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ABSTRACT: The direct chemical conversion of cocoa butter
triglycerides, a material available as a postmanufacture waste
stream from the food industry, to 1-decene by way of
ethenolysis is reported. The conversion of the raw waste
material was made possible by use of 1 mol % of the
[RuCl2(iBu-phoban)2(3-phenylindenyl)] catalyst. The process
has been investigated in both batch and flow conditions, where
the latter approach employs a Teflon AF-2400 tube-in-tube
gas−liquid membrane contactor to deliver ethylene to the
reaction system. These preliminary studies culminate in a
continuous processing system, which maintained a constant
output over a 150 min period tested.
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■ INTRODUCTION
Biofeedstocks in general and biowaste in particular represent an
attractive source of useful chemical functionality, which to date
is still largely untapped in terms of its application in the fine
chemicals industry. This is particularly the case for the
construction of elaborate molecular architectures such as
those found in many functional materials, in pharmaceuticals
and agrochemicals. However, in recent years, the conversion of
biowaste materials into chemical feedstock compounds and
added-value chemical commodities has become an intense area
of research.1−4 The valorization of biologically derived waste
into upgraded chemical materials is of paramount importance
in order to reduce indirectly the global dependence on fossil
feedstocks by entering the chemicals supply chain with
biologically premade structures. This approach is, however,
up against a wealth of knowledge and understanding of how to
extract, manipulate and process fossil feedstocks on vast scales,
a process that has been finely tuned over many decades in order
to maximize both energy and monetary output from the entire
petrochemical process. Thus, the challenge for the emerging
field of biobased chemistry is not only in identifying new viable
feedstocks but also in simultaneously developing new catalytic
systems and process technologies that would ultimately
compete with a petrochemical supply chain.
Within the range of compounds produced from biofeed-

stocks, triglycerides form one of the largest classes, with

primary applications in the food, healthcare, cosmetics and
industrial lubricant sectors.2 To maintain this demand, there
exists a significant industry for production of triglycerides.
Triglycerides from primary biomass are increasingly used as
first-generation biofuels, which directly compete with food and
other applications for land.5 There exist secondary sources of
triglycerides, following their primary use. Thus, used cooking
oils have been intensively investigated as a feedstock for
biodiesel production.6 We have identified another source of
waste triglycerides from food manufacturing: food ingredients
that are discarded after primary food manufacturing. One such
material, albeit having a relatively modest annual volume of ca.
4000 metric tonnes waste from a single plant, is cocoa butter.
For this study, cocoa butter was obtained as a waste product

from the food industry, at present destined for landfill as it
cannot be returned back to primary manufacturing. Thus, it is
not the primary biomass that enters food production. Cocoa
butter is primarily composed of triglycerides, of which there are
a variety of combinations of glycerol with palmitic (P), stearic
(S) and oleic (O) acids. Other acid residues are present in
lower quantities (palmitoleic acid, myristic acid, arachidic acid
and linoleic acid). The ratios of triglycerides vary as a response
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to numerous effects, major factors being the geographical
source of the bean and the time of year at harvest, typically
variations are within 1−4%. Of the six major triglycerides
present (16 have been identified), all contain oleic or linoleic
unsaturated acid residues.7 The transformation of interest in
this work is the production of 1-decene, a useful intermediate in
surfactants manufacturing, via a cross-metathesis with ethylene
known as ethenolysis, which also leaves the remaining
triglyceride as a functionalized terminal alkene.
Notably, the use of fatty acid esters as a source of long-chain

terminal alkenes via ethenolysis has fueled significant interest in
this reaction. Several homogeneous catalysts have been
reported for self- and cross-metathesis of fatty acid esters,
where selectivity between the two reactions and its origin, and
the attainment of high turnover numbers (TONs) were the
primary focus.8,9 Dow has set a commercial target of >50 000
TON for the reaction to be deemed economically viable, based
on the price of homogeneous catalysts.10 Ethenolysis of fatty
acid esters has also been reported using supported Re2O7
catalysts, leading to good selectivity toward cross-metathesis
products over self-metathesis.11−13

