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Abstract
Objectives: This study develoed, calibrated, and evaluated of a machine learning classifier designed to reduce study identification
workload in Cochrane for producing systematic reviews.

Methods: A machine learning classifier for retrieving randomized controlled trials (RCTs) was developed (the ‘‘Cochrane RCT Clas-
sifier’’), with the algorithm trained using a data set of titleeabstract records from Embase, manually labeled by the Cochrane Crowd. The
classifier was then calibrated using a further data set of similar records manually labeled by the Clinical Hedges team, aiming for 99%
recall. Finally, the recall of the calibrated classifier was evaluated using records of RCTs included in Cochrane Reviews that had abstracts
of sufficient length to allow machine classification.

Results: The Cochrane RCT Classifier was trained using 280,620 records (20,454 of which reported RCTs). A classification threshold
was set using 49,025 calibration records (1,587 of which reported RCTs), and our bootstrap validation found the classifier had recall of 0.99
(95% confidence interval 0.98e0.99) and precision of 0.08 (95% confidence interval 0.06e0.12) in this data set. The final, calibrated RCT
classifier correctly retrieved 43,783 (99.5%) of 44,007 RCTs included in Cochrane Reviews but missed 224 (0.5%). Older records were
more likely to be missed than those more recently published.

Conclusions: The Cochrane RCT Classifier can reduce manual study identification workload for Cochrane Reviews, with a very low
and acceptable risk of missing eligible RCTs. This classifier now forms part of the Evidence Pipeline, an integrated workflow deployed
within Cochrane to help improve the efficiency of the study identification processes that support systematic review production. �
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1. Background

Cochrane is a leading producer of systematic reviews,
with more than 8,000 currently published in the Cochrane
Library [1]. These reviews incorporate the results of tens
of thousands of randomized controlled trials (RCTs) and
other primary studies. The manual effort invested in identi-
fying primary studies eligible for inclusion in these and
other systematic reviews is vast. Author teams and informa-
tion specialists typically search a large number of biblio-
graphic databases to find the comparatively small number
of studies eligible to be included [2]. These searches are
sensitive to identify as many relevant studies as possible
but therefore yield large number of irrelevant records,
which are then screened manually by author teams. This
is a time-consuming and therefore costly process, espe-
cially when all records are checked by at least two people
to aid reliability. With the rapidly increasing volume of
research being conducted and published [3], systematic re-
views tend to be resource-intensive projects, which can take
years to complete. As a consequence, many important
research questions are not covered by systematic reviews,
and it is increasingly difficult to maintain an up-to-date syn-
thesized evidence base [4]. This is a waste of global invest-
ment in research, leading to suboptimal decision-making
and poorer health outcomes [5].

Automation has been proposed as one possible solution
to reduce the manual burden of many systematic review
tasks [6]. For example, machine learning classification al-
gorithms (‘‘classifiers’’) can ‘‘learn’’ the eligibility criteria
of a review through exposure to a manually classified set
of documents, thus reducing the human effort required to
find relevant studies [7].

To date, most automation approaches operate at the level
of individual reviews [8,9], rather than addressing structural
deficiencies in research curation [10]. This paper describes
an important component in an alternative approach, which
aims to improve the efficiency of study identification across
multiple systematic reviews of RCTs. The system com-
prises (1) database searching, (2) machine learning, and
(3) crowdsourcing (via the Cochrane Crowd citizen science
project) to populate an existing database of RCTs (CEN-
TRAL) [11]. The interlinked system or ‘‘workflow’’ is
known as the Cochrane ‘‘Evidence Pipeline.’’ Here we
describe the machine learning component of the Pipeline
workflow; the other components (the Cochrane Crowd
and a Centralised Search Service) are detailed elsewhere
[12,13]. The reason that this is so beneficial for Cochrane
Reviews is twofold. First, on the basis that RCT study de-
signs can be ethically implemented to produce results
capable of supporting causal claims about the beneficial
effects of the large majority of health care interventions
evaluated in Cochrane Reviews, approximately 90% of Co-
chrane Reviews aim to include only RCTs. Thus, the capa-
bility to efficiently identify studies with designs at scale
will generate large corollary cost savings and efficiency
gains in review production and updating systems across
thousands of Cochrane Reviews, reducing research waste.
Second, searches conducted for Cochrane and non-
Cochrane health and nonhealth systematic reviews of
RCT evidence also retrieve many records of studies that
are not RCTs (often well over 50%). Thus, the capability
to automatically exclude non-RCTs from manual checking
in such reviews will reduce manual workload (because,
even if they are about the right topic, the fact that they
are not RCTs means that they are ineligible for inclusion),
with corollary cost savings and efficiency gains.

