x] — x'||*] nearly overlay each other, i.e., the bias component is
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negligible after the initial 50 iterations, due to high smoothness of the true solution, clearly
indicating the saturation. For the other three examples, empirically, the variance components
are of smaller order right after the initial 50 iterations. In particular, as stated in proposition 2.2,
E[||A(x{ — E[x{])||*] contributes very little to the mean squared residual E[||Ax{ — y°|*] in the
neighborhood of k*(§). This occurs for all three values of the exponent « in the stepsize sched-
ule. The observations hold also for individual realizations; see figure 3 for the corresponding
plots. The overall behavior of the curves in figure 3 is fairly similar to that in figure 2, except
that the residual and error curves exhibit pronounced oscillations due to the randomness of
the row index selection. Nonetheless, in the neighborhood of k*(6), the variance components
remain much smaller in magnitude. This observation provides the key insight for the analysis
in section 2.

5.3. Independent run

The convergence analysis in theorem 1.2 requires an SGD iterate xi( 5) independent of the stop-
ping index k(§) determined by the discrepancy principle (1.3). In practice this can be achieved
by an independent run of SGD, at the expense of slightly increasing the computational effort.
Now we examine the impact of this choice, and we denote by DP and i-DP the SGD iterate
used in (1.3) and that by an independent SGD run, respectively. The relevant numerical results
are presented in tables 5—8, where the numbers outside and inside the bracket denote eeq and
std(esgq), respectively. It is observed that DP gives only slightly better results in terms of the
mean, but its standard deviation std(eseq) is generally much smaller than that by i-DP. Nonethe-
less, both the mean egyq and the standard deviation std(eseq) of i-DP are decreasing steadily as
the noise level ¢ decreases to 0, confirming the convergence result in theorem 1.2.

The difference is more clearly visualised in the boxplots in figure 4 (for phillips with
two noise levels). A close look shows that the mean and percentile are fairly close to each other,
but the i-DP result tends to have far more outliers lying above the box (marked by red cross in
the plots). This is attributed to the fact that k() determined by the discrepancy principle (1.3)
is occasionally too small for an independent SGD run, and thus the corresponding residual
is far above the target noise level in the discrepancy principle (1.3); see the boxplots in the
last column of figure 4. That is, the outliers are due to stopping too early. This agrees with
the observation that one iteration step of SGD has only a small effect on the high frequency
components (because of the scaling with the corresponding small singular values). Thus, small
|Ax — yt|| for k < k*(9) implies that also ||x{ — x'|| is small. Although not presented, we note
that this behavior is observed for all the examples at different noise levels. Thus, in practice,
using the SGD iterate directly from the path for (1.3) is preferred, taking into account both
accuracy and computational efficiency. It is an interesting theoretical question to analyze the
convergence (and convergence rates) of the SGD iterate by (1.3).

6. Concluding remarks

In this work, we have presented a preliminary study on the discrepancy principle as an a posteri-
ori stopping rule for the popular stochastic gradient descent for solving linear inverse problems.
We proved a finite-iteration termination property of the principle, and a consistency result
in high probability for an independent version of discrepancy principle. Several numerical
experiments indicate the feasibility of the rule as a stopping criterion.

There are several outstanding questions that deserve further research. First, one important
question is the convergence of the dependent version of the discrepancy principle, and con-
vergence rates (and also optimality, if possible!). This would put the discrepancy principle on
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Table 5. Comparison between DP and i-DP for phillips.

a=0.1

DP

i-DP

DP

i-DP

DP

i-DP

1x1073
5% 1073
1x1072
5x 1072

8.60 x 1073 (4.53 x 1073)
1.70 x 1072 (8.41 x 1073)
2.82 x 1072 (1.62 x 1072%)
1.41 x 107! (9.70 x 1072)

1.12 x 1072 (1.18 x 1072)
231 x 1072 (2.43 x 1072)
435 x 1072 (4.44 x 1072)
1.53 x 107! (8.97 x 1072)

8.53 x 1073 (4.42 x 1073)
231 x 1072 (8.81 x 107%)
472 x 1072 (2.07 x 107%)
1.49 x 107! (9.01 x 1072)

1.28 x 1072 (1.88 x 1072)
3.43 x 1072 (3.54 x 1072)
6.43 x 1072 (5.67 x 1072)
1.80 x 1071 (1.25 x 107"

8.34 x 1073 (4.60 x 1073)
2.48 x 1072 (7.38 x 1073)
5.78 x 1072 (2.04 x 1072)
2.11 x 1071 (9.69 x 1072)

1.28 x 1072 (1.55 x 1072)
4.17 x 1072 (3.63 x 1072)
6.85 x 1072 (5.66 x 1072)
247 x 1071 (1.93 x 1071)