Despite the many examples of the use of fatty esters in the
metathesis reaction, the cost of isolation of a pure, single
unsaturated fatty ester starting materials from the feedstock
triglycerides can be a significant drawback for industrial
application. In this regard, the direct metathesis of triglycerides
is an attractive option for an ethenolysis reaction.14 However,
despite the fact that the direct use of triglyceride substrates
would be very useful, the presence of different combinations of
polyunsaturated fatty acid moieties on the triglyceride skeleton,
often leads to the formation of a mixture of metathesis
products. Therefore, traditionally, the use of a single fatty ester,
obtained from transesterification and subsequent purification of
the triglyceride starting material is preferable. In fact, very few
examples of the direct use of triglycerides in metathesis have
been reported in the literature.14−19 Thus, in the case that a
clean source of a waste triglyceride with a significant proportion
of a single unsaturated fatty acid structure is available, the direct
metathesis of the triglyceride material is potentially a better
overall option. The remaining triglyceride then contains a
terminal double bond, which in itself is a useful functional
group, for example for polymer formation. Epoxidation and
further polymerization of such triglycerides sources from cocoa
butter is the subject of a separate study.
Most of the published studies concerning the metathesis of

biorenewable resources were performed in batch reactors.
However, translation of batch chemistry to a continuous flow
approach frequently results in more efficient processes due to
either improved selectivity, reduced inventory of reagents
through solvent and catalyst recycling, use of more intensive
reaction conditions (elevated temperature and pressure),
improved mass and heat transfer and/or improved mixing.20−25

There are scant reports on metathesis under continuous flow
conditions.26−30 A comparison of batch, continuous stirred tank
reactors and tubular continuous flow reactors for ring-closing
metathesis has recently been presented.31 This work clearly
shows the impact of different types of residence time
distributions characterizing batch, continuous stirred tank and
plug-flow reactors on transformations with reaction orders over
unity, and the possibility to attain high space-time yields in
continuous reactors. Plug-flow reactors with heterogeneous
catalysts offer the simplicity of catalyst separation, as well as the
frequently desired plug-flow regime. However, immobilization

of homogeneous catalysts is often complicated by a reduction
in activity or selectivity, or gradual loss of metal through
leaching.32 Several approaches for immobilization of metathesis
catalysts to develop a heterogeneous-type continuous meta-
thesis process have been reported, either using covalent
grafting28 or noncovalent interactions to heterogenize the
active organometallic precatalyst or catalyst onto a solid
support.26,33,34 A truly heterogeneous catalyst based on
supported Re2O7 was reported in a continuous scCO2 flow
self-metathesis reaction.30

In addition, a continuous gas phase metathesis has been
reported using an ionic liquid supported catalyst, in which the
catalyst is immobilized on a thin film of an ionic liquid.35,36

Moreover, in the case of higher olefins, the use of a second
liquid phase, immiscible with an ionic liquid, has been
suggested such as a monolith biphasic continuous reactor.27

In the present instance, cross-metathesis with ethylene
requires the controlled addition of a gaseous reactant to the
liquid phase mixture of reactant and catalyst in order to render
the desired product conversion and afford longevity of catalyst.
For this, a hollow fiber membrane contactor offers an
alternative technology to conventional trickle-bed reactors.37,38

However, such processes frequently suffer from poor chemical
resistance of the fiber membrane or significant mass transfer
limitations. With the recent introduction of thin and chemically
resistant membrane contactors based on Teflon AF-2400
(poly(tetrafluoroethylene-co-2,2-bis(trisfluoromethyl)-4,5-di-
fluoro-1,3-dioxole)) by DuPont, the scope of applications and
efficiency of membrane contactors has improved significantly.39

Such tube-in-tube membrane contactors have now been applied
in several important synthetic reactions and are becoming a
generally accepted tool of mesoscale flow chemistry.40−58 Very
recently, ring-closing metathesis was shown to be effectively
performed in such a reactor, whereby the ethylene produced
could be removed by applying a vacuum across the porous
polymeric Teflon AF-2400 membrane.59 This technology offers
an efficient alternative to the heterogenization of metathesis
catalysts allowing truly continuous operation of an optimized
catalytic system under its best conditions, we therefore
designed our flow system to incorporate the porous membrane
gas−liquid contactor design by employing the Teflon AF-2400
tube-in-tube reactor.
In this context, we report here the direct ethenolysis of raw

cocoa butter triglyceride as a waste material from a food
manufacturer to provide 1-decene as the major lower weight
alkene product. In addition to the desired ethenolysis of the
oleic acid containing triglycerides, we hypothesized that the bis-
alkene containing linoleic acid residues would undergo
complete cross-metathesis with ethylene leading to a mixture
of 1-heptene and 1,4-pentadiene (as long as the system was not
starved of ethylene, Scheme 1). The product mixture would
thus be composed of lightweight alkenes with sufficiently
differing boiling points that they could then be separated at
scale by distillation. The reaction was performed both in batch
mode to screen the catalysts and in the flow mode, using a
tube-in-tube membrane contactor.

