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Figure 1: Given a localized input RGB sequence, FroDO dectects objects and infers their pose and a progressively fine

grained and expressive object shape representation. Results on a real-world sequence from ScanNet [7].

Abstract

Object-oriented maps are important for scene under-

standing since they jointly capture geometry and seman-

tics, allow individual instantiation and meaningful reason-

ing about objects. We introduce FroDO, a method for accu-

rate 3D reconstruction of object instances from RGB video

that infers object location, pose and shape in a coarse-to-

fine manner. Key to FroDO is to embed object shapes in a

novel learnt space that allows seamless switching between

sparse point cloud and dense DeepSDF decoding. Given

an input sequence of localized RGB frames, FroDO first ag-

gregates 2D detections to instantiate a category-aware 3D

bounding box per object. A shape code is regressed using

an encoder network before optimizing shape and pose fur-

ther under the learnt shape priors using sparse and dense

shape representations. The optimization uses multi-view

geometric, photometric and silhouette losses. We evaluate

on real-world datasets, including Pix3D, Redwood-OS, and

ScanNet, for single-view, multi-view, and multi-object re-

construction.

* The first two authors contributed equally.

1. Introduction

Localizing and reconstructing 3D objects from RGB

video is a fundamental problem in computer vision. Tra-

ditional geometry-based multi-view reconstruction [40, 41]

can deal with large scenes given rich textures and large

baselines but it is prone to failure in texture-less regions or

when the photo-consistency assumption does not hold. Be-

sides, these methods only provide geometry information but

no semantics. An even more challenging question is how to

fill in unobserved regions of the scene. Recently, learning

based 3D reconstruction methods [2, 6, 9, 12, 28, 50] have

emerged and achieved promising results. However, data-

driven approaches rely heavily on synthetic renderings and

do not generalize well to natural images. On the other hand,

we have seen impressive progress in 2D recognition tasks

such as detection and segmentation [15, 21, 26].

In this paper, we propose a system for object-centric re-

construction that leverages the best properties of 2D recog-

nition, learning-based object reconstruction and multi-view

optimization with deep shape priors. As illustrated in

Fig. 2 FroDO takes a sequence of localized RGB images

as input, and progressively outputs 2D and 3D bound-
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Figure 2: Given a sequence of calibrated, and localized RGB images, FroDO detects objects and infers their shape code and

per-frame poses in a coarse-to-fine manner. We demonstrate FroDO on challenging sequences from real-world datasets that

contain a single object (Redwood-OS) or multiple objects (ScanNet).

ing boxes, 7-DoF pose, a sparse point cloud and a dense

mesh for 3D objects in a coarse-to-fine manner. FroDO

demonstrates deep prior-based 3D reconstruction of real

world multi-class and multi-object scenes from real-world

RGB video. Related approaches are limited to single

view [9,13,14,28,50], or multi-view but single objects [24],

are purely geometry-based [40,41], or require depth and ob-

ject scans [17, 18].

Choosing the best shape representation remains a key

open problem in 3D reconstruction. Signed Distance Func-

tions (SDF) have emerged as a powerful representation for

learning-based reconstruction [28, 32] but are not as com-

pact or efficient as point clouds. One of our key contribu-

tions is a new joint embedding where shape codes can be

decoded to both a sparse point cloud and a dense SDF. Our

joint shape embedding enables seamless switching between

both representations and can be used as a shape prior for

shape optimization, enabling faster inference.

As Fig. 2 illustrates, FroDO takes a calibrated, and lo-

calized image sequence as input and proceeds in four dis-

tinct steps: 2D detection, data association, single-view

shape code inference and multi-view shape code optimiza-

tion. First, per-frame 2D bounding box detections are in-

ferred using an off-the-shelf method [15]. Secondly, bound-

ing boxes are associated over multiple frames and lifted into

3D. Next, a 64D code is predicted for each detection of the

same object instance, using a novel encoder network. Per-

image shape codes of the same instance are fused into a sin-

gle code. Finally, shape code and pose are further refined

by minimizing terms based on geometric, photometric and

silhouette cues using our joint embedding as a shape prior.

The final outputs of our system are dense object meshes

placed in the correct position and orientation in the scene.