We have previously described methods for automatically
identifying RCTs from research databases [8]. In that eval-
uation, we found machine learning classification systems
are more accurate than manually crafted Boolean string
searches of databases (the current standard practice). Yet,
showing higher accuracy in a validation study is not suffi-
cient to ensure new technologies are adopted in practice.
We have engaged with the Cochrane Information Retrieval
Methods Group (IRMG) with whom we agreed additional
requirements for this technology to be adopted by Co-
chrane. First, the classifier must recall at least 99% of RCTs
(a more stringent threshold than we had applied in our pre-
vious work) [8]. Second, the classifier should provide an
indicative probability score to users. Third, an additional
assessment should be done on whether the classifier would
be at risk of missing any of the studies included in existing
Cochrane Reviews. In this article, we describe the develop-
ment, calibration, and evaluation of a machine learning
classifier designed to meet these requirements, which has
subsequently been adopted by and deployed within
Cochrane.
2. Materials and methods

2.1. Cochrane Evidence Pipeline workflow

Cochrane publishes a database of RCTs that are relevant
for current or potential future reviews (CENTRAL), with
an administrative interface for Cochrane users, known as
the Cochrane Register of Studies [11]. Although a rapidly
increasing minority of reviews synthesize nonrandomized
research designs (including qualitative and quasiexperi-
mental studies), CENTRAL focuses on RCTs, which
currently remain the basis of the large majority of published
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Key findings

� Manual workload can be saved by using a machine
learning classifier

� The risk of missing eligible studies is accepta bly
low.

What this adds to what was known?
� Machine learning tools are sufficiently mature to

be used in real-world scenarios.

� It is possible to build a machine learning classifier
to identify RCTs that is sufficiently reliable to be
deployed in live workflows.

What is the implication and what should change
now?
� Where possible, systematic reviewers should use

this classifier to make their work more efficient.
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Cochrane Reviews. We likewise focus our efforts on the
discovery of RCTs.

We seek to benefit from efficiencies in two ways. First,
current practice is to identify RCTs through searches of
bibliographic databases using highly sensitive RCT filters.
Such filters have low precision, retrieving as many as 20
non-RCTs for every true RCT [12]. These irrelevant articles
then need to be manually screened and removed. Second,
the same studies are retrieved and assessed multiple times
by different people across the global systematic review
workforce. The Pipeline therefore aims to avoid this dupli-
cation of effort by facilitating the reuse of previous assess-
ments as to whether a given report describes, or does not
describe, an RCT.

Fig. 1 depicts the role of machine learning within the
Pipeline. To populate CENTRAL, Cochrane regularly
Fig. 1. The Cochrane Evidence Pipeline workflow, depicting the flow of rec
classification services to the CENTRAL database.
searches a range of online resources (e.g., biomedical liter-
ature databases) through the ‘‘Centralised Search Service,’’
which is described elsewhere [12]. Abstracts of these candi-
date articles (of which the majority are not RCTs) are
‘‘fed’’ into the top of the Pipeline. (The scope and detail
of these searches is described here: https://www.
cochranelibrary.com/central/central-creation). The machine
learning classifier (described in this article) is used to filter
out records that are highly unlikely to be an RCT study
report. The remaining articles are then handed over to the
Cochrane Crowd, which filters out all further records that
do not report an RCT [13]. Finally, the remaining articles
(which should all describe RCTs) are stored in CENTRAL.
Crowd ‘‘labels’’ are also used to update the machine
learning algorithm so that it becomes more accurate at dis-
tinguishing between relevant and irrelevant records (see
Section 2.7).
2.2. Data sets and their role in this study

High-quality data sets are vital for the development,
calibration, and evaluation of reliable machine learning
classifiers. Most evaluations of such classifiers use a single
data set, which is split at random between ‘‘training’’ and
‘‘test’’ data (e.g., with 70% of the data reserved for
training). The training data are used to estimate the model
parameters, and the test data are used to evaluate its perfor-
mance. However, although a single data set evaluation can
provide estimates of classifier performance that have strong
internal validity, it cannot tell us how well a classifier will
perform in the real world, where data may come from sour-
ces that differ in important ways from those used to pro-
duce this data set. As outlined by Nevin, it is important
to consider the external validity of machine learning
models before deployment [14]. Here, we examined
external validity in terms of whether the use of our machine
learning model would risk missing RCTs included in Co-
chrane Reviews.
ords from the centralized search service, through machine and crowd

https://www.cochranelibrary.com/central/central-creation
https://www.cochranelibrary.com/central/central-creation


Fig. 2.
Development and evaluation of the classifier, showing where the
various data sets were used in the classifier development process.
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We therefore used three distinct data sets in the present
study:

� Training data, from which the machine learning
models are built;

� Calibration data, on which the threshold for deter-
mining the cutoff between ‘‘RCT’’ and ‘‘non-RCT’’
classifications was based; and

� Validation data, on which the calibrated classifier was
evaluated.