■ EXPERIMENTAL SECTION
Materials. The cocoa butter was sourced from Kraft Foods (UK).

For the particular sample of cocoa butter used in this study, the fatty
acid composition as determined by gas chromatography (GC) is
shown in Table 1, together with the fraction of total double bonds
represented by each component.
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Ethylene was purchased from BOC Ltd. (UK). Solvents and
reagents were obtained from Sigma-Aldrich and used without further
purification.

Methods. A selection of ruthenium indenylidene catalysts, shown
in Scheme 2, were screened in batch conditions.

The catalyst (1 mol %; 0.0025 mmol) and a stirrer bar were added
to a 5 mL vial in an argon-filled glovebox. The vial was closed using a
plastic septa cap. Next, this vial was removed from the glovebox. Then,
216.7 mg of cocoa butter (0.25 mmol, average Mw of cocoa butter)
was added into a second 5 mL vial and the vial was closed using the
septa cap (outside of the glovebox). The cocoa butter vial was purged
with argon from a Schlenk line before addition of 1 mL of dry and
oxygen-free solvent was introduced via syringe into the cocoa butter
vial. The cocoa butter was dissolved and then added via syringe into
the catalyst vial. The vial was then stirred with an ethylene purge from
a balloon. After the allotted time, the reaction was quenched with ethyl
vinyl ether, before drying under reduced pressure to constant mass and
analyzing by 1H NMR.

For >1 Bar Pressure of Ethylene. The charged reaction vial was
then loaded into the autoclave. The autoclave was connected to an
ethylene cylinder. After the allotted time, the reaction was quenched
with ethyl vinyl ether, before drying under reduced pressure and
analyzing by 1H NMR.

It should be noted that by conducting the same reaction using
nondried glassware, without a glovebox and with THF from a standard
column type solvent purification system, conversions within 5−10% of
those reported were routinely achieved.

Flow Procedure. Flow experiments were conducted using a Uniqsis
Flowsyn. The mixture of cocoa butter, catalyst and THF was injected
into the sample loop and the valve position switched to place the
sample inline. The sample was then carried into the lumen side of the
Teflon AF-2400 membrane. The tube-in-tube reactor was constructed
from an inner Teflon AF-2400 tube (o.d. 1.0 mm and i.d. 0.8 mm) and
an outer PTFE tube (OD 3.18 mm and ID 1.59 mm). The sample
then flowed into a 20 or 10 mL residence coil and then through a
back-pressure-regulator (BPR) rated to 6.9 barg (100 psi). The
collected sample was flushed with argon to remove dissolved ethylene
and to stop the reaction before drying under reduced pressure to
constant mass and analyzing by 1H NMR.

Analytical Methods. 1H NMR spectra were recorded on either a
Bruker Avance DPX-400 or DRX-600 (in the case of raw cocoa butter)
spectrometer with the residual solvent peak as the internal reference;
resonances are reported to the nearest 0.1 ppm. Details of calculations
of conversion on the basis of NMR are given in the Supporting
Information.

■ RESULTS AND DISCUSSION
Catalyst Screening. To screen for catalyst activity and

performance and develop analytical methods for the ethenolysis
of raw cocoa butter waste, a series of reactions were conducted
in batch mode with catalysts shown in Scheme 2. These
catalysts generally demonstrate increased activity and stability
compared with their benzylidene counterparts. There is a
straightforward procedure to synthesize these catalysts, making
them relatively inexpensive compared with other conge-
ners.60,61

Scheme 1. Reaction Scheme of Cocoa Butter Metathesis
with Ethylene as Upgrading of a Food Industry Waste
Streama

aPotential byproducts are shown.