600560 (0202) 9€ Swa|qold 8sIeAu|

uir g pue uyer |



9¢

Table 6. Comparison between DP and i-DP for gravity.

a=0.1

DP

i-DP

DP

i-DP

DP

i-DP

1x1073
5% 1073
1x1072
5x 1072

6.71 x 1071 (2.61 x 1071)
2.00 x 10 (8.91 x 107"
3.12 x 10 (1.57 x 10)
9.07 x 10 (5.31 x 10)

9.30 x 107! (7.45 x 1071)
2.43 x 10 (1.39 x 10)
4.03 x 10 (2.54 x 10)
1.01 x 10! (5.49 x 10)

7.46 x 107 (2.73 x 1071
2.53 x 10 (1.12 x 10)
4.33 x 10(1.92 x 10)
1.15 x 10! (6.61 x 10)

1.03 x 10 (8.04 x 107")
3.74 x 10 (2.62 x 10)
5.24 x 10 (3.13 x 10)
1.19 x 10' (8.16 x 10)

7.78 x 107" (2.49 x 107"
2.76 x 10 (1.14 x 10)
4.74 x 10 (2.07 x 10)
1.52 x 10" (7.46 x 10)

1.00 x 10(7.23 x 1071)
3.44 x 10 (2.36 x 10)
6.98 x 10 (4.17 x 10)
1.72 x 10" (1.10 x 10")
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Table 7 Comparison between DP and i-DP for shaw.

a=0.1

DP

i-DP

DP

i-DP

DP

i-DP

1x1073
5% 1073
1x1072
5x 1072

8.29 x 10(9.35 x 1072)
2.77 x 10" (1.24 x 10)
2.96 x 10" (1.65 x 10)
5.02 x 10" (1.08 x 10")

8.30 x 10(3.29 x 107")
2.77 x 10" (1.27 x 10)
3.03 x 10" (2.58 x 10)
5.34 x 10" (1.53 x 10")

8.47 x 10(5.59 x 1072)
2.80 x 10! (1.16 x 10)
3.10 x 10' (1.14 x 10)
6.07 x 10! (8.08 x 10)

8.50 x 10 (2.67 x 107")
2.81 x 10! (1.31 x 10)
3.13 x 10! (2.74 x 10)
6.19 x 10' (1.23 x 10")

2.01 x 10" (5.64 x 1071)
2.82 x 10! (1.02 x 10)
3.12 x 10! (1.08 x 10)
6.70 x 10! (7.41 x 10)

2.00 x 10" (5.25 x 1071)
2.80 x 10! (1.22 x 10)
3.16 x 10" (2.44 x 10)
7.04 x 10" (1.35 x 10")
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Table 8. Comparison between DP and i-DP for smoothed-phillips.

a=0.1

a=03

DP

i-DP

DP

i-DP

DP

i-DP

1x1073
5% 1073
1x1072
5x 1072

1.63 x 107! (6.87 x 1072)
3.92 x 107! (2.08 x 1071)
5.95x 107" (2.64 x 1071)
2.98 x 10 (1.44 x 10)

1.92 x 107" (1.27 x 107")
4.68 x 1071 (3.47 x 1071)
8.12 x 107! (5.04 x 1071)
3.25 x 10 (1.52 x 10)

1.59 x 107! (5.88 x 1072)
5.06 x 107" (2.05 x 1071)
8.57 x 1071 (3.73 x 107 1)
3.20 x 10 (1.51 x 10)

2.00 x 107! (1.30 x 107")
6.54 x 107! (4.79 x 1071
1.22 x 10 (1.03 x 10)
3.25 x 10 (1.94 x 10)

1.55 x 107! (6.09 x 1072)
4.92 x 107 (1.99 x 1071)
9.46 x 107! (3.93 x 1071)
4.35 x 10 (2.13 x 10)

1.93 x 107! (1.88 x 1071
751 x 1071 (5.73 x 1071
1.46 x 10 (1.13 x 10)
4.59 x 10 (3.29 x 10)
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Figure 4. Boxplots for the error ||x}; — x'[|* and the residual [|Ax}; — y°||* for DP
(the first two columns) and i-DP (the last two columns), for phillips at two noise
levels, i.e., 6 = 1 x 1073 (top) and 6 = 1 x 1072 (bottom).

a firm mathematical basis. Second, it is of much interest to study stochastic gradient descent
for inverse problems with random noise, with either a priori or a posteriori stopping rules.
In particular, in this context, the discrepancy principle may have to be properly adapted; see
the works [1, 8] for interesting discussions with deterministic inversion techniques. Third, the
analysis so far does not cover the critical case & = 1 in the stepsize schedule. This choice is
often adopted in the context of stochastic approximation [15] for optimal asymptotic behavior,
but it is unclear whether the discrepancy principle can be applied then.
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