Fig. 2 summarizes the contribution made by each data
set that we now describe in detail.
2.3. Training data

The data set used to train the classifier comprises a
corpus of 280,620 titleeabstract records retrieved from
Embase using a highly sensitive search for RCT (https://
www.cochranelibrary.com/central/central-creation). This
search has been carried out each month since January
2014 for the purpose of identifying relevant studies for in-
clusion in CENTRAL (see Section 2). In this study, we
used records retrieved between January 2014 and July
2016 inclusive. During this period, any records indexed
with the Emtree headings ‘‘Randomized controlled trial’’
or ‘‘Controlled clinical study’’ were automatically marked
for inclusion in CENTRAL, without any manual checking,
on the basis that this rule produced a false positive rate for
identifying reports of RCTs that was judged sufficiently
low. To account for the historical use of this rule, records
with these specific Emtree headings were also excluded
from our training data set. Because obvious RCTs and
obvious non-RCTs had already been filtered out of this data
set (using Emtree headings and the sensitive search filter
for RCTs, respectively) before we used it to train the clas-
sifier, the data set therefore comprises records that are, on
average, more difficult to classify according to whether or
not they report an RCT, compared with an unfiltered sample
from the raw database.

Next, each record in the training data set was labeled by
Cochrane Crowd members according to whether it reported
an RCT (n 5 20,454) or not (n 5 260,166). Each record
was labeled by multiple Crowd members, with the final
Crowd decision being determined by an agreement algo-
rithm; Noel-Storr et al. report that the Crowd recall and pre-
cision for identifying RCTs both exceeded 99% [13].

This data set (‘‘Cochrane Crowd data’’ in Fig. 2) has
characteristics that make it highly suitable for training a
machine learning classifier: it is both largedso represents
a wide range of instances of both the positive and negative
classes (i.e., RCTs and non-RCTs)dand also very accu-
rately labeled. However, it also comprised records added
to Embase during a relatively short (!3 years) period,
which could limit the generalizability of the resulting ma-
chine learning classifier.
2.4. Calibration data

When machine learning classifiers are used for predic-
tion, they output a score (often scaled to be bounded by
0 and 1) that gets assigned to each titleeabstract record,
with a higher value representing an increased likelihood
that the record reports an RCT. However, to use the classi-
fier to reduce manual screening workload, we also needed
to set a threshold score below which records (unlikely to
be RCTs) are discarded and conversely above which re-
cords (possible RCTs) are retained for manual screening.
Higher score thresholds can be expected to lead to a higher
prevalence of reports of RCTs (true positives) among fewer
retained records (i.e., higher precision) but at the expense of
having discarded some reports of RCTs (false negatives)
with scores below the threshold (i.e., lower recall).
Conversely, a lower threshold can be expected to lead to
lower precision but higher recall.

https://www.cochranelibrary.com/central/central-creation
https://www.cochranelibrary.com/central/central-creation
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We sought the advice from the Cochrane IRMG and
were advised that the classifier would need to have a
threshold score calibrated to retrieve at least 99% of rele-
vant RCT study reports to be adopted for use in Cochrane
and also that achieving this high level of recall should be
prioritized over any reductions in manual screening work-
load. These specifications reflect the strong aversion that
we have, when conducting systematic reviews, to inadver-
tently failing to identify studies that should be included.

The Clinical Hedges data set (Fig. 2) was built during
2000 and 2001 for the purposes of testing and validating
sensitive search filters for RCTs [15]. It contains 49,028
titleeabstract records manually identified and selected by
information specialists using a combination of hand search
and electronic search methods. Corresponding full-text re-
ports of all records were manually checked to ascertain
with confidence whether or not each reported an RCT, mak-
ing this a highly accurate data set for our current purpose.
Three records from this data set were no longer available in
PubMed, so our final calibration data set comprised 49,025
PubMed titleeabstract records, of which 1,587 reported an
RCT (and the remaining 47,438 did not report an RCT).