Table 1. Composition of Cocoa Butter

fatty acids fatty acids in CB (%) double bonds in CB (%)

palmitic (C16:00) 25.8 0
palmitoleic (C16:1n7) 0.3 0.8
stearic (C18:00) 37.9 0
oleic (C18:1n9c) 32.2 84.1
linoleic (C18:2n6c) 2.9 15.1
arachidic (C20:00) 0.9 0

Scheme 2. Catalysts Screened for Ethenolysis of Cocoa Butter

ACS Sustainable Chemistry & Engineering Research Article

DOI: 10.1021/acssuschemeng.5b00397
ACS Sustainable Chem. Eng. 2015, 3, 1453−1459

1455

http://dx.doi.org/10.1021/acssuschemeng.5b00397


We were pleased to find that the metathesis catalysts
employed showed activity with the raw waste material during
preliminary experiments. Catalysts 1 and 2 demonstrated
effective catalytic turnover (Table 2 entries 1 and 2), whereas

catalysts 3 and 4 appeared to deactivate after the first cycle
(Table 2, entries 3 and 4). Indeed, the use of bisphosphine
catalyst (1) gave the best results for this transformation. This is
likely due to the increased stability of the methylidene
intermediate formed during the ethenolysis reaction, reducing
the possibility for decomposition pathways. In fact, generally,
the bisphosphine methylidene complexes bearing electron-
donating phosphines are more stable than their heteroleptic
analogues.62

On the basis of these results, [RuCl2(iBu-phoban)2(3-
phenylindenyl)] (1), was selected for further optimization of
the parameters. An increase in reaction time from 2 to 16 h
resulted in a modest increase in yield (Table 2, entries 1 and 5).
A solvent screening highlighted dichloromethane as optimum
in terms of yield; however, the option of THF was preferred
(Table 2, entries 5, 6 and 7). Notably, an increase in reaction
temperature from ambient to 50 °C resulted in a decrease in
yield, presumably due to catalyst decomposition (Table 2,
entries 7 and 8). Increasing the pressure of ethylene, a practice
that requires a significant effort and poses a safety hazard in
batch mode, appeared to increase the reaction rate,
furthermore, an excess of ethylene is essential to prevent
homodimerization, thus the ability to work at increased
pressures is an important consideration.
Flow Experiments. In the preliminary setup, HPLC piston

pumps of a Uniqsis FlowSyn were used in conjunction with the

in built 6-port 2-position switching valve bearing a 10 mL
loading loop. In a typical experiment, the loop was loaded with
a 0.5 M segment of cocoa butter in THF with 1 mol % of
catalyst. This was then switched inline (by changing the
position of the valve) and the segment was carried initially
through a Teflon AF-2400 tube-in-tube module (liquid in the
inner tube), where the outer surface of the gas permeable tube
was exposed to ethylene gas from the cylinder.40,52 The gas-rich
homogeneous segment then passed into a 20 mL residence coil,
where it resided for 60 min (flow rate of 0.33 mL min−1) before
passing through a back pressure regulator where the media
outgassed to form slugs of liquid and gas, signifying that excess
gas remained after the reaction, see Figure 1.
As described in Table 3, by holding the reactor coil at room

temperature and varying the pressure of ethylene (P1, by
altering the regulator pressure on the cylinder), it was found
that 6 bar provided optimal results. Interestingly, at both higher
and lower pressures, the conversion was notably lower. The
same pressure trend was observed as the reactor coil
temperature was increased to 40 °C, (Table 3 entries 6−10)
where now at 6 bar pressure, a 38% conversion could be
obtained. Interestingly, and in accord with the batch results
obtained at 50 °C (Table 2, entry 8), the conversion decreased
at reactor coil temperatures of 60 °C (Table 3, compare entries
8 and 11), this is likely as a consequence of thermal
decomposition of the catalyst.
A plot of the trend of pressure and temperature against

conversion is shown in Figure 2. At 40 °C and 6 bar pressure,
halving the catalyst loading also reduced the conversion by
approximately half (Table 3, entries 8 and 12). Halving the
concentration of cocoa butter also did not result in improved
conversion. However, increasing the residence time in the
reaction coil to 2 h by halving the flow rate afforded increased
conversion to 49%. It is possible that this increase is attributable
to an increase in retention time in the tube-in-tube reactor,
resulting in a greater uptake of gas in to the liquid stream. This
hypothesis was therefore, tested by maintaining the flow rate
but changing the volume of the reaction coil to half that of the
original (i.e., to 10 mL from 20 mL). If no effect was to be
observed from gas uptake or mass transfer limitations, then
essentially no difference compared to the original should be
seen. In fact, this configuration also delivered an increased
conversion relative to the original conditions, suggesting that
the ethylene uptake was also an important factor (Table 3,
compare entries 8, 14 and 15).
Using these conditions, a longer continuous reaction was

performed to verify the stability of the system under a
continuous rather than segmented run. This was done by
simply bypassing the 6-port, 2-position valve and loading loop,
and instead pumping from a reservoir bottle containing the