The contributions of our paper are as follows: (i) FroDO

takes as input RGB sequences of real world multi-object

scenes and infers an object-based map, leveraging 2D

recognition, learning-based 3D reconstruction and multi-

view optimization with shape priors. (ii) We introduce a

novel deep joint shape embedding that allows simultane-

ous decoding to sparse point cloud and continuous SDF

representations, and enables faster shape optimization. (iii)

We introduce a new coarse-to-fine multi-view optimization

approach that combines photometric and silhouette consis-

tency costs with our deep shape prior. (iv) FroDO out-

performs state of the art 3D reconstruction methods on

real-world datasets — Pix3D [44] for single-object single-

view and Redwood-OS [4] for single-object multi-view. We

demonstrate multi-class and multi-object reconstruction on

challenging sequences from the ScanNet dataset [7].

2. Related Work

At its core our proposed system infers dense object shape

reconstructions from RGB frames, so it relates to multiple

areas in 3D scene reconstruction and understanding.

Single-view learning-based shape prediction In recent

years, 3D object shape and pose estimation from images

has moved from being purely geometric towards learning

techniques, which typically depend on synthetic rendering

of ShapeNet [3] or realistic 2d-3d datasets like Pix3d [44].

These approaches can be categorized based on the shape

representation utilized, for example occupancy grids [6,50],

point clouds [9], meshes [47], or implicit functions [28].

Gkioxari et al. [12] jointly train detection and reconstruc-

tion by augmenting Mask RCNN with an extra head that

outputs volume and mesh.

Our coarse-to-fine reconstruction pipeline includes a

single-image encoder decoder network that predicts a la-

tent shape code, point cloud, and SDF for each detected

instance. Our single-view reconstruction network leverages

a novel joint embedding that simultaneously outputs point

cloud and SDF (Fig. 3). Our quantitative evaluation shows

that our approach provides better single view reconstruction

than competing methods.
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Multi-view category-specific shape estimation Structure-

from-Motion (SfM) and simultaneous localization and map-

ping (SLAM) are useful to reconstruct 3D structure from

image collections or videos. However, traditional meth-

ods are prone to failure when there is a large gap be-

tween viewpoints, generally have difficulty with filling fea-

tureless areas, and cannot reconstruct occluded surfaces.

Deep learning approaches like 3D-R2N2 [6], LSM [19],

and Pix2Vox [51] have been proposed for 3D object shape

reconstruction. These can infer object shape from either

single or multiple observations using RNN or voxel based

fusion. However, these fusion techniques are slow and data

association is assumed.

3D reconstruction with shape priors These methods are

the most closely related to our approach since they also

use RGB video as input and optimize object shape and

pose using 3D or image-based reprojection losses such as

photometric and/or silhouette terms while assuming, of-

ten category-specific, learnt compact latent shape spaces.

Some examples of the low dimensional latent spaces used

are PCA [23, 48], GPLVM [8, 35, 37] or a learnt neural net-

work [24]. In similar spirit we optimize a shape code for

each object, using both 2D and 3D alignment losses, but

we propose a new shape embedding that jointly encodes

point cloud and DeepSDF representations and show that

our coarse-to-fine optimization leads to more accurate re-

sults. These optimizable codes have also been used to infer

the overall shape of entire scenes [1, 42] without lifting the

representation to the level of objects. Concurrent work [25]

proposes to optimize DeepSDF embeddings via sphere trac-

ing, closely related to FroDO’s dense optimization stage.

We chose to formulate the energy via a proxy mesh, which

scales better when many views are used.

Object-aware SLAM Although our system is not sequen-

tial or real-time, it shares common ground with recent

object-oriented SLAM methods. Visual SLAM has re-

cently evolved from purely geometric mapping (point, sur-

face or volumetric based) to object-level representations

which encode the scene as a collection of reconstructed ob-

ject instances. SLAM++ [39] demonstrated one of the first

RGB-D object-based mapping systems where a set of pre-

viously known object instances were detected and mapped

using an object pose graph. Other instance-based object-

aware SLAM systems have either aligned objects from a

pre-trained database to volumetric maps [45] or models

learnt during an exploration step to a surfel representa-

tion [43]. In contrast, others have focused on online ob-

ject discovery and modeling [5] to deal with unknown ob-

ject instances, dropping the need for known models and

pre-trained detectors. Recent RGB-D object-aware SLAM

methods leverage the power of state of the art 2D instance

semantic segmentation masks [15] to obtain object-level

scene graphs and per-object reconstructions [27] even in the

Encoder
(CNN)

Decoder
(Points)

Decoder
(SDF)

64D

Figure 3: Our new joint shape embedding leverages the ad-

vantages of sparse point-based (efficiency) and dense sur-

face (expressiveness) object shape representations.

case of dynamic scenes [38, 52]. Object oriented SLAM

has also been extended to the case of monocular RGB-

only [11, 16, 31, 33, 34] or visual inertial inputs [10]. Pil-

lai and Leonard [34] aggregate multiview detections to per-

form SLAM-aware object recognition and semi-dense re-

construction, while [31] fit per-object 3D quadric surfaces.

CubeSLAM [53] proposes a multi-step object reconstruc-

tion pipeline where initial cuboid proposals, generated from

single view detections, are further refined through multi-

view bundle-adjustment.

3. Method Overview

FroDO infers an object-based map of a scene, in a

coarse-to-fine manner, given a localized set of RGB im-

ages. We assume camera poses and a sparse point cloud

have been estimated using standard SLAM or SfM methods

such as ORB-SLAM [29] or COLMAP [40, 41]. We rep-

resent the object-based map as a set of object poses {T k
wo}

with associated 3D bounding boxes {bbk3} and shape codes

{zk}. Tba denotes a transformation from coordinate sys-

tem a to b. Our new joint shape embedding is described in

Sec. 4.

The steps in our pipeline are illustrated in Fig. 2: First

(Sec. 5.1) objects are detected in input images using any

off-the-shelf detector [15], correspondences are established

between detections of the same object instance in different

images and 2D bounding boxes are lifted into 3D, which

enables occlusion reasoning for view selection. Second, a

64D shape code is predicted for each visible cropped detec-

tion of the same object, using a novel convolutional neural

network (Sec. 5.2). Codes are later fused into a unique ob-

ject shape code (Sec. 5.2). Finally, object poses and shape

code are incrementally refined by minimizing energy terms

based on geometric and multiview photometric consistency

cues using our joint shape embedding as a prior (Sec. 5.3).

4. Joint Shape Code Embedding

We propose a new joint latent shape-code space to rep-

resent and instantiate complete object shapes in a compact

way. This novel embedding is also used as a shape prior

to efficiently optimize object shapes from multi-view ob-
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Figure 4: Joint latent shape space interpolation between 3 ShapeNet instances with ground-truth codes. Pointcloud and SDF

decodings of intermediate codes are coherent.

servations. We parametrize object shapes with a latent code

z ∈ R
64, which can be jointly decoded by two generative

models X = Gs(z) and φ = Gd(z) into an explicit sparse

3D pointcloud X and an implicit signed distance function

φ. While the pointcloud decoder generates 2048 samples on

the object surface, the SDF decoder represents the surface

densely via its zero-level set. The decoders are trained si-

multaneously using a supervised reconstruction loss against

ground-truth shapes on both representations:

L = λ1DC(Gs(z),Xgt) + λ2Lφ +
1

σ2
‖z‖2, (1)

Lφ = |clamp(Gd(z), δ)− clamp(dgt, δ)|, (2)

DC(A,B) =
1

|A|

∑
x∈A

min
y∈B

‖x− y‖22 (3)

+
1

|B|

∑
y∈B

min
x∈A

‖x− y‖22

where DC evaluates a symmetric Chamfer distance, and

Lφ is a clipped L1 loss between predicted Gd(z) and

ground-truth dgt signed distance values with a threshold

δ = 0.1. We use 3D models from the CAD model reposi-

tory ShapeNet [3] as ground truth shapes. While the orig-

inal DeepSDF architecture [32] is employed for the SDF

decoder, a variant of PSGN [9] is used as the pointcloud

decoder. Its architecture is described in detail in the supple-

mentary material. Joint embeddings decoded to both repre-

sentations are illustrated in Fig. 4.

The trained decoders allow us to leverage learnt object

shape distributions, and act as effective priors for optimiza-

tion based 3D reconstruction. In contrast to related prior-

based shape optimization approaches [24, 25] where the

shape embedding is specialized to a specific representation,

our embedding offers the advantages of both sparse and

dense representations at different stages of the optimization.

Although DeepSDF can represent smooth and dense object

surfaces, it is slow to evaluate as each point needs a full for-

ward pass through the decoder. In contrast, the pointcloud

representation is two orders of magnitude faster but fails to

capture shape details. Our strategy is therefore to infer an

Figure 5: Data association: 3D line-segment clustering to

predict b-box correspondences. Colors denote instance IDs.

initial shape using the point-based decoder before switching

to the DeepSDF decoder for further refinement (Sec. 5.3).

While inspired by [30] to use multiple shape representa-

tions, our embedding offers two advantages. First, the same

latent code is used by both decoders, which avoids the need

for a latent code consistency loss [30]. Secondly, training a

shape encoder for each representation is not required.

5. From Detections to 3D Objects

5.1. Object Detection and Data Association

We use a standard instance segmentation network [15]

to detect object bounding boxes bb2i and object masks M

in the input RGB video. To enable multi-view fusion and

data aggregation for object shape inference, we predict cor-

respondences between multiple detections of the same 3D

object instance. Since the 3D ray through the center of a

2D bounding box points in the direction of the object cen-

ter, the set of rays from all corresponding detections should

approximately intersect. Knowledge of the object class sets

reasonable bounds on the object scale to further restrict the

expected object center location in 3D to a line segment as

indicated by the thicker line segments in Fig. 5.

Object instance data association can then be cast as a
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clustering problem in which the goal is to identify an un-

known number of line segment sets that approximately in-

tersect in a single point. We adopt an efficient iterative non-

parametric clustering approach similar to DP-means [22]

where the observations are line segments and the cluster

centers are 3D points. Further details of the clustering algo-

rithm are given in the supplementary material.

After clustering, each object instance k is associated with

a set of 2D image detections Ik and a 3D bounding box bb3k,

computed from the associated bounding box detections as

described in [31]. By comparing the projection of the 3D

object bounding box and the 2D detection box, we reject

detections that have low IoU, an indication of occlusions or

truncations. The filtered set of image detections I ′k is used

in all following steps. Examples of the filtered detections

are shown in supplementary material.

5.2. Single­view Shape Code Inference and Fusion

As illustrated in the shape encoding section of Fig. 2, a

64D object shape code is predicted for each filtered detec-

tion. We train a new encoder network that takes as input a

single image crop and regresses its associated shape code

zi ∈ R
64 in the joint latent space described in Sec. 4.

The network is trained in a fully supervised way. How-

ever, due to the lack of 3D shape annotations for real

world image datasets, we train the image encoder using

synthetic ShapeNet [3] renderings. Specifically, we gener-

ate training data by rendering ShapeNet CAD models with

random viewpoints, materials, environment mapping, and

background. We also perturb bounding boxes of rendered

objects and feed perturbed crops to the encoder during train-

ing. We chose a standard ResNet architecture, modifying its

output to the size of the embedding vector. During training,

we minimize the Huber loss between predicted and target

embeddings, which we know for all CAD models. For the

experiment on ScanNet in Sec. 6.3, we fine-tune the encoder

network with supervised data from Pix3D [44].

Multi-view Shape Code Fusion For each object instance

k we fuse all single-view shape codes {zi|i ∈ I ′k} into a

unique code z0k. We propose two fusion approaches and

evaluate them in Table 4: (i) Average – we average shape

codes to form a mean code zmean
k ; (ii) Majority voting –

We find the 4 nearest neighbors of each predicted code zi
among the models in the training set. The most frequent

of these is chosen as zvote
k . Unlike the average code, zvote

k

guarantees valid shapes from the object database.

5.3. Multi­view Optimization with Shape Priors

For each object instance k, all images with non-occluded

detections are used as input to an energy optimization ap-

proach to estimate object pose T k
wo and shape code zk in

two steps. First, we optimize the energy over a sparse set

of surface points, using the point decoder Gs(z) as a shape

prior. This step is fast and efficient due to the sparse nature

of the representation as well as the light weight of the point-

cloud decoder. Second, we further refine pose and shape

minimizing the same energy over dense surface points, now

using the DeepSDF decoder Gd(z) as the prior. This slower

process is more accurate since the loss is evaluated over all

surface points, and not sparse samples.

Energy. Our energy is a combination of losses on the 2D

silhouette Es, photometric consistency Ep and geometry

Eg with a shape code regularizer Er:

E = λs · Es + λp · Ep + λg · Eg + λr · Er , (4)

where λs,p,g,r weigh the contributions of individual terms.

The regularization term Er = 1

σ2 ‖z‖
2
2 encourages shape

codes to take values in valid regions of the embedding, anal-

ogously to the regularizer in Eq. 1. Note that the same en-

ergy terms are used for sparse and dense optimization – the

main differences being the number of points over which the

loss is evaluated, and the decoder G(z) used as shape prior.

Initialization. The 64D shape code is initialized to the

fused shape code (Sec. 5.2), while the pose Two is initial-

ized from the 3D bounding box bb3k (Sec. 5.1): translation

is set to the vector joining the origin of the world coordi-

nate frame with the 3D bounding box centroid, scale to the

3D bounding box height and rotation is initialised using ex-

haustive search for the best rotation about the gravity direc-

tion – under the assumption that objects are supported by a

ground-plane perpendicular to gravity.

Sparse Optimization. Throughout the sparse optimization,

the energy E is defined over the sparse set of 2048 surface

points X, decoded with the point-based decoder Gs(z). The

energy E is minimized using the Adam optimizer [20] with

autodiff. We now define the energy terms.

• The photometric loss Ep encourages the colour of 3D

points to be consistent across views. In the sparse case, we

evaluate Ep by projecting points in X to N nearby frames

via known camera poses Tcw and comparing colors in ref-

erence IR and source IS
i images under a Huber norm ‖.‖h:

Ep(X, IR, IS
1 , ..., I

S
N ) =

1

N · |X|

N∑
i=1

∑
x∈X

‖r(IR, IS
i )‖h

r(IR, IS) = IR(π(TR
cwx))− IS(π(TS

cwx))
(5)

where π(x) projects 3D point x into the image.

• The silhouette loss Es penalizes discrepancies between

the 2D silhouette obtained via projection of the current 3D

object shape estimate and the mask predicted with MaskR-

CNN [15]. In practice, we penalize points that project out-

side the predicted mask using the 2D Chamfer distance:

Es(zk,T
k
wo) = DC(M, π(TcwT

k
woG(z))) (6)

where M is the set of 2D samples on the predicted mask and

DC is the symmetric Chamfer distance defined in Eq. 3.
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• The geometric loss Eg minimizes the 3D Chamfer dis-

tance between 3D SLAM (or SfM) points and points on the

current object shape estimate:

Eg(zk,T
k
wo) = DC(Xslam,Tk

woG(z)), (7)

Dense Optimization. The shape code and pose estimated

with the sparse optimization can be further refined with a

dense optimization over all surface points and using the

DeepSDF decoder Gd(z). Since Gd(z) uses an implicit rep-

resentation of the object surface, we compute a proxy mesh

at each iteration, and formulate the energy over its vertices.

This strategy proved faster than sphere tracing [25], while

achieving on-par accuracy, see Table 3. Relevant Jacobians

are derived analytically and are given in the supplementary

material together with further implementation details. We

now describe the dense energy terms.

• The photometric and geometric losses Ep, Eg are equiva-

lent to those used in the sparse optimization (see Eq. 5, 7).

However, they are evaluated densely and the photometric

optimization makes use of a Lucas-Kanade style warp.

• The silhouette loss Es takes a different form to the sparse

case. We follow traditional level set approaches, compar-

ing the projections of object estimates with observed fore-

ground and background probabilities Pf,b:

Es =

∫
Ω

H(φ)Pf (x) + (1−H(φ))Pb(x)dΩ, (8)

where φ is a 3D or 2D shape-kernel, and H a mapping to a

2D foreground probability field, resembling an object mask

of the current state. Empirically, we found that 3D shape-

kernels [36] provide higher quality reconstructions when

compared with a 2D formulation [37] because more regions

contribute to gradients. While H is a Heaviside function in

the presence of 2D level-sets, we interpret signed distance

samples of the DeepSDF volume as logits and compute a

per-pixel foreground probability by accumulating samples

along rays, similar to Prisacariu et al. [37]:

H = 1− exp
∏

x on ray

(1− sig(ζ · φ(x))) , (9)

where ζ is a smoothing coefficient, and 1− sig(ζ ·φ(x)) the

background probability at a sampling location x. A step-

size of r
50

is chosen, where r is the depth range of the object-

space unit-cube.

6. Experimental Evaluation

Our focus is to evaluate the performance of FroDO on

real-world datasets wherever possible. We evaluate quan-

titatively in two scenarios: (i) single-view, single object

on Pix3D [44]; and (ii) multi-view, single object on the

Redwood-OS [4] dataset. In addition, we evaluate our full

Figure 6: Examples of single view reconstruction on Pix3D

dataset [44]. Ground truth on the right for reference.

IoU ↑ EMD ↓ CD ↓

3D-R2N2 [6] 0.136 0.211 0.239

PSGN [9] N/A 0.216 0.200

3D-VAE-GAN [50] 0.171 0.176 0.182

DRC [46] 0.265 0.144 0.160

MarrNet [49] 0.231 0.136 0.144

AtlasNet [14] N/A 0.128 0.125

Sun et al. [44] 0.282 0.118 0.119

Ours (DeepSDF Embedding) 0.302 0.112 0.103

Ours (Joint Embedding) 0.325 0.104 0.099

Table 1: Results on Pix3D [44]. Our method gives the high-

est Intersection over Union and lowest Earth Mover’s and

Chamfer Distances.

approach qualitatively on challenging sequences from the

real-world ScanNet dataset [7] that contain multiple object

instances. In all cases we use MaskRCNN [15] to predict

object detections and masks. We run Orb-SLAM [29] to

estimate trajectories and keypoints on Redwood-OS but use

the provided camera poses and no keypoints on ScanNet.

6.1. Single­View Object Reconstruction

First we evaluate the performance of our single-view

shape code prediction network (Sec. 5.2) on the real world

dataset Pix3D [44]. Table 1 shows a comparison with com-

peting approaches on the chair category. The evaluation

protocol described in [44] was used to compare IoU, Earth

Mover Distance (EMD) and Chamfer Distance (CD) errors

(results of competing methods are from [44]). Our proposed

encoder network outperforms related work in all metrics.

Table 1 also shows an improvement in performance when

our new joint shape embedding is used (Ours Joint Em-

bedding) instead of DeepSDF [32] (Ours DeepSDF Embed-

ding). Figure 6.1 shows example reconstructions.
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Optim. Method Energy Terms CD (cm.)

Sparse Es + Er 8.97

Sparse Es + Ep + Eg + Er 8.59

Sparse + Dense Es + Er 7.41

Sparse + Dense Es + Ep + Eg + Er 7.38

Table 2: Ablation study of estimates after sparse and dense

optimization stages on the Redwood-OS dataset. We com-

pare the effect of different energy terms in Eq. (4).

PMO (o) PMO (r) DIST (r) Ours (r)

Cars 0.661 1.187 0.919 1.202

Planes 1.129 6.124 1.595 1.382

Table 3: Non-symmetric Chamfer distance (completion) on

first 50 instances of the synthetic PMO [24] test set. While

(o) indicates the original PMO method with its own initial-

ization, (r) indicates random initialization.

6.2. Multi­View Single Object Reconstruction

We quantitatively evaluate our complete multi-

view pipeline on the chair category of the real-world

Redwood-OS dataset [4] which contains single object

scenes. We perform two experiments: an ablation study to

motivate the choice of terms in the energy function (Table

2) and a comparison of the performance of the different

steps of our pipeline with related methods (Table 4). Table

3 includes a comparison of our dense photometric opti-

mization with the two closest related approaches [24, 25]

on a commonly-used synthetic dataset [24].

Ablation study. Table 2 shows an ablation study on dif-

ferent energy terms in our sparse and dense optimizations

(Eq. 4). The combination of geometric and photometric

cues with a regularizer on the latent space achieves best re-

sults. The supplementary material includes further experi-

ments on the effect of filtering object detections (Sec. 5.1)

and the efficiency gains of using our joint embedding.

Synthetic dataset. Table 3 shows a direct comparison of

the performance on the synthetic PMO test set [24] of our

dense optimization when only the photometric loss Ep is

used in our energy, with the two closest related methods:

PMO [24] and DIST [25]. Notably, both DIST and our ap-

proach achieve comparable results to PMO from only ran-

dom initializations. When PMO is also initialized randomly

the results degrade substantially.

Redwood-OS dataset. Table 4 shows a comparison with

Pix2Vox [51], a purely deep learning approach, and with

PMO [24], both of which are state-of-the-art. For refer-

ence, we also compare with COLMAP [40,41] a traditional

SFM approach. Since COLMAP reconstructs the full scene

without segmenting objects, we only select points within the

ground-truth 3D bounding box for evaluation. We report er-

rors using: Chamfer distance (CD), accuracy (ACC (5cm)),

completion (COMP (5cm)) and F1 score – all four com-

monly used when evaluating on Redwood-OS. Chamfer

distance (CD) measures the symmetric error, while shape

accuracy captures the 3D error as the distance between pre-

dicted points to their closest point in the ground truth shape

and vice-versa in the case of shape completion. Both shape

accuracy and completion are measured in percentage of

points with an error below 5cm. Following [24], we use

an average of 35 input frames sampled from the RGB se-

quences, though for completeness we show results with 350
views. Fig. 7 shows example reconstructions.

We outperform Xie et al. [51] by a significant margin

which could point to the lack of generalization of purely

learning based approaches. We also outperform PMO [24],

a shape prior based optimization approach like ours, but

which lacks our proposed coarse-to-fine shape upgrade.

COLMAP fails to reconstruct full 3D shapes when the num-

ber of input images or the baseline of viewpoints is limited

as it cannot leverage pre-learnt object priors. Although, as

expected, the performance of COLMAP increases drasti-

cally with the number of input images, it requires hundreds

of views to perform comparably to our approach.

6.3. Multi­Object Reconstruction

We demonstrate qualitative results of our full approach

on the ScanNet dataset [7] on challenging real world scenes

with multiple object instances in Fig. 1 and Fig. 8. MaskR-

CNN [15] was used to predict 2D b-boxes and masks. The

association of object detections to 3D object instances be-

comes an additional challenge when dealing with multi-

object scenarios. Our results show that our ray clustering

approach successfully associates detected bounding boxes

across frames and our coarse-to-fine optimization scheme

provides high quality object poses and reconstructions.

7. Conclusions and Discussion

We introduced FroDO, a novel object-oriented 3D recon-

struction framework that takes localized monocular RGB

images as input and infers the location, pose and accurate

shape of the objects in the scene. Key to FroDO is the use

of a new deep learnt shape encoding throughout the differ-

ent shape estimation steps. We demonstrated FroDO on

challenging sequences from real-world datasets in single-

view, multi-view and multi-object settings. An exciting

open challenge would be to extend FroDO to the case of

dynamic scenes with independently moving objects.
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Method Few observations (average 35 views) Over-complete observations (average 350 views)

CD (cm) ACC (5cm) COMP (5cm) F1 score CD (cm) ACC (5cm) COMP (5cm) F1 score

COLMAP [40, 41] 10.58 84.16 54.28 65.99 6.05 91.41 94.59 92.97

Pix2Vox [51] 12.12 55.27 64.74 59.63 11.87 55.88 66.09 60.56

PMO [24] 12.13 53.08 69.42 60.16 11.93 54.80 69.54 61.30

FroDO Code Fusion (Vote) 12.19 60.74 60.55 60.64 11.97 61.37 58.20 59.74

FroDO Code Fusion (Aver.) 10.74 61.31 72.11 66.27 10.57 61.06 72.14 66.14

FroDO Optim. Sparse 8.69 70.58 79.10 74.60 8.59 71.69 81.63 76.34

FroDO Optim. Dense 7.38 73.70 80.85 76.64 7.37 74.78 81.08 77.32

Table 4: Quantitative evaluation on 86 sequences of Redwood-OS. We compare state of the art competitors Pix2Vox [51]

and PMO [24] with the results at different stages of our multi-view pipeline (code fusion −→ sparse optimization −→ dense

optimization). Average code outperforms majority voting. FroDo outperforms all methods when 35 input images are used.

RGB GT Scan COLMAP PMO FroDO (sparse) FroDO (dense)

Figure 7: Example 3D reconstructions achieved with different approaches on three sample sequences from Redwood-OS. In

all cases 35 input views were used.

Ours

GT

Figure 8: Qualitative results on four ScanNet RGB input sequences. We reconstruct multiple instances of the chair and table

classes. While outputs are satisfactory for the first three scenes, the last one highlights failures due to heavy occlusions and

partial observations. Top row: Object instances reconstructed by FroDO are shown in colour while grey shows the ground

truth background (not reconstructed by our method) for reference. Bottom row: full ground truth scan for comparison.
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