It was more demanding to calibrate our RCT classifier
on this data set (compared with using a proportion of re-
cords held back from the Cochrane Crowd data set) because
(1) the records are older and are less likely to have a consis-
tent reporting structure for RCTs because the study reports
were published only a few years after the CONSORT state-
ment (and before the latter became widely used) [16] and
(2) the Clinical Hedges Team’s assessments were based
on full-text reports, and there is no indication in some of
the corresponding titles and abstracts that they actually
report an RCT. We used this data set to identify the
threshold for achieving 99% recall and thereby calibrate
our classifier, and we also present results concerning the
precision with which these records can be identified.
2.5. Validation data

As described previously, this machine learning classifier
was primarily designed to identify records of study reports
potentially eligible for inclusion in Cochrane Reviews. We
therefore validated the classifier using a third data set to
determine whether the desired level of 99% recall (cali-
brated using the Clinical Hedges dataset) could be achieved
in practice. This validation data set (‘‘Cochrane Included
Studies’’ in Fig. 2) comprises title and abstract records of
all study reports included in Cochrane Reviews in which
eligible study designs are restricted to ‘‘RCTs only,’’ pub-
lished up to April 2017. The data set comprises 94,305 re-
cords of 58,283 included studies across 4,296 Cochrane
Reviews. Although it could be assumed that the vast major-
ity of these records report an RCT, in practice, we found
that some records of included study reports did not report
an RCT (e.g., they reported a meta-analysis of RCTs, a
related editorial, or personal correspondence). These
records were retained in the validation set, as removing
them all would have required the manual screening of all
records.
2.6. Excluded data

Articles without an abstract (i.e., title-only records) may
contain insufficient information for accurate machine (or
human) classification. However, title-only records that
include the words ‘‘randomised controlled trial’’ (as per
CONSORT guidance) should be labeled correctly by a clas-
sifier. In consultation with the IRMG and in the light of
manual assessment of records with some content in their
abstract field (but not a full abstract), we determined that
pragmatic cutoffs for including a record in the training,
calibration, or validation data sets would be set at 400 char-
acters as a minimum abstract length and 15 characters as a
minimum title length. These cutoffs aimed to balance the
need for sufficient text to be present in the abstract field
for the machine learning to operate while not referring
too many records for manual assessment. It is important
to note that, in the Cochrane Evidence Pipeline workflow
(mentioned previously), all records with title and/or ab-
stract fields that have fewer characters than the minimum
cutoff are referred for manual screening by members of
the Cochrane Crowd. When the minimum character cutoff
is applied to the Cochrane Included Studies data set, the
final number of studies in the evaluation falls to 44,007.
2.7. Machine learning methods for RCT identification

Machine learning describes a group of algorithms that
seek to ‘‘learn’’ to do a task by exposure to (typically large
amounts of) data. The approach we used here can be
described as supervised machine learning: meaning that
the algorithm is ‘‘trained’’ on articles for which the true la-
bel is already known. Although the current state-of-the-art
approach for text classification is the use of neural network
models, we have previously found that support vector ma-
chine (SVM) models (and specifically ensembles [ensem-
bling describes a strategy of using multiple machine
learning models together, with the aim of improving perfor-
mance compared with any model individually] of multiple
of SVM models) were similarly accurate for high-
sensitivity document recall [8]. SVMs are less computa-
tionally intensive than neural models and therefore can
run quickly and without the need for any special computer
hardware. The final Cochrane RCT Classifier model also
needed to be deployed in a live Web service that might need
to cope with heavy user demand. For these reasons, we
chose SVMs for the present study. We refer the interested
reader to a detailed description of machine learning
methods as applied to abstract classification [8]. In our pre-
vious work, we incorporated metadata from the database
describing study design into our models (the Publication
Type tag in MEDLINE, which is manually added by
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MEDLINE staff, often several months after publication).
However, as the Evidence Pipeline retrieves mainly very
new records, which usually lack this metadata, we used a
model that uses titles and abstract text without additional
metadata.