Table 2. Screening of Catalysts for Ethenolysis of Cocoa
Butter

entry catalysta solvent
pressure
(bar)

time
(h) T (°C)

conversion
(%)

1 1 (1) toluene 1 2 r.t. 30%
2 2 (1) toluene 1 2 r.t. 21%
3 3 (1) toluene 1 2 r.t. ∼1%
4 4 (1) toluene 1 2 r.t. ∼1%
5 1 (1) toluene 1 16 r.t. 36%
6 1 (1) DCM 1 16 r.t. 46%
7 1 (1) THF 1 16 r.t. 45%
8 1 (1) THF 1 16 50 35%
9 1 (1) THF 2 16 r.t. 49%
10 1 (1) THF 2 1 r.t. 34%
11 1 (0.25) THF 2 1 r.t. 24%
12 1 (0.5) THF 2 1 r.t. 25%

aCatalyst loading (mol %) shown in parentheses.

Figure 1. Scheme of flow reactor system for ethenolysis of cocoa butter (rt is residence time in the reactor coil; V is the volume of the reaction
residence coil).
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cocoa butter and catalyst. Pleasingly, over a period of 2.5 h, the
reactor output remained stable and constant, as detected by
conversion spot-checks at 30 min intervals, Figure 3.
In conclusion, we have demonstrated a direct valorization of

a waste triglyceride by way of ethenolysis of the unsaturated
fatty acid components. A suitable catalyst that can operate with
the specific raw waste material has been identified and the
preliminary parameters of the reaction have been investigated
in batch mode operation. The concentration and pressure of
ethylene plays a clear and significant role that led us quickly to
explore the use of flow methods employing a semipermeable
Teflon AF-2400 tube-in-tube reactor whereby parameters could
also be controlled to optimize the process, ultimately
culminating in a proof-of-concept continuous run that
displayed stability of output over a 2.5 h period. Future work
will investigate larger scale processes with focus on achieving
higher catalyst TONs, exploring more customized engineering
solutions to provide responsive control of ethylene pressure,
and inline purification of the 1-decene fractions. Exploration of
the use of recyclable metathesis catalyst systems could also

contribute to further improving the present proof-of-concept
study toward more readily scaled methods.
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Table 3. Ethenolysis of Cocoa Butter in Tube-and-Tube Reactor and a Scheme of Flow Reactor System for Ethenolysis of Cocoa
Buttera

entry flow rate (mL min−1) P1 (bar) T (°C) rt (min) V (mL) conversiona

1 0.33 2 r.t. 60 20 10% (9%)
2 0.33 4 r.t. 60 20 15% (13%)
3 0.33 6 r.t. 60 20 25% (21%)
4 0.33 10 r.t. 60 20 22% (18%)
5 0.33 14 r.t. 60 20 17% (15%)
6 0.33 2 40 60 20 22% (18%)
7 0.33 4 40 60 20 26% (23%)
8 0.33 6 40 60 20 38% (32%)
9 0.33 10 40 60 20 31% (26%)
10 0.33 14 40 60 20 28% (24%)
11 0.33 6 60 60 20 32% (28%)
12b 0.33 6 40 60 20 26% (22%)
13c 0.33 6 40 60 20 20% (17%)
14 0.17 6 40 118 20 49% (41%)
15 0.17 6 40 59 10 46% (39%)

a1H NMR conversion to terminal alkene products, number in parentheses represents 85% of this value as a measure of the quantity of 1-decene
present. bCatalyst loading = 0.5 mol %. cCocoa butter concentration = 0.25 M.

Figure 2. Conversion to alkenes as a function of ethylene pressure and
reactor coil temperature. Lines are for convenience only.

Figure 3. Longer run of cocoa butter continuous ethenolysis, with
conversion “spot-checks” every 30 min.
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