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Abstract. Colonoscopy is the gold standard for early diagnosis and
pre-emptive treatment of colorectal cancer by detecting and removing
colonic polyps. Deep learning approaches to polyp detection have shown
potential for enhancing polyp detection rates. However, the majority of
these systems are developed and evaluated on static images from colono-
scopies, whilst applied treatment is performed on a real-time video feed.
Non-curated video data includes a high proportion of low-quality frames
in comparison to selected images but also embeds temporal information
that can be used for more stable predictions. To exploit this, a hybrid
2D/3D convolutional neural network architecture is presented. The net-
work is used to improve polyp detection by encompassing spatial and
temporal correlation of the predictions while preserving real-time detec-
tions. Extensive experiments show that the hybrid method outperforms
a 2D baseline. The proposed architecture is validated on videos from 46
patients. The results show that real-world clinical implementations of
automated polyp detection can benefit from the hybrid algorithm.

Keywords: Colonoscopy · Polyp Detection · Computer Aided Diagno-
sis.

1 Introduction

Colorectal cancer (CRC) is the third most common cancer worldwide accounting
for 10% of all forms of cancer [4] but early diagnosis and treatment can signifi-
cantly improve the associated prognosis. Colonoscopy is the gold standard colon
screening procedure for early detection, during which the bowel is visually in-
spected for polyps using an endoscope [12]. Unfortunately colonoscopy is highly
operator dependent, with high reported polyp miss rates and associated interval
cancers [14].

Computer-aided polyp detection (CAD) systems aiming to assist endoscopists
with automatic polyp identification from video have been researched for several
decades but significant clinical progress has been reported only in recent years
[6, 15, 16]. In particular, approaches based on Convolutional Neural Networks
(CNNs) [3, 13, 16] have reported robust and promising results [1]. One of the
main challenges when developing such detection models is the limited avail-
ability of labelled data because full length colonoscopic videos are not usually
recorded clinically, whereas still frames are stored in clinical reports enabling still
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image databases [2, 8]. While most current CAD systems have been trained and
evaluated on still images they are used in endoscopy units where real time videos
are used to detect polyps. It is therefore necessary to demonstrate sound per-
formance on videos and address model behavior stability in practical conditions
with poor visibility and variability in polyp appearance that might lead to a lack
of temporal coherence in consecutive frames yielding short, false predictions [2].

Yet temporal information in endoscopic video can be exploited for more tem-
porally correlated predictions by extracting temporal representations. Recurrent
neural networks (RNN), such as long short-term memory (LSTM), 3D CNNs,
or two-stream models have demonstrated good results for temporal recognition
tasks [5]. In endoscopic CAD, dense 3D networks have been explored, such as
C3D to classify endoscopic frames containing polyps [7, 10] and also a 3D Fully
Convolutional Network for polyp segmentation [17]. A major challenge remains
the problem of training a 3D CNN with a limited number of videos and various
strategies have been proposed to overcome this limitation. For example including
a module following a CNN’s prediction to increase temporal coherence on con-
secutive frames or a hand-tuned false positive reduction stage appended to the
polyp detection model [11]. Tracking algorithms can be combined with detection
CNNs to temporally refine results but the re-initialisation of the tracker can be
problematic [19]. Recently an approach fusing two CNN streams, one receiving
the input frame, and the other one optical flow information, was reported but
can suffer from errors in the optical flow estimation [18].

In this paper, we propose a novel hybrid 2D/3D architecture for polyp de-
tection and segmentation in colonoscopic videos. The proposed architecture in-
trinsically learns spatio-temporal representations from videos. This increases the
network’s ability to generalize to challenging clinical endoscopic situations with
lower quality data or temporally inconsistent data. A 2D neural network is used
to extract spatial features and leverages large training databases through trans-
fer learning. The 3D network component ensures temporal consistency in an
efficient architecture designed for real time performance. The hybrid method
has been quantitatively and qualitative evaluated and bench-marked against a
2D segmentation network. The results show an increase in performance with
higher sensitivity, higher specificity, better spatial segmentation and more stable
temporal segmentation.

2 Methods

A two-step temporal segmentation algorithm was developed (see Figure 1). The
proposed architecture was capable of learning a spatial representation of polyps
through the 2D stage, allowing to apply transfer learning from larger 2D datasets.
A 3D segmentation stage followed in order to generate temporally coherent polyp
segmentation masks.
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Fig. 1. Architecture of the proposed hybrid segmentation network. A polyp pseudo-
batch as input and the corresponding output segmentation are presented.