We used the bag-of-words approach, in which each
titleeabstract record is represented as a vector of 0s and
1s, depending on the presence or absence of each unique
word from the article set vocabulary [8]. These vector rep-
resentations are then used to ‘‘train’’ (i.e., find optimal pa-
rameters for) an SVM model. We preprocessed the records
to remove commonly used words (e.g., ‘‘and,’’ ‘‘the’’) that
appear on the PubMed ‘‘stopword’’ list [8]. During our
initial development phase, we found that an ensemble of
two SVM models with minor differences resulted in great-
est accuracy when evaluated on the training data. We there-
fore selected an ensemble of two SVM variants for use in
the study (see Fig. 2). The first classifier (SVM1) repre-
sented the texts as individual words, pairs of words, and
triplets of words (uni-, bi-, and tri-grams). This accounts
for situations in which adjacent words affect document
class (e.g., the text ‘‘randomized controlled trial’’ might
be more strongly indicative of an RCT than any word indi-
vidually). The second classifier (SVM2) used a unigram
model (i.e., each word is considered individually) and used
a strategy of oversampling. This strategy aims to reduce the
likelihood of missing a ‘‘rare class’’ (here the ‘‘rare class’’
is RCTs, which account for ~5% of the data set) by artifi-
cially increasing the number of RCTs in the training data
set by random sampling with replacement (this process is
not repeated with the calibration or validation data sets,
which are left in their original state).

The source code for building SVM1 is available at
https://github.com/alan-turing-institute/DSSG19-Cochrane/
blob/dev/analyses/partner_baseline/create_model.py.

The source code for building SVM2 is available at
https://github.com/ijmarshall/robotsearch.
2.8. Generating calibrated probability estimates

SVMs estimate the distance between a given record and
a ‘‘hyperplane’’ [17], which, in the current use, separates
RCTs (the positive class) from non-RCTs (the negative
class). The hyperplane distance metric is not readily inter-
pretable (in our data set, this metric had a numeric value
approximately between �1 and þ8), and we therefore
sought to add probability estimates to meet the needs of
Cochrane users, who have found this feature to be particu-
larly useful in understanding the output. To achieve this, we
calibrated the ensemble SVM scores on the Clinical Hedges
data set using a logistic regression model (known as Platt
scaling) [18]. This generated a score for each ‘‘unseen’’ re-
cord in the calibration or validation data sets that is
bounded by 0 and 1. These scores are closer to representing
the true probability that a given record reports an RCT; as
such they are readily interpretable, with higher scores
representing a higher likelihood that the record reports an
RCT (and vice versa). When viewed graphically, the distri-
bution of scores is often U-shaped, with most records being
assigned either a high (close to 1) or low (close to 0) prob-
ability score, and a smaller number of records in the middle
that are more ambiguous in terms of class membership.
2.9. Evaluation metrics

In this article, we use the conventional information
retrieval terminology recall and precision, which are syn-
onymous with sensitivity and positive predictive value,
respectively. As outlined previously, the recall statistic is
of primary concern in the current use scenariodthat is, that
eligible study reports are not incorrectly discarded from the
Evidence Pipeline workflow. Cochrane required the system
to have at least 99% recall. Recall is calculated as the pro-
portion of relevant items (i.e., records describing an RCT)
that are correctly identified by the Evidence Pipeline work-
flow compared with the total number of records genuinely
reporting an RCT that should have been identified.

To evaluate the discriminative performance and quality
of calibration of our machine learning strategy on the Clin-
ical Hedges data, we used bootstrap sampling as described
by Steyerberg et al. [19]. In short, a series of artificial new
data sets were ‘‘bootstrapped’’ by random sampling with
replacement from the Clinical Hedges dataset. Logistic
regression models (which served the dual purposes of en-
sembling the individual SVM models and producing cali-
brated probability outputs) were trained on each sampled
data set and evaluated on the original data set. This process
was repeated 5,000 times and used to estimate performance
metrics with 95% confidence intervals. Although the pri-
mary use of the system is for binary classification, a key
secondary use is providing indicative probability scores to
users. We evaluate the quality of the probabilities via a cali-
bration plot and by calculation of the Brier score and C sta-
tistics [20].

Common practice in Cochrane Reviews is to find, use,
and cite all published (and unpublished) reports of each
included study (‘‘study reports’’). Many studies included
in Cochrane Reviews comprised multiple study reports.
This means that if the classifier ‘‘misses’’ one of several
study reports of the same RCT, this does not necessarily
mean the RCT study has been ‘‘lost.’’ We therefore adopted
the following approach. We first classified all study reports
in Cochrane Reviews of RCTs using the machine learning
classifier and then we considered a study to be ‘‘lost’’ only
if all reports of that study fell below the threshold. As such,
the ‘‘study’’ is our unit of analysis rather than the ‘‘study
report.’’ We made this decision because we found many
secondary citations in reviews referred to indirectly related
non-RCT studies and also because we would expect the
retrieval of a single article would alert the review team to
the existence of the trial.

https://github.com/alan-turing-institute/DSSG19-Cochrane/blob/dev/analyses/partner_baseline/create_model.py
https://github.com/alan-turing-institute/DSSG19-Cochrane/blob/dev/analyses/partner_baseline/create_model.py
https://github.com/ijmarshall/robotsearch


Table 1. 2 � 2 table from which precision and recall are calculated

RCTs (gold standard) Non-RCTs (gold standard)

Machine learning classed RCTs True positives False positives

Machine learning classed non-RCTs False negatives True negatives

Abbreviation: RCT, randomized controlled trial.
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Precision is also a metric of interest because it can be
used to compute the number of articles requiring manual
screening by Cochrane Crowd in the Evidence Pipeline
workflow. Here, we were concerned with the number of
irrelevant records (i.e., records not reporting an RCT) that
are incorrectly classified by machine learning as relevant
(i.e., records with an assigned probability score above the
identified threshold score), which must then be filtered
out manually by the Cochrane Crowd. Precision is calcu-
lated as the proportion of retrieved records, which genu-
inely report an RCT.

Recall and precision were calculated from a 2 � 2 table
representing positive/negative (relevant/irrelevant) classes
and whether they were correctly or incorrectly classified
(Table 1).

Formulas used to calculate precision and recall are as
follows:
Table 2

Validat

0.08 (
precision5
true positives

true positivesþ false positives

recall5
true positives

true positivesþ false negatives
We computed statistics for precision at 99% recall
against the Clinical Hedges calibration data set. As speci-
fied previously, recall was set at 99% by the IRMG. As
the Cochrane Reviews we examined contain only RCTs
(and the non-RCTs excluded during searches are not usu-
ally comprehensively recorded), we were not able to calcu-
late precision on the Cochrane Reviews dataset and report
recall only.

For the primary analysis, the denominator was all arti-
cles in Cochrane Reviews meeting the minimum character
length criteria described previously (i.e., very short titles
and abstracts were excluded). We assume that manual
assessment will yield 100% recall of these records. We also
report results on the full data set, without removing articles
with small or nonexistent abstracts, as a secondary analysis.
The first figure can be interpreted as the recall of the overall
workflow because it takes account of our decision to
. Bootstrap estimates of model performance on Clinical Hedges data

ion precision Validation recall Validation sp

0.06, 0.12) 0.99 (0.98, 0.99) 0.63 (0.48,
remove records with insufficient information for machine
classification from the workflow.

We present absolute values of the total number of
eligible studies ‘‘lost’’ to Cochrane Reviews. Finally, we
also present the distribution of ‘‘lost’’ study reports accord-
ing to the year of publication because we hypothesize that
the classifier may perform less well on older study reports
because (1) it has been trained on newer reports and (2) trial
reporting may have improved as a result of the CONSORT
statement.
3. Results

The machine learning classifier for identifying reports of
randomized trials (Cochrane RCT Classifier) was built as
per the previously mentioned methods from the screening
of 280,620 Embase records (January 2014 to July 2016)
by Cochrane Crowd. Of these, 20,454 (7.3%) were deemed
to be RCTs.
3.1. Threshold setting and binary classification
performance

The 49,025 records from the Clinical Hedges data set
were scored by the machine learning classifier. The records
were ordered according to classifier score, and precision
and recall statistics were calculated for every record in
sequence. The classifier probability, which corresponded
with 99% recall, was recorded and used as the classifica-
tion threshold for the later validation (and the deployed
system). The discriminative and calibrative performance
of this strategy, estimated using bootstrap sampling is pre-
sented in Table 2. We estimate that precision was 8.3%,
meaning that one in every 12 records retrieved described
an RCT. Setting the classifier at this level of recall resulted
in 58% of records in this data set being automatically dis-
carded as highly unlikely to be reporting a randomized
trial.

Estimates of the C statistic and Brier score were 0.978
and 0.048, respectively, indicating excellent discriminative
set, with 95% confidence intervals

ecificity C statistic Brier score

0.76) 0.98 (0.98, 0.98) 0.05 (0.05, 0.05)



Fig. 3. Calibration plot showing bootstrap estimates of predicted vs. observed probabilities of an article being an RCT in Clinical Hedges dataset
(each blue point represents an estimate of a model generated from one bootstrap sample) and the performance of the final model (orange). (For
interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
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performance. We present a calibration plot showing point
estimates from the bootstrap evaluation and the final model
(trained on the whole dataset) in Fig. 3. We show how the
predicted scores are distributed for RCTs and non-RCTs in
Fig. 4.
3.2. Validating the classifier recall on studies included
in Cochrane Reviews

The title and abstract records of 58,283 studies included
in 4,296 Cochrane Reviews were fed through the classifier.
Table 3. Number of included studies in Cochrane Reviews classified as RCT

RCTS correct
the classi

All studies (N 5 58,283) 54,683

Studies with sufficient information for
machine classification (N 5 44,007
studies)

43,783

Abbreviation: RCT: randomized controlled trial.
Records with a score equal to or above the threshold iden-
tified in the previous step were automatically classified as
potentially reporting an RCT; those scoring below this
threshold were automatically classified as not reporting an
RCT.

Table 3 summarizes the number of eligible studies that
are ‘‘lost’’ to reviews as a result of all of their correspond-
ing study reports scoring lower than the threshold. When
records that contain insufficient information for machine
classification are excluded from machine classification
and assumed to be manually assessed (see Section 2), the
s

ly identified by
fier (recall) RCTS not identified by the classifier

(93.8%) 3,600 (6.2%)

(99.5%) 224 (0.5%)



Fig. 4. Distribution of classification scores for RCTs and non-RCTs in Clinical Hedges data set. RCT, randomized controlled trials.
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classifier correctly identifies 99.5% (43,783 out of 44,007)
of studies.

In our secondary analysis, when we include for machine
classification data for all studies (including the subset of
studies, which contain insufficient information for accurate
machine classification [see Section 2]), we find that 3,396
studies would be potentially ‘‘lost’’ to reviews (compared
0

5

10

15

20

25

19
69

19
71

19
73

19
75

19
77

19
79

19
81

19
83

19
85

19
87

19
89

19
91

19
93

19
95

19
97

19
99

20
01

20
03

20
05

20
07

20
09

20
11

20
13

20
15

Ar
Ɵc

le
 p

ub
lic

aƟ
on

s p
er

 1
00

0

Year of publicaƟon

Fig. 5. RCTs ‘‘lost’’ by the classifier per 1,000 published, by year of
publication, showing that the risk of ‘‘losing’’ a publication decreases
over time.
with 224 studies when only those with sufficient informa-
tion are included).

Fig. 5 shows the 224 randomized trials ‘‘lost’’ by the
classifier per 1,000 published, by year of publication, for
all but one of the publications (the age of one publication
could not be ascertained). These results show that older re-
ports are much more likely to be misclassified by the ma-
chine learning classifier.
4. Discussion

4.1. Summary of findings

We conducted a three-stage study that involved training,
calibrating, and evaluating a machine learning classifier de-
signed to distinguish between bibliographic titleeabstract
records that report an RCT and those that do not. Recall
falls to an unacceptably low level (94%) if records with
limited information in their titles and/or abstracts are sub-
mitted for machine classification. However, when these re-
cords are excluded, the classifier exceeds the standard
required by Cochrane with recall at 99.5% of all those re-
cords scored. It should be noted that this means that some
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records are unsuitable for machine learning and so must
necessarily be checked manually; however, this mirrors
current practice, whereby records with limited information
in their titles and abstracts are retained for further assess-
ment on the basis of their corresponding full-text reports.

We deem the recall level as ‘‘acceptable’’ for use in
‘‘live’’ reviews on the basis that (1) this exceeds the recall
of validated RCT search filters that have been used in sys-
tematic review production for many years and (b) this
threshold was agreed by methodologists in Cochrane for
use in Cochrane Reviews.

Although the precision of 8% estimated against the Clin-
ical Hedges dataset appears low, this is partly because of
the age of that data set and relatively low prevalence of
RCTs. In the Cochrane Evidence Pipeline workflow
(Fig. 1), the classifier saved Cochrane Crowd from needing
to check 185,039 records manually (out of a total of
449,480) during the 2018 calendar year, a very large saving
in manual workload [13].

Systematic reviews are frequently used to support
decision-making processes for both policymakers and prac-
titioners and are also key sources of evidence in drug
licensing regulation. Reviews need to be accurate represen-
tations of the state of current knowledge, as decisions that
are based on their findings can affect people’s lives. Re-
views also need to be demonstrably correct, as the way in
which evidence is synthesized can have implications, for
example, for drug licensing, and can therefore be open to
legal challenge. These joint imperativesdfor systematic re-
views to be correct and to be seen to be correctdgenerate
the normative expectation that they should contain all rele-
vant research evidence and the corollary concern that re-
view findings based on bodies of evidence that
inadvertently exclude some eligible studies are potentially
unreliable. To this end, our study provides data demon-
strating the reliability of implementing what could be seen
as a major innovation in study identification methods for
systematic reviews, the automatic eligibility assessment
of study reports, and the exclusion of a portion without
any manual checking by humans, rolled out at scale across
Cochrane: the largest producer of systematic reviews glob-
ally and an organization committed to minimizing the risk
of bias in review production through methodological and
editorial rigor. We note that the recall threshold set by Co-
chrane (99%) exceeds the performance of conventional
search methods (e.g., the Cochrane Highly Sensitive Search
Strategy was found to have recall of 98.5% by the Clinical
Hedges team) [21], and we have demonstrated in previous
work that our machine learning approach can exceed the
precision achieved by conventional search filters [8].

Although our results indicated that 0.5% of studies could
have been ‘‘lost’’ to Cochrane Reviews if authors had used
this classifier (affecting 178 reviews, leaving 4,118 reviews
unaffected), this is almost certainly an overestimate when
considering the prospective use of this classifier to support
the identification of newly published RCTs for new,
updated, and/or living systematic reviews. First, other
means of finding studies are routinely used in Cochrane Re-
views alongside conventional electronic searchingdsuch as
checking reference lists and citing records or contacting re-
searchers who are active in the topic areadso some of
these ‘‘lost’’ studies would likely be found using these com-
plementary search methods. Second, studies that are poten-
tially lost are overwhelmingly older reports. Although we
do not dismiss the potential importance of identifying older
trials for consideration in systematic reviews, it is reassur-
ing that more recent studies (relevant especially for newer
treatments and review updates) are far less likely to be
missed. One reason the classifier performs better for more
recent studies could be improvement in the reporting of
RCTs over time, for example, in response to the CONSORT
statement [16,22]. Trialists are now widely expected to
detail trial methodology in the report’s abstract and to
include the fact that they are reporting an RCT in its title.
4.2. Strengths and weaknesses of this evaluation

In this article, we have described a robust evaluation of
the performance of an RCT classifier in a large data set of
systematic reviews. We were fortunate in having three
large, independently generated, high-quality data sets avail-
able to train, calibrate, and validate the classifier. This is an
unusual position to be in, and there are probably few study
designs other than RCTs with comparably high-quality data
sets available. We note that this may limit the potential to
evaluate the performance of similar workflows, created to
identify other types of study design, using the same
three-stage process.

The current classifier has been trained almost exclu-
sively on records published in English, so it does not neces-
sarily generalize to other languages. However, this
important limitation is, in principle, surmountable, as ma-
chine learning technology is language agnostic and would
therefore be capable of modeling any language, so long
as sufficient training data were available.

The focus of this work has been to build a machine
learning classifier for deployment in a specific workflow.
The machine learning classifier we have developed meets
required levels of recall but inevitably results in some
studies being ‘‘lost’’ to reviews. This study does not attempt
to ascertain the impact of these losses on the affected re-
views’ statistical and narrative results and findings, and a
future extension of this study will investigate this important
question. We also note that only 178 of 4,296 reviews were
affected, leaving results unchanged in at least 96% of the
reviews.
4.3. Next steps: the ‘‘Screen4Me’’ service

We are currently piloting an extension to the Evidence
Pipeline for use with individual Cochrane Reviews. Au-
thors using this service will compile their set of potentially



11James Thomas et al. / Journal of Clinical Epidemiology - (2020) -
eligible records from searches of multiple databases
(including CENTRAL) as is typical for any systematic re-
view. Given that the RCT classifier and Cochrane Crowd
have already classified more than 800,000 study records
(and increasing by O10,000 per month), it is likely that a
proportion of the records retrieved and uploaded to the
Classifier by authors have already been classified according
to whether they report an RCT or not. Where this is the
case, the records that are already known not to describe
RCTs will be removed from the workflow. The remaining
studies will then be sent to the RCT classifier, and those re-
cords classified as not reporting an RCT (i.e., that fall
below the 99% recall threshold) will be discarded. Finally,
the records classified as potentially reporting an RCT will
be screened by Cochrane Crowd. The review team is then
left with a much smaller pool of records to examine, con-
taining only RCTs. In early pilots, this new workflow
reduced manual screening workload by between 40% and
70% depending on the prevalence of RCTs in the search re-
sults of individual reviews.
5. Conclusions

The Cochrane RCT Classifier is now deployed by Co-
chrane for reducing screening workload in review produc-
tion. As part of a wider workflow that includes
prospective database searches and crowdsourcing to build
a comprehensive database of RCTs, machine learning can
reduce the manual screening burden associated with
research synthesis while ensuring a very high level of recall
that is acceptable for an organization, which depends on
having comprehensive access to the published research that
falls within health care topics relevant to its scope.
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