2.1 Hybrid architecture

The first part of the hybrid model corresponds to the 2D feature extraction. A
Resnet-101 architecture was used as a backbone, which included a convolutional
layer, followed by four sets of building blocks containing 3, 4, 23 and 3 residual
blocks, sequentially. The last fully-connected layer was removed, the output then
consisting of a set of 2048 feature maps per image.

The 3D segmentation stage is composed of two 3D convolutional layers,
dropout, batch normalisation and an interpolation layer for upsampling (see
Figure 1). This structure is an inflated version of the segmentation head from
a Fully Convolutional Network (FCN) [9]. The first convolutional layer reduces
the number of features by four, applying [d× 3× 3] convolutions, where d is the
depth, with a padding and a stride of [1× 1× 1]. The second convolutional layer
uses the same stride, no padding, and a kernel of [d− 2× 3× 3], outputting one
channel per class. Note that inherently the temporal depth of the output maps
is reduced by four filters in the segmentation head.

An input batch for the network contained N images, composed by P pseudo-
batches formed by d consecutive frames each. Each image in a pseudo-batch p
was passed through a separate stream of the Resnet backbone extracting a set of
spatial features fp

i . The concatenation step in the segmentation head stacks the
features fp

i for the images in the same pseudo-batch p ∈ [1, ..., P ], where P = N
d .

The input to the first convolutional layer has a shape of [P × 2048× d×w× h],
where w and h are the width and height of feature maps. The network generates a
probability map mp per pseudo-batch, corresponding to the image in the middle
of the pseudo-batch.

During training, an additional auxiliary segmentation head receives features
from the third backbone building block. These feature maps have undergone
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fewer pooling steps, and therefore are twice the size of the main backbone’s fea-
ture maps. Thus, the corresponding segmentation output before the interpolation
layer is double the resolution of the main segmentation output. A combination
Laux + Lmain of the losses computed from the two segmentation heads is used
as the final loss L, allowing to refine the spatial precision of the output.

2.2 Training strategy

A temporal window of d = 5 consecutive frames was selected to optimize the
balance between new temporal information without sacrificing detection speed.
Additionally, d = 5 intrinsically yields a single segmentation output from the
model as explained in the previous section.

Random sampling of 5000 pseudo-batches was performed on each epoch to
minimise overfitting, re-sampling at every new epoch. Data augmentation was
applied in such a way as to guarantee identical augmentations within pseudo-
batches. The augmentation operations consisted of random affine transforma-
tions (rotation, translation and scale) and random colour transformations (bright-
ness, contrast and saturation). Finally, the images were preprocessed by cropping
out the video borders, followed by resizing the images to 448 by 448 pixels, and
an intensity normalization step.

All available positive images were used during training, and a data mining
strategy was adopted for selecting the most beneficial negative images to the
training set. An initial model was trained uniquely with positive samples and
was used for inference on the available set of negative images (from training
procedures), which was shuffled randomly. Images yielding false positives were
selected until reaching 15% of the new training set.

Cross-entropy loss was used the experiments and Adagrad for optimisation
with a batch size N of 45, and pseudo-batch size P of 9. Two output classes
were defined: polyp and no-polyp presence. The epoch with the highest pixel
accuracy in the validation set was selected for testing. All models were trained
with Pytorch on an NVIDIA Tesla V100 DGXS 32GB GPU. The hybrid network
was able to predict at 19 frames per second, ensuring real-time predictions.

3 Experimental results

3.1 Datasets

The data was divided into two separate datasets: Dataset V composed of con-
secutive video frames and, Dataset S composed of static images.

Dataset V. A series of 95 videos, from 95 patients, were collected in XX Hos-
pital with an Olympus XX endoscope under ethics REC reference XX/XX/XX.
A total of 234 histologically confirmed polyps were extracted into single-polyp
video sequences. The frames in these sequences were annotated by expert colono-
scopists by drawing bounding boxes around each polyp. Only polyp, white light
frames were included. The 25 full-length negative videos were added to the test-
ing set, whereas the 70 procedures containing polyps were randomly split into
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training, validation and testing sets on a per-patient basis, avoiding any type of
data contamination. 51,426 frames from 173 polyps within 45 procedures were
used for training and 2,152 frames from 8 polyps within 4 procedures were used
for validation. 20,943 frames from 21 procedures and 53 polyps were used for
testing, as well as 542,583 non-polyp frames from the 20 negative procedures.

Dataset S. Static polyp images were gathered from two sources: the publicly
available Kvasir dataset [8] composed of 1000 polyp images and corresponding
masks, and a dataset containing 833 polyp images collected from reports from
XX Hospital under ethics REC reference XX/XX/XX and annotated by expert
colonoscopists by drawing bounding boxes around polyps. This set of 1,833 white
light, polyp images was solely used for training purposes.

The use of a public test set was not possible as the only test video dataset
reported, the ASU-MAYO video dataset, was not available [13].

3.2 Comparison and evaluation metrics

In order to assess the temporal benefits of our model, its comparable 2D net-
work, an FCN with a Resnet101 backbone, was implemented [9]. Whereas the
backbone used was identical to the one in the hybrid model, the segmentation
head was a deflated version of the hybrid one. In this case, 3D convolutional,
batch normalisation and pooling layers were replaced by their 2D corresponding
versions, maintaining all parameters. During training, an auxiliary segmenta-
tion head was used in the same manner as for the hybrid network. The training
strategy and parameters for the baseline model were kept identical to the hybrid
model, when possible, to ensure comparison fairness.

Object-wise metrics were used for evaluation, namely sensitivity, precision,
and F1-score on videos with polyps, and specificity on non-polyp videos. Further
implementation details are available in [2]. Polyp objects were denoted by a
rectangle enclosing pixels classified as polyp at a threshold of 0.5. This allowed
comparison with the ground truth annotations of rectangular bounding boxes.
Dice score was reported on true positive frames to assess the quality of the
overlap. Per-polyp sensitivity was also reported, considering a true positive when
at least one frame was correctly detected for each polyp.

In order to determine the consistency of the predictions over consecutive
frames, temporal coherence (TC) was computed as defined in [2]. Additionally,
auto-correlation of masks was measured to assess both temporal and spatial
correlation between two consecutive mask predictions. The auto-correlation for
a given pixel position over a sequence of masks is defined as:

r =

∑N−k
i=1 (Yi − Ȳ )(Yi+1 − Ȳ )∑N

i=1(Yi − Ȳ )2
(1)

where Yi is the value of a pixel in a certain position, and Ȳ is the average of
the pixel values in that position over the entire sequence. After obtaining a 2D
vector with auto-correlation values per sequence, the average over the x and
y axis was computed. The absolute difference with respect to the ground truth
auto-correlation was computed, and mean and standard deviation were reported.
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3.3 Results and analysis

To establish a baseline, an FCN was trained initialising the backbone weights
from ImageNet - referred to as FCN (ImageNet). The training set consisted
of images from the Dataset V training set and the full Dataset S. Furthermore,
10,000 negative images from the training procedures from Dataset V were added
to the training set using the strategy previously described, by means of an FCN
model formerly trained on positive images exclusively. Correspondingly, a hy-
brid model was trained on the training set from Dataset V, and 10,000 negative
images, following the negative mining strategy. The hybrid network was trained
using the weights from FCN (ImageNet) to initialise and freeze the backbone,
only training the segmentation head (Hybrid (FCN)). Having a common back-
bone, it was then possible to evaluate the effect of the 3D segmentation head.
Table 1 depicts the associated results when tested on the Dataset V testing set,
where it can be observed that the incorporation of the 3D component caused a
general increase in performance, particularly in terms of temporal consistency
shown by the high temporal coherence and low distance between the predictions
and ground truth auto-correlations.

Table 1. Quantitative evaluation of baseline and proposed methods on Video Dataset
V (pp and pf denote per-polyp and per-frame sensitivity, respectively)

Method Sens Sens Spec Prec F1 Dice ∆ A-corr TC
(pp)(%) (pf )(%) (%) (%) (%) (%) (%) (%)

FCN (ImageNet) 100.00 83.56 83.04 88.11 85.78 69.68 20.50±16.16 79.55
Hybrid (FCN) 100.00 85.66 83.60 93.27 89.30 74.08 11.92±11.97 84.24
Hybrid (ImageNet) 100.00 86.14 85.32 93.45 89.65 73.48 12.24±11.74 84.64

The proposed model was also trained initialising the backbone from Ima-
geNet weights and training the full network. This experiment will be referred
to as Hybrid (ImageNet). This showed the highest F1-score in Table 1, demon-
strating that it is possible to train the hybrid architecture with limited amounts
of data. As it can be observed, incorporating temporal components led to a re-
duction of false positives and negatives in both hybrid models. Figure 2 shows
the per frame predictions on one of the non-polyp full colonoscopic withdrawals
from the testing set, where it can be seen that the number of false positives is re-
duced throughout the procedure with the hybrid network compared to the FCN.
Although the mapping to a 3D model of the colon is not fully realistic, it gives
an indication of the importance of reducing the false positives. In addition to
an improvement in sensitivity, the dice score increased considerably on detected
polyps with the hybrid model, showing that the quality of the segmentation
masks benefited from the temporal component. This can be supported by the
increase in auto-correlation, which indicates that consecutive predicted masks
presented a higher similarity. Finally, the temporal coherence benefited from the
3D component, suggesting a decrease of short false positive predictions.
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Fig. 2. Prediction timelines for a non-polyp procedure mapped onto a colon model for
(a) FCN (ImageNet) and (b) Hybrid (ImageNet), where orange stripes denote false
positives. Network outputs are shown as an overlay on a video section.

The enhanced temporal correlation can also be observed on Figure 3. The
dice score over a sequence of polyp frames is more stable for the hybrid model,
corroborating the increased dice score and auto-correlation. The segmentation
examples in Figure 3(bottom) show that both models generated similar outputs
on good quality images. However, on blurry frames the FCN yielded false neg-
atives while the hybrid model successfully used information from surrounding
frames to predict correctly.

Fig. 3. Results on a polyp sequence showing (top) the dice overlap with the ground
truth and (bottom) segmentation outputs for the FCN (blue) and Hybrid (green)

Because the negative images used to train the models reported in Table 1
were not identical due to the negative mining strategy, a data benchmark was
performed to show the closest comparison possible between models. Table 2
shows the performance of the models when trained uniquely on positive data.
A 2D FCN was trained on Dataset V and Dataset S, initialising its backbone
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from ImageNet weights. A hybrid model was trained by initialising the backbone
from this FCN (ImageNet), and training exclusively the segmentation head. A
hybrid model was also trained from ImageNet, without freezing any layers. It is
important to note that these networks were trained exclusively on positive sam-
ples and false positives are to be expected. When compared to the FCN, which
was also trained on Dataset S, the results presented in Table 2 show that the
hybrid model initialised from ImageNet yields poorer results. This can indicate
that the model might be overfitting when training only on positive images, a
common problem on 3D architectures. However, when initialised from an FCN
trained on polyps, the proposed model improved the performance considerably
in all aspects. Particularly, a 20.19% rise in specificity was achieved. This shows
that the proposed architecture allows to pre-train on still images while benefiting
from the temporal stability provided by the 3D segmentation head.

Table 2. Detailed evaluation of network performance when negative data is not in-
cluded in the training set. Results are reported on the test set from Dataset V (pp and
pf denote per-polyp and per-frame sensitivity, respectively).

Method Sens Sens Spec Prec F1 Dice ∆ A-corr TC
(pp) (%) (pf ) (%) (%) (%) (%) (%) (%) (%)

FCN (ImageNet) 100.00 87.77 54.02 87.81 87.80 72.22 17.12±15.18 84.58
Hybrid (FCN) 100.00 88.88 74.18 92.73 90.76 75.06 9.77±9.77 87.78
Hybrid (ImageNet) 100.00 85.79 44.54 87.45 86.61 68.27 10.89±11.25 84.42

4 Discussion and Conclusion

A novel hybrid 2D/3D segmentation CNN architecture for polyp detection in
colonoscopic videos was developed. As a result of its 2D feature extraction,
the hybrid network encompasses the benefits from a 2D architecture, namely
spatial representation learning and the potential opportunity to apply transfer
learning from a curated dataset of still images. This is particularly beneficial for
clinical applications, where large video datasets are challenging to collect and
are currently not widely available and hence still image data may be needed to
provide strong and diverse representation of the spatial domain. In our method,
the 3D segmentation seamlessly incorporates temporal correlation in the results
encapsulating learning of spatio-temporal information on smaller video datasets.
The overall hybrid architecture is validated on videos from 46 patients, showing
an increase in performance, along with higher quality segmentation potential.
Future work includes optimization of the length of temporal information and
potential handling of video aberration artefacts and expanding testing to larger
video datasets